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Abstract— Compressive sensing is a revolutionary idea pro-
posed recently to achieve much lower sampling rate for sparse
signals. For large wireless sensor networks, the events are
relatively sparse compared with the number of sources. Because
of deployment cost, the number of sensors is limited, and due
to energy constraint, not all the sensors are turned on all the
time. In this paper, the first contribution is to formulate the
problem for sparse event detection in wireless sensor networks as
a compressive sensing problem. The number of (wake-up) sensors
can be greatly reduced to the similar level of the number of sparse
events, which is much smaller than the total number of sources.
Second, we suppose the event has the binary nature, and employ
the Bayesian detection using this prior information. Finally, we
analyze the performance of the compressive sensing algorithms
under the Gaussian noise. From the simulation results, we show
that the sampling rate can reduce to 25% without sacrificing
performance. With further decreasing the sampling rate, the
performance is gradually reduced until 10% of sampling rate.
Our proposed detection algorithm has much better performance
than the /;-magic algorithm proposed in the literature.

I. INTRODUCTION

The dogma of signal processing maintains that a signal must
be sampled at a Nyguist rate at least twice its bandwidth in
order to be represented without error. However, in practice, we
often compress the data soon after sensing, trading off signal
representation complexity (bits) for some error (consider JPEG
image compression in digital cameras, for example). Clearly,
this is wasteful of valuable sensing/sampling resources. Over
the past few years, a new theory of “compressive sensing”
[1-3] has begun to emerge, in which the signal is sampled (and
simultaneously compressed) at a greatly reduced rate. Very
recently, there are emerging applications [4—7] for wireless
communication and networking.

In this paper, we investigate how to employ compressive
sensing in wireless sensor networks [8], [9], which mostly
involve a large number of sensor nodes. Specifically, we target
on two problems of wireless sensor networks. First, there
are a very limited number of active sensors compare with
the total number of sensors in the network. Moreover, the
number of events is much less compared to the number of all
sources. Second, different events may happen simultaneously
and cause interference to detect them individually. As a result,
the received signals are superimposed all together, and an
efficient algorithm is needed to separate the signals.

To overcome the above two problems, in this paper we
propose a sparse event detection scheme in wireless sensor

networks by employing compressive sensing. Our contribu-
tions are listed as follows:

1) Most compressive sensing work formulate the problem
in image processing, especially bio image processing.
Little work has studied the wireless networking problem.
We formulate the compressive sensing problem using
sparse nature of wireless sensor networks.

2) To improve the performance, we employ the Bayesian
detection and a heuristic, using the prior information that
the events are binary. So the estimation probability can
be substantially increased, compared with the /;-magic
algorithm in the literature [15].

3) Most compressive sensing schemes suffer susceptibil-
ity under Gaussian noise environment, since Gaussian
noise can be unbounded. We conduct the simulations
to investigate the effects of the noise. We show that the
performance decays with the signal to noise ratio (SNR)
approaching 20dB.

From the simulation results, we show that the sampling rate
can reduce to 25% without sacrificing performance. With fur-
ther decreasing the sampling rate, the performance is gradually
reduced until 10% of sampling rate. As a result, the cost and
energy efficiency of wireless sensor networks can be greatly
improved.

The rest of this paper is organized as follows: Section II
presents the system model. Section III formulates the problem,
conducts analysis and exposes the proposed algorithm using
compressive sensing. Simulation results are presented and
analyzed in Section IV. Finally, conclusions are drawn in
Section V.

II. SYSTEM MODEL

We consider the system model as shown in Figure 1. There
are a total of N sources randomly located in a field. Those
source randomly generate the events to be measured. We
denote K as the number of events that the sources generate.
K is a random number, and is much smaller than N. We
denote X1 as the event vector, in which each component
has a binary value, i.e., X,, € {0,1}. Obviously X is a sparse
vector since K << N. In the system, there are M active
monitoring sensors trying to capture these events. There are
two challenges for those monitoring sensors. First, all those
events happen simultaneously. As a result, the received signals
are interfering with each other. Second, the received signal
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Fig. 1. System Model for Sensor Network

is deteriorated by propagation loss and thermal noise. The
received signal vector can be written as

Yirxi = GuxnXnx1 + €arxis (1

where €)7x1 is the thermal noise vector whose component is
independent and has zero mean and variance of 2. Gprun is
the channel response matrix whose component can be written
as

Gm,n = (dm,n,)_a/Q‘hm,n|a (2)

where d,, ,, is the distance from the n*" source to the m*"

sensing device, « is the propagation loss factor, and Ay, is
the Raleigh fading modeled as complex Gaussian Noise with
zero mean and unit variance.

Notice that the number of events, the number of sensors,
and total number of sources have the following relation K <
M << N. Consequently, the received signal vector Y is an
condensed representation of the event. In other words, vector Y
has aliasing of vector X, due to the low sampling rate M. From
the algorithm proposed in the next section, we can estimate X
from Y.

III. COMPRESSIVE SENSING ALGORITHM

In this section, we first formulate the compressive sensing
problem. Next, we investigate how to use the prior information
to improve the recovery performance.

A. Problem Formulation and Analysis

The problem is to obtain the K information of X using
the limited number of sensors (). The first question is that
whether or not the information of K -sparse signal is damaged
by the dimensionally reduction from X € RY down to Y €
RM _ In general, if X is not sparse enough, as long as M < N,
the signal is damaged since there are fewer equations than
unknowns. On the other hand, for the K-sparse signal, Y is
just a linear combination of K columns of G. A necessary
and sufficient condition to ensure that this M x K system can
be compressed and reconstructed is listed as the following

property:

Definition 1: Restricted Isometry Property (RIP) [1-3]: For
any vector V sharing the same K nonzero entries as X, if

IGv|?
—e<
1—€e< IE <1l-+e 3)
for some ¢ > 0, then the matrix G preserves the information
of the K -sparse signal. A sufficient condition for stable inverse
in practice is that G satisfies (1) for an arbitrary 3 K-sparse
vector V.

In [1-3], it has been proved that if G is an iid Gaussian
matrix or random =£1 entry matrix, then the K-sparse signal is
compressible with high probability if M < c¢K log(N/K) <<
N, where c is a constant. For our specific problem, we will
show in the simulation that the signal can be reconstructed,
which is due to randomness introduced by random locations
and Rayleigh fading.

From above, we know that under a certain condition the
signal is still preserved in M dimensions. The next question
is how to develop a reconstruction algorithm to recover X from
the measurement Y. Since M < N there are infinite number of
X satisfy Y = GX. All solutions lie on the N — M dimension
hyperplane H := N (G) + X which corresponding to the null
space N(G) translated to X. So the problem is to find the
sparse reconstructed signal X in the translated null space as:

X = arg min |X|s, 4)
Y=GX
where | - |; is norm one. Notice that it has been shown in

the literature [15] that for norm two, there might be many
solutions, and for norm zero, the complexity is /N P hard [1-3].

The problem in (4) is a convex optimization problem, which
can reduce to a linear program. Define X = U+ W. We can

change (4) to
S.t. {

The above optimization is called the /;-magic in the literature.
The complexity is O(NN3). But much simple algorithms such
as simplex algorithm [10], [11] can be easily employed.

B. Bayesian Detection
For the problem formulation in (4), we do not consider the

fact that the components of X are either 0 or 1. To utilize
this prior information, in this subsection instead of using
the traditional signal recovery algorithm like the [;-magic
or linear programming, we adopt the Bayesian compressive
sensing [12—-14], which is fully probabilistic and introducing
a set of hyper-parameters which is viewed as a prior over the
signal, and the most probable values are iteratively estimated
from the received data. The main reason why this algorithm
fits our needs in the sensor network compressive sensing is
that, the posterior distributions of many of the signals are
sharply peaked around zero, which matches exactly our sparse
binary signal system model. By exploiting such a probabilistic
Bayesian framework, we can achieve accurate reconstruction
with dramatically fewer samples than using other recovering
algorithms, which will be shown in simulations in Section IV.

min(U + W) %)

(GU-GW) =Y,
U, W > 0.



In the following, we first propose the model, then the iterative
marginal likelihood maximization, and finally we propose a
heuristic algorithm based on some observations.

1) Model Specification: In (1), the noise in the system is
composed of propagation loss with zero mean and variance
o2. The probability density function can be approximated as
Gaussian distribution as:

M
p(e) = H/\/(ei|0, a?). (6)
i=1

Due to the assumption of independence of Y, the likelihood
of the complete data set can be written as:

p(Y[G,0) = (270%) /2 exp (2}7 Y- GXIF) G

By adopting a Bayesian perspective, we constrain the param-
eters by defining an explicit prior probability distribution over
them.

The real distribution of X is Bernoulli distribution. However,
the close form solution in our problem is hard to be obtained.
Instead, we assume a zero-mean Gaussian prior distribution
over the signal X:

N
[ V(X007 (8)

n=1

N
= (27T)7N/2H0é,1/2€xp —%
n=1 " 2 ’

where « is a vector of N independent hyper-parameters. We
will show in the simulations that this assumption can improve
the performance. For the Bernoulli distribution case, we will
investigate at the end of this section to further utilize the prior
information.

Given «, the posterior parameter distribution conditioned
over the signal is given by combining the likelihood and prior
with Bayes’ rule:

pXla) =

p(YX, 0?)p(X|a)

p(Y|a,0%) 7
which is a Gaussian distribution A (p, ) with covariance and
mean of

p(X|Y,a,0%) = 9)

Y=(A+02G"G)? (10)

and

p=0c22GTyY, 1)

respectively, where A = diag(aq,...,an).

2) Marginal Likelihood Maximization: A most-probable
point estimate ajrp may be found via a type-II maximum
likelihood procedure [18]. The sparse Bayesian model is
formulated as the local maximization with respect to « of
the marginal likelihood, or equivalently its logarithm:

L(a) = logp(Y|e, 02)

log/ p(Y[X, o?)p(X]e)dX

— 00

12)

1
= -3 (Mlog2r +log|C| + YT CY)

with

C=024+1I+GA'G". (13)

A point estimate ppsp for the parameters is then obtained
by evaluating (11) with o = apsp, giving a posterior mean
approximator GX = Gp s p.

However, marginal likelihoods are generally difficult to
compute, i.e., values of & and o2 which maximize L(«) cannot
be obtained in closed form. Thus, we need to re-estimate them
iteratively.

For the updating of «, following the approach in [18], we
differentiate (12), and then equate it to 0. After rearranging,
we have )
new __ ll
7 2 ’

W

« (14)
where f1; is the i*" posterior mean signal from (11), and ~; is
defined as

Y =1—0a;Ni; 15)

with N;; being the i" diagonal element of the posterior signal
covariance from (10) computed with current o and o2 values.
Each ~; can be treated as a measure of how well-determined
its corresponding parameter X; is by the data. For the variance
o2, differentiation leads to re-estimate:

> _ Y -Gpu?
TS 7

We repeat calculation of a and o2 with iteratively updating
1 and X until certain convergence criteria have been reached.
This procedure leads to the maximization the marginal likeli-
hoods.

Then at the convergence of a estimation procedure, we
make predictions based on the posterior distribution over
the signal, conditioned on the maximizing values aj;p and
o2, p. In other words, by doing this, we could pick up those
entries in the projection matrix G which after projection
preserves the information of the signal in Y. With the utilizing
of the correspondent elements in the measurements Y and
projection matrix G, we could reconstruct our signal with an
overwhelming probability. Experimental data in the following
Section show that, compared with /;-minimization, sampling
rate could be reduced dramatically.

3) Heuristic using Prior Information: After the reconstruc-
tion of X, if the algorithm converges to wrong results (which
will be shown in the following section), there are two possible
situations. First, the algorithm can converge to either around 0
and 1, but with the wrong position for the sparse events. This
type of errors could not be easily distinguished. The other
type of error would let X have values deviating from 0 or 1.
Under this condition, it is very easy to find the error using
threshold methods. Then the system can wait until the next
time slot (which has different fading parameters) to make a
decision, hoping the channel matrix G could be changed so
that the reconstructed X can be improved. Here we propose
a heuristic algorithm to achieve the above ideas as shown in
Table 1. Here § is a small positive constant less than one. If

(16)



TABLE I
HEURISTIC ALGORITHM USING PRIOR INFORMATION

Ifl—90<max(X)<1+9
report the decision of X:
Exit.
Else
Wait until next time slot to obtain Y.
Go to First Step. Exit after a certain number of unsuccessful trials.
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Fig. 2. Proposed Scheme Performance

the maximal value of X is within [1 — §,1 + §], we assume
the reconstructed signal is correct. Otherwise, we obtain the
new Y. Notice that the cost for the heuristic algorithm is the
possible delay for the responses, since the new Y needs to be
obtained after the channel states have been changed.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, we set up some preliminary simulation
results. There are a total of N = 256 events randomly located
within 500m-by-500m area. The M wireless sensors are also
randomly located within this area. The minimal distance
between a event and a sensor is 5m. The propagation loss
factor is 3. The transmitted power is normalized to 1 and the
thermal noise is 10~'2. The number of random events is K
which is a small number.

Figures 2 shows the detection probability of the proposed
algorithm. We define the sampling rate as M /N. We can see
that if the sampling rate is higher than 25%, the detection
probability is almost 100%. The performance gradually re-
duces as the sampling rate reduces and as K (the number
of event) increases. For comparison, Figure 3 shows the
traditional /; algorithm. Compared with the conventional linear
programming recovery algorithm for compressive sensing, the
proposed Bayesian framework with fast marginal likelihood
maximization algorithm brings much higher detection proba-
bility especially at extremely low sampling rate. For example,
with sampling rate as 10%, the proposed scheme is more
than 2 times better than the [; algorithm. Notice that this
performance gain is based on the assumption that the source is
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Fig. 4. Nlustration of Correct Detection

Gaussian distribution. If we model the distribution to be more
realistic Bernoulli distribution, the performance can be further
improved.

Figure 4 shows an illustrative example with M = 20 and
N = 256. We can see that the original signals are very sparse
(K = 4). The received measurement from different sensors
could not tell the original signals, which is shown in the middle
of the figure. With the compressed sensing algorithm proposed
in the previous sections, the reconstructed signal is shown to
match the original signal perfectly. Figure 5 shows a possible
mistake, in which the reconstructed signals do not match
the original signals. However, we can see that the converged
results conflict with the prior information of binary sources. As
a result, we can easily tell the results are not valid. In Figure
6, we show the performance improvement of our proposed
heuristic scheme. Here 6 = 0.5, and maximal number of
unsuccessful trail is 20. We can see that we can reduce the
sampling rate further. For example for detection probability
80%, we can reduce sampling rate about 20% more.
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Fig. 6. Heuristic Improvement

Figure 7 shows the effect of noise on the proposed scheme.
We can see that when the SNR reduces, the detection prob-
ability is significantly reduced. The detection probabilities
for different sampling rates are similarly bad when the SNR
is reduced to around 20dB. This is due to the reason that
Gaussian distribution is unbounded and can cause significant
detection error. In the future work, we will propose some de-
noise method. In addition, we will develop simulated annealing
method to avoid undesired solutions so as to improve the
detection performance.

V. CONCLUSIONS

In this paper, we propose a compressive sensing method
for sparse event detection in wireless sensor networks. We
formulate the problem and propose solutions. For the signal re-
construction part, we introduced a fully probabilistic Bayesian
framework which helps dramatically reduce the sampling rate
while still guaranty an overwhelming detection probability.
Moreover, we adopt a marginal likelihood maximization algo-
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rithm and a heuristic algorithm for the Bayesian framework,
which leads to higher detection probability than the traditional
linear programming solution for this problem. The noisy
condition is also analyzed.
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