
ORIGINAL ARTICLE

Sparse evolutionary deep learning with over one million artificial
neurons on commodity hardware

Shiwei Liu1 • Decebal Constantin Mocanu1,3 • Amarsagar Reddy Ramapuram Matavalam2
•

Yulong Pei1 • Mykola Pechenizkiy1

Received: 11 February 2020 / Accepted: 16 June 2020 / Published online: 6 July 2020

� The Author(s) 2020

Abstract

Artificial neural networks (ANNs) have emerged as hot topics in the research community. Despite the success of ANNs, it

is challenging to train and deploy modern ANNs on commodity hardware due to the ever-increasing model size and the

unprecedented growth in the data volumes. Particularly for microarray data, the very high dimensionality and the small

number of samples make it difficult for machine learning techniques to handle. Furthermore, specialized hardware such as

graphics processing unit (GPU) is expensive. Sparse neural networks are the leading approaches to address these chal-

lenges. However, off-the-shelf sparsity-inducing techniques either operate from a pretrained model or enforce the sparse

structure via binary masks. The training efficiency of sparse neural networks cannot be obtained practically. In this paper,

we introduce a technique allowing us to train truly sparse neural networks with fixed parameter count throughout training.

Our experimental results demonstrate that our method can be applied directly to handle high-dimensional data, while

achieving higher accuracy than the traditional two-phase approaches. Moreover, we have been able to create truly sparse

multilayer perceptron models with over one million neurons and to train them on a typical laptop without GPU (https://

github.com/dcmocanu/sparse-evolutionary-artificial-neural-networks/tree/master/SET-MLP-Sparse-Python-Data-Struc

tures), this being way beyond what is possible with any state-of-the-art technique.

Keywords Truly sparse neural networks � Sparse evolutionary training (SET) � Microarray gene expression �

Adaptive sparse connectivity

1 Introduction

In the past decades, artificial neural networks (ANNs) have

become an active area of current research due to state-of-

the-art performance they have achieved in a variety of

domains, including image recognition, text classification,

and speech recognition. The powerful hardware, like

graphics processing unit (GPU), as well as the increasing

growth of data volumes, accelerates the advances of ANNs

significantly. Recently, some works [3, 21] show that

increasing the model capacity beyond a particular threshold

yields better generalization. However, GPU is expensive

and the explosive increase of model size leads to pro-

hibitive memory requirements. Thus, the required resour-

ces to train and employ the modern ANNs are at odds with

commodity hardware where the resources are very limited.

Motivated by these challenges, sparse neural networks

[9, 12] have been introduced to effectively reduce the

& Shiwei Liu
s.liu3@tue.nl

Decebal Constantin Mocanu
d.c.mocanu@utwente.nl

Amarsagar Reddy Ramapuram Matavalam
amar@iastate.edu

Yulong Pei
y.pei.1@tue.nl

Mykola Pechenizkiy
m.pechenizkiy@tue.nl

1 Department of Mathematics and Computer Science,
Eindhoven University of Technology, 5600 MB Eindhoven,
The Netherlands

2 Department of Electrical and Computer Engineering, Iowa
State University, Ames, USA

3 Faculty of Electrical Engineering, Mathematics and
Computer Science, University of Twente, Enschede 7522NB,
The Netherlands

123

Neural Computing and Applications (2021) 33:2589–2604

https://doi.org/10.1007/s00521-020-05136-7 (0123456789().,-volV)(0123456789().,- volV)

https://github.com/dcmocanu/sparse-evolutionary-artificial-neural-networks/tree/master/SET-MLP-Sparse-Python-Data-Structures
https://github.com/dcmocanu/sparse-evolutionary-artificial-neural-networks/tree/master/SET-MLP-Sparse-Python-Data-Structures
https://github.com/dcmocanu/sparse-evolutionary-artificial-neural-networks/tree/master/SET-MLP-Sparse-Python-Data-Structures
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-05136-7&amp;domain=pdf
https://doi.org/10.1007/s00521-020-05136-7


memory requirements to deploy ANN models. After that,

various techniques have emerged to obtain sparse neural

networks, including but not limited to pruning

[27, 33, 48, 57], L0 and L1 regularization [45, 70], varia-

tional dropout [54], and soft weight-sharing [68]. While

achieving a high level of sparsity and preserving compet-

itive performance, these methods usually involve a pre-

trained model and a retraining process, which makes the

training process remain inefficient.

Recently, several works have developed techniques

allowing to train sparse neural networks with fixed

parameter budget throughout the training based on adaptive

sparse connectivity, e.g., sparse evolutionary training

(SET) [52], DEEP-R [4], dynamic sparse reparameteriza-

tion (DSR) [55], sparse momentum [20], ST-RNNs [43],

and rigged lottery (RigL) [24]. The sparse weights, ini-

tialized with a fixed sparsity (a fraction of model parame-

ters with zero values), can be maintained throughout

training. The heuristic behind these techniques is following

a cycle of weight pruning and weight regrowing based on a

certain criterion. Essentially, the whole process of sparse

training can be treated as a combinatorial optimization

problem (weights and sparse structures). As the number of

parameters during training is strictly constrained, sparse

training techniques based on adaptive sparse connectivity

are able to achieve the training efficiency as well as the

inference efficiency associated with the final compressed

model. However, due to the limited support for sparse

operations in GPU-accelerated libraries, the sparse struc-

ture is enforced with binary masks. Thus, the training

efficiency is only demonstrated theoretically not

practically.

Due to the above-mentioned problems, the memory

requirements and computation capacity to directly train

wide neural networks with hundreds of thousands of neu-

rons to deal with high-dimensional non-spatial like data

(e.g., tabular data) with over 20,000 dimensions (input

features) and less than 100 samples, are usually beyond

what is allowed on commodity hardware. This paper aims

to process high-dimensional data with a truly sparse end-

to-end model. More precisely, we focus on the original

SET algorithm because it was shown that it is capable of

reaching very high accuracy performance [52, 73], many

times even higher than the dense counterparts [43], while

being very versatile and suitable for many neural network

models (e.g., restricted Boltzmann machines [50], multi-

layer perceptrons [44], and convolutional neural networks)

and non-grid-like data. However, due to the limitations of

typical deep learning libraries (e.g., optimized operations

just for fully connected layers and dense matrices), the

largest number of neurons used in [52] is just 12,082

neurons—quite a low representational power. Practically,

the original SET-MLP implementation uses the typical

approach from the literature to work with sparsely con-

nected layers, i.e., fully connected layers with sparsity

enforced by a binary mask over their weights—this

approach, of course, is far from using the full advantage of

sparsity. Instead of generating a mask to enforce sparsity,

in this paper, we devise the first sparse implementation for

adaptive sparse connectivity so that it is possible to design

neural network models which are very large in terms of

representational power, but small in terms of space com-

plexity to fit onto memory-limited devices.

The first contribution of this paper is a truly sparse

implementation of SET, which can create and train SET-

MLP models with hundreds of thousands of neurons on a

typical laptop without GPU to handle data with tens of

thousands of dimensions, a situation which is over the

capacity of traditional fully connected MLPs. Secondly, we

show that our proposed approach can be a good replace-

ment for the current methods which employ both feature

reduction and classifiers to perform classification on high-

dimensional non-image datasets. Thirdly, we show that our

proposed solution is robust to the ‘‘curse of dimensional-

ity,’’ avoiding overfitting and achieving very good perfor-

mance in terms of classification accuracy on a dataset with

over 20,000 dimensions (input features) and less than 100

samples.

2 Related work

In this section, we will introduce the advances of pro-

cessing high-dimensional microarray data and techniques

allowing training sparse neural networks from scratch.

2.1 Artificial neural networks on microarray
gene expression

Data have become indispensable factors of the success of

machine learning (ML). The performance of a ML appli-

cation is primarily determined by the quality and the

quantity of the training data [42]. Particularly, gene

expression obtained from DNA microarray has emerged as

a powerful solution to cancer detection and treatment [65].

However, most of the datasets in DNA microarray are

high-dimensional and redundant, which would result in the

unnecessary calculation, large memory requirement, and

even the decrease of generalization ability due to the

‘‘curse of dimensionality’’ [19]. Moreover, the invisible

relationships and non-standard structures among different

features also make it very time-consuming to find the key

features from tens of thousands of features.

To tackle this problem, various methods have been

proposed by researchers. Among them, feature selection is

undoubtedly a ‘‘de facto’’ standard as it is not only able to

2590 Neural Computing and Applications (2021) 33:2589–2604

123



remove the redundant features and to keep the important

ones, but it also helps to improve the model performance

[19]. Following the feature detection phase, standard

machine learning classifiers can be used to perform clas-

sification on the selected features. Traditional feature

selection methods can be roughly divided into three cate-

gories: filter methods [2, 7, 14, 15, 17, 26, 30, 39], wrapper

methods [11, 16, 23, 38, 46, 61, 62], and embedded

methods [41, 56, 63]. Independent of the classifier, filter

methods are able to deal with large scale datasets effi-

ciently as they have low computational costs due to the fact

that they select variables using proxy measures (e.g.,

mutual information), not an error metric provided by the

classifier [60]. Wrapper methods employ feedback classi-

fication accuracy to assess the different suboptimal subsets

chosen by following search algorithms, which can have

good results but also increases the computation cost [8].

The WrapperSubsetEval [32] is a general wrapper method

which can be connected with various learning algorithms.

Different from the previous two discussed categories, in

embedded methods [47], the feature selection and the

classifier are not separated from each other.

As more and more datasets with ultrahigh dimensions

have emerged, these datasets also bring challenges to

conventional algorithms running on normal computers due

to the expensive computational costs. To address this

problem, distributed computing has been proposed. A

distributed decentralized algorithm for k-nearest neighbor

(kNN) graph has been proposed in [59]. This framework is

able to distribute the computation of the kNN graph with

very big datasets by utilizing the sequential structure of

kNN data. MapReduce [18] is an efficient programming

model used by Google to compute different types of data

and process large raw data. Moreover, a classifier frame-

work combining MapReduce and proximal Support Vector

Machine (mrPSVM) has been proposed in [40]. The results

on several high-dimensional, low-sample benchmark

datasets demonstrate that the ensemble of mrPSVM clas-

sifier with feature selection methods using statistical tests

outperforms classical approaches.

Although the above-mentioned hierarchical algorithms

can have a good performance on classification tasks, the

proper performance heavily depends on the features

meticulously selected by experts from different domains

[49]. This means that at least a dimensionality reduction

technique is needed before the classifier. As an emerging

branch of machine learning, deep neural networks tackle

this problem via the explosive increase of data and com-

putation ability. Multilayer perceptron (MLP) is one of the

most used architectures in deep neural networks, e.g., it

represents 61% of a typical Google TPU (tensor processing

unit) workload for production neural networks applica-

tions, while convolutional neural networks represent just

5% [37]. However, it is difficult to employ MLPs directly

on high-dimensional data tasks due to the quadratic number

of parameters in its fully connected layers. This limits

MLPs size to several thousand neurons and a few thousand

input features on commodity hardware, and implicitly their

representational power.

Being a successful approach that has been widely used

in image recognition, speech recognition, language trans-

lation, etc., deep neural networks have also been employed

to deal with high-dimensional data. MLPs have been

widely applied to solve gene expression regulation prob-

lems. Chen et al. [10] have presented MLPs for gene

expression inference (D-GEX) to perform gene expression

inference to the GEO microarray data and RNA-seq

expression data. An autoencoder has been connected with

principal component analysis (PCA) to learn the high-level

features of 13 microarray data [25]. Convolutional neural

networks (CNNs) are also used to solve biological

sequence problems due to its outstanding capability to

learn spatial information. Alipanahi et al. [1] have pro-

posed a CNN-based approach, called DeepBind, to handles

both microarray and sequencing data. By two downstream

applications, DeepBind can automatically analyze

sequencing data and alleviate the time-consuming human

designing work.

2.2 Intrinsically sparse neural networks

Recently, there are some works attempting to train an

intrinsically sparse neural network from scratch to obtain

the efficiency for both the training and inference phases.

Mocanu et al. [51] have trained sparse restricted Boltzmann

machines that have fixed scale-free and small-world con-

nectivity. After that, Mocanu et al. [52, 53] have introduced

the sparse evolutionary training procedure and the concept

of adaptive connectivity for intrinsically sparse networks to

fit the data distribution. The Nest algorithm [13] gets rid of

a fully connected network at the beginning by a grow-and-

prune paradigm, that is, expanding a small randomly ini-

tialized sparse network to a large one and then shrink it

down. A Bayesian posterior has been applied to sample the

sparse network configurations, while providing a theoreti-

cal guarantee for connectivity rewire [4]. Besides weights

pruning and regrowth, cross-layer weights redistribution

has been used to adjust network architectures for better

performance [55]. Liu et al. [44] have further reduced the

number of parameters by applying neurons pruning, while

getting competitive performance. Dettmers et al. [20] have

used the momentum information of momentum Stochastic

gradient descent to tackle weights regrowth and redistri-

bution problems, reaching dense performance levels with

35–50%, 5–10%, and 20–30% weights for AlexNet,

VGG16, and Wide Residual Networks, respectively. Very

Neural Computing and Applications (2021) 33:2589–2604 2591

123



recently, by modifying the sparsity distribution of Erd}os–

Rényi introduced in [52], RigL [24] can match and

sometimes exceed the performance of pruning-based

approaches. On the other hand, the Lottery Ticket

Hypothesis has been proposed to find the sparse networks

that can reach better accuracy [27] than dense networks.

However, a dense network trained at the beginning limits

its efficiency only for inference, not the training process.

While achieving proper performance, these methods

demonstrated computational efficiency via applying a

binary mask on the weights due to the lack of efficient

sparse linear algebra support from processors like TPUs or

GPUs.

2.3 Sparse evolutionary training

Inspired by the fact that biological neural networks are

prone to be sparse, rather than dense [58, 66], there is an

increasing interest in conceiving neural networks with a

sparse topology [51, 71]. In [52], the authors proposed a

novel concept, sparse neural networks with adaptive sparse

connectivity to maintain sparsity during training. Given a

dataset D ¼ fðxi; yiÞg
n
i¼1, let a network denoted by:

ŷ ¼ f ðx; hÞ ð1Þ

where the f ðxi; hÞ is the neural network parameterized by h.

The parameters h can be decomposed into dense matrix

hl 2 R
nl�1�nl , where nl and nl�1 represent the number of

neurons of the layer l and l� 1, respectively. We train the

network to minimize the loss function
P

Lðf ðx; hÞ; yÞ. The
motivation of sparse neural networks is to reparameterize

the dense network only with a fraction of parameters, hs.

The parameters hs can be decomposed into sparse matrix

hls 2 R
nl�1�nl , for each layer l. A sparse neural network can

be demoted by:

ŷs ¼ fsðx; hsÞ ð2Þ

Let us define the sparsity of the network as S ¼ 1�
khsk0
khk0

,

where khk0 refers to the l0 norm of h.

The sparse evolutionary training (SET) is a method that

allows efficiently training sparse neural networks from

scratch with a fixed number of parameters. The basic idea

underlying SET is first initializing a network with a sparse

topology and then optimizing the weight values and the

sparse topology together during the training process, to fit

the data distribution. Different from the conventional

methods, e.g., weights pruning [12, 34] which creates

sparse topologies during or after the training process, the

network trained with SET is designed to be sparse before

training. This quadratically reduces the number of con-

nections during the whole training phase. The main parts of

SET are sparse initialization and the weight pruning–re-

growing cycles, explained below.

2.3.1 Sparse initialization

The initial sparse topology proposed in SET is Erd}os–

Rényi random graph topology [22] where a sparse matrix

hls 2 R
nl�1�nl represents connections between two consec-

utive layers l� 1 and l. More precisely, the network is

initialized by:

hls ¼ hl �Ml ð3Þ

where � represents the Hadamard product and Ml is a

binary matrix of the same size with hl, in which each

element Ml
i;j is given by the probability

PðMl
i;jÞ ¼ minð�ðn

lþnl�1Þ
nl�nl�1 ; 1Þ. � 2 R

þ is a hyperparameter to

control the sparsity level S. Such initialization distributes

higher sparsity to the layers where nl is approximately in

the same range with nl�1, and lower sparsity to the layers

where nl � nl�1 or vice versa.

2.3.2 Weight pruning–regrowing cycle

After each training epoch, unimportant connections (ac-

counting for a certain fraction f of jjMljj0) will be pruned in

each layer. The remaining connections are given by:

hls ¼ hls � ðM
l � PlÞ ð4Þ

where Pl is a binary matrix with the same size as Ml,

jjPljj0 ¼ fjjMljj0, and the nonzero elements of Pl is a subset

of the nonzero elements of Ml corresponding to largest

negative weights and the smallest positive weights in hls.

After that, an equal number of connections with fjjMljj0 are

randomly added to each layer by:

hls ¼ hls þ hlr ð5Þ

where hlr 2 R
nl�1�nl has exactly fjjMljj0 nonzero values.

The nonzero element locations from hlr are picked using a

random uniform distribution, and their values are set using

a small Gaussian noise. Finally, Ml is updated as follows:

Ml
i;j ¼

1; if hlsði; jÞ 6¼ 0

0; otherwise:

(

8i; j ð6Þ

Roughly speaking, the removal of the connection in SET

represents natural selection, whereas the emergence of new

connections corresponds to the mutation phase in natural

evolution inspiring computing.

However, the authors of SET have used Keras with

TensorFlow backend to implement their SET-MLP models.

This implementation choice, while having the significant

2592 Neural Computing and Applications (2021) 33:2589–2604

123



advantage of offering wide flexibility of architectural

choices (e.g., various activation functions, optimizers,

GPUs, and so on), which is very welcomed while con-

ceiving new algorithms, does not offer proper support for

sparse matrix operations. This limits the practical aspects

of SET-MLP considerably with respect to its maximum

possible number of neurons and implicitly to its represen-

tational power. Due to these reasons, the largest SET-MLP

model reported in the original paper [52] only contains

12,082 neurons on NVIDIA Tesla M40. Note that it is

possible to increase the size of such SET-MLP imple-

mentations with several thousands more neurons, but no

chance to reach one million neurons.

3 Proposed method

In this paper, we address the above limitations of the SET

original implementation and we show how vanilla SET-

MLP can be implemented from scratch using just pure

Python, SciPy, and Cython. Our approach enables the

construction of SET-MLPs with at least two orders of

magnitude larger, i.e., over 1,000,000 neurons. What is

more, such SET-MLPs do not need GPUs and can run

perfectly fine on a standard laptop.

3.1 Sparse matrices operations

The key element of our very efficient implementation is to

use sparse data structures from SciPy. It is important to use

the right representation of a sparse matrix for different

operations because different sparse matrix formats have

different advantages and disadvantages. Below the SciPy

sparse data structures used to implement SET-MLPs are

briefly discussed, while the interested reader is referred to1

for detailed information.

• Compressed sparse row (CSR) sparse matrix: The data

are stored in three vectors. The first vector contains

nonzero values, the second one stores the extents of

rows, and the third one contains the column indices of

the nonzero values. This format is very fast for many

arithmetic operations but slow for changes to the

sparsity pattern.

• Linked list (LIL) sparse matrix: This format saves

nonzero values in row-based linked lists. Items in the

rows are also sorted. The format is fast and flexible in

changing the sparsity patterns but inefficient for arith-

metic matrix operations.

• Coordinate list (COO) sparse matrix: This format saves

the nonzero elements and their coordinates (i.e., row

and column). It is very fast in constructing new sparse

matrices, but it does not support arithmetic matrix

operations and slicing.

• Dictionary of keys (DOK) sparse matrix: This format

has a dictionary that maps row and column pairs to the

value of nonzero elements. It is very fast in incremen-

tally constructing new sparse matrices, but cannot

handle arithmetic matrix operations.

Note that, one format cannot handle all operations neces-

sary for sparse weights matrices to implement a SET-MLP.

Still, the conversions from one format to another are very

fast and efficient. Thus, in our implementation which was

done in pure Python 3, we have used for specific SET-MLP

operations, specific sparse matrix formats, and their fast

conversion capabilities, as follows.

Initialize sparsely connected layers The sparse matrices

which store the sparsely connected layers are creating

using the linked list (LIL) format and then are transformed

into compressed sparse row (CSR) format.

Feed-forward phase During it, the sparse weights matrices

are stored and used in the CSR format.

Backpropagation phase—computing gradients The only

operations which cannot be implemented with SciPy sparse

matrix operations are computing the gradients for back-

propagation [64] due to the simple fact that by multiplying

the vector of backpropagation errors from layer hk with the

vector of activation neurons from layer hk�1 will perform a

considerable amount of unnecessary multiplications (for

nonexistent connections) and will create a dense matrix for

updates. This dense matrix, besides being very slow to

process, will have a quadratically number of parameters

with respect to its number of rows and columns and will fill

a 16 GB RAM very fast (in practice, for less than 10,000

neurons per layer given all the other necessary information

which have to be stored in the computer memory). To

avoid this situation, we have implemented in Cython the

computations necessary for the batch weight updates. In

this way, we compute in a much faster manner than in pure

Python the gradient updates just for the existing connec-

tions. For this step, the sparse weight matrices are stored

and used in the Coordinate list (COO) format.

1 https://docs.scipy.org/doc/scipy/reference/sparse.html. Last visit 3
June 2018.

Neural Computing and Applications (2021) 33:2589–2604 2593

123

https://docs.scipy.org/doc/scipy/reference/sparse.html


Backpropagation phase—weights update For this, the

sparse weights matrices are used in the CSR format.

3.2 Implementation of weight pruning–
regrowing cycle

In this section, we introduce the implementation of weight

pruning–regrowing cycle for Eqs. (4) and (5). The key

aspect of the SET method that sets it apart from the con-

ventional DNN training is the evolutionary scheme which

modifies the connectivity of the layers at the end of every

epoch. As the weight evolution routine is executed quite

often, the routine needs to be implemented in an efficient

manner to ensure that the SET-MLP training can be done

as fast as possible. Furthermore, as the layer connections

are extremely sparse in the SET scheme, the implementa-

tions should ensure that the sparsity level is maintained.

Actually, it shall exploit the sparsity while removing and

adding new weights. Two implementations of the weight

evolution scheme were coded in native Python using

Numpy sparse matrix routines.

3.2.1 Implementation I

The first implementation is readable and intuitive, but does

not exploit the full capabilities of the Numpy library in its

various operations. In this implementation, the sparse

weight matrices in the CSR format are converted to three

vectors representing the indices of the rows, columns of the

nonzero elements along with the element values (either

using the COO or LIL format). The values are then com-

pared in a for-loop to the threshold to keep the weights or

discard them, as per the user specified f values. To ensure

that the total number of nonzeros in the weight matrix

remains the same, random connections between neurons

need to be created. Again a for-loop is used to create new

random connections in an incremental manner and ensure

that the total number of nonzeros is equal to the original

number of nonzeros. Most of the processing time in the

code occurs in the for-loops and the while loops, and this is

confirmed by a code profiling tool in python.2 Furthermore,

as we are constantly accessing the weights by the row and

column index, this method does not exploit the sparsity of

the weight matrix. The code profile of the processing time

demonstrated that the removal of weights of the weight

matrix takes about 15% of total time in an epoch and

adding new random connections takes about 50% of the

total time during an epoch. The detailed algorithm is given

in Algorithm 2.

3.2.2 Implementation II

In order to make full use of advantages of different sparse

matrix formats, we also propose fast weights evolution

(FWE). In FWE, the sparse weight matrices in the CSR

format are also converted to three vectors representing the

indices of the rows, columns of the nonzero elements along

with the element values using the COO format. The value

vector is compared a single time with the minimum and

maximum threshold values using the vectorized operations

in Numpy. This enables the identification of the indices of

small weights for fast deletion of the weights. Next, the

remaining row and column indices are stored together into

an array and a list of all the arrays of the nonzero elements

is created. This is used directly to determine the random

row and column indices of the additional weights to ensure

that the number of connections between the neurons is

constant. As the weights are sparse, the size of the list is

much smaller than the full size of the weight matrix and

performing all the computations with the list will be faster.

The detailed algorithm is given in Algorithm 3. The
2 Line_profiler by Robert Kern, [Available Online] https://github.
com/rkern/line_profiler.

2594 Neural Computing and Applications (2021) 33:2589–2604

123

https://github.com/rkern/line_profiler
https://github.com/rkern/line_profiler


comparison of the running time of these two implementa-

tions is given in Table 1, which shows that Implementation

II is more efficient than Implementation I. The computa-

tional complexity (Big O Notation) is the same for both

implementations. The difference is given by running

python code without optimized C?? routines (Algo-

rithm 2) and with optimized C?? routines (Algorithm 3).

4 Experimental evaluation

For a good understanding of SET-MLP performance, we

compare it against another sparse MLP model (imple-

mented by us in the same manner) in which the bipartite

layers are initialized with an Erd}os–Rényi topology, but

does not evolve over time and has a fixed sparsity pattern,

dubbed MLPFixProb as in [52]. Note that it is impossible to

report also the accuracy for FC-MLPs as they cannot run

on a typical laptop due to their very high memory and

computational requirements. Moreover, even if it would be

possible to run FC-MLP, this comparison is outside the

scope of this paper and it would be redundant as it has been

shown in [6, 24, 44, 52, 53, 73] that SET-MLP typically

outperforms its fully connected counterparts.

4.1 Datasets

We evaluate and discuss the performance of our efficient

SET-MLP implementation on four publicly available

microarray datasets, as detailed in Table 2. It is worth

highlighting that both the training and testing sets are

unbalanced for all datasets. We choose 2/3 of the data as

training data and 1/3 of the data as testing data. Note that

we do not set validation data, as the sample sizes of these

datasets are extremely small.

Leukemia The Leukemia dataset is obtained from the NCBI

GEO repository with the accession number GSE13159. It

contains 2096 samples with 54,675 features each. The

samples are divided into 18 classes. Among these 2096

samples, 1397 samples are selected as training data and

699 as testing data. Table 3 shows the number of test

samples in each class.

CLL-SUB-111 The CLL-SUB-111 dataset is an unbalanced

dataset contains gene expressions from high-density

oligonucleotide arrays consist of both genetically and

clinically distinct subgroups of B cell chronic lymphocytic

leukemia (B-CLL). It has 11,340 features and 111 samples,

out of which 74 samples are selected as the training set and

37 as the testing set.

SMK-CAN-187 The SMK-CAN-187 dataset is a RNA

dataset obtained from the normal bronchial epithelium of

smokers with and without lung cancer. It has 19,993 fea-

tures and 187 samples. Out of these 187 samples, 124

samples are chosen as training data and 63 as testing data.

GLI-85 The GLI-85 dataset is the Affymetrix HG U133

oligonucleotide arrays on 85 diffuse infiltrating gliomas of

all histologic types. It has 22,283 features and 85 samples.

Out of these 85 samples, 56 samples are training data and

29 are testing data.

4.2 Evaluation metrics

To evaluate the performance of the proposed method, we

have used the accuracy metric and the confusion matrix to

get detailed visual information. The confusion matrix (M)

contains information per class about both model predic-

tions and ground truth. These enable people to understand

and diagnose the models better. The confusion matrix

template and related performance measures for two-class

classification problems are given in Table 4. In terms of

multiclass classification, assuming that the number of

classes is c, the performance measures of the ith class are

given by the following equations:

Recalli ¼
Mii

Pc
j¼1 Mji

Precisioni ¼
Mii

Pc
j¼1 Mij

Accuracy ¼

Pc
i¼1 Mii

Pc
i¼1

Pc
j¼1 Mij

ð7Þ

The rows of the confusion matrix represent the predicted

classes, and the columns correspond to the true classes. The

diagonal cells represent the numbers of samples that are

correctly classified. The off-diagonal cells are the incor-

rectly classified number of samples. The row at the bottom

of the confusion matrix gives the proportion of all exam-

ples belonging to each class that is correctly (green) and

incorrectly (red) classified. The column on the far right of

the confusion matrix represents the proportion of all the

samples predicted to belong to each class that are correctly

(green) and incorrectly (red) classified.

4.3 Experimental setup

For both models, SET-MLP and MLPFixProb, the hyperpa-

rameters are the same to guarantee the fairness of com-

parison. The number of hidden layers for Leukemia, CLL-

SUB-111, and SNK-CAN-187 is two but one for GLI-85,

as overfitting occurs for GLI-85 with two hidden layers.

The optimization method used in this paper is Stochastic

Gradient Descent (SGD) with momentum. The numbers of

neurons of each layer are given in Table 5. Note that, for

Neural Computing and Applications (2021) 33:2589–2604 2595

123



Leukemia dataset, the number of hidden neurons in each

layer was set to 27,500, a value which is way above the

usual number of neurons in fully connected MLP models.

For all datasets, we get the mean accuracy by averaging the

best test accuracy from 5 trials. Since the best accuracy is

obtained at different epochs, there are some differences

between accuracy in the figures and the mean accuracy

reported in the text, especially for the CLL-SUB-111 and

the SMK-CAN-187 datasets.

To demonstrate our algorithm’s ability to significantly

reduce the parameter count, we set the sparsity

Table 1 Mean running time of evolution Implementation I and
Implementation II

Matrix size Implementation I (s) Implementation II (s)

500*500 0.58 0.14

2000*2000 2.56 0.71

8000*8000 11.13 2.08

15,000*15,000 24.14 3.75

Table 2 Microarray datasets
used

Dataset No. of samples No. of features No. of classes Data size

Leukemia [31] 2096 54,675 18 1.93 GB

CLL-SUB-111 [35] 111 11,340 3 5.9 MB

SMK-CAN-187 [72] 187 19,993 2 11.9 MB

GLI-85 [28] 85 22,283 2 8.7 MB

Table 3 Leukemia class labels
and their corresponding number
of test samples

Leukemia Class label No. of samples

Mature B-ALL with t(8;14) 1 4

Pro-B-ALL with t(11q23)/MLL 2 23

C-ALL/Pre-B-ALL with t(9;22) 3 41

T-ALL 4 58

ALL with t(12;21) 5 19

ALL with t(1;19) 6 12

ALL with hyperdiploid karyotype 7 14

C-ALL/Pre-B-ALL without t(9;22) 8 79

AML with t(8;21) 9 14

AML with t(15;17) 10 12

AML with inv(16)/t(16;16) 11 9

AML with t(11q23)/MLL 12 13

AML with normal karyotype ? other abnormalities 13 115

AML complex aberrant karyotype 14 18

CLL 15 149

CML 16 25

MDS 17 68

Non-leukemia and healthy bone marrow 18 26

Table 4 Confusion matrix for two-class classification

Target class

Neg Pos

Output Class

Classified as Neg tn fn npv ¼ tn
tnþfn

Classified as Pos fp tp Pre ¼ tp
tpþfp

Spe ¼ tn
tnþfp Rec ¼ tp

tpþfn
Acc ¼ tpþtn

tpþfpþfnþtn

Spe specificity, Rec recall, Pre precision, Acc accuracy

Table 5 Number of neurons of SET-MLP on all datasets

Dataset Input 1st hidden 2nd hidden Output

Leukemia 54,675 27,500 27,500 18

CLL-SUB-111 11,340 9000 9000 3

SNK-CAN-187 19,993 16,000 16,000 2

GLI-85 22,283 20,000 None 2

2596 Neural Computing and Applications (2021) 33:2589–2604

123



hyperparameter � ¼ 10 guaranteeing an extremely sparse

network for all datasets. The corresponding sparsity for

Leukemia, CLL-SUB-111, SNK-CAN-187, and GLI-85 is

99.93%, 99.78%, 99.88%, and 99.90%, respectively. The

corresponding sparsity and parameter numbers are illus-

trated in Table 7. The rewiring rate f is set to 0.3. We train

all models for 500 epochs by momentum SGD with a

momentum of 0.9 and a weight decay of 0.0002. We

choose the remaining hyperparameters based on a small

random search. For Leukemia, we use a learning rate of

0.005 and a batch size of 5; for CLL-SUB-111, we choose

a learning rate of 0.01 and a batch size of 5; for SNK-CAN-

187, the learning rate is set as 0.005 and the batch size is

set as 5; and for GLI-85, the learning rate is set as 0.005

and the batch size is set as 1.

All the experiments performed are executed on a typical

laptop using a single thread of the CPU. The laptop con-

figuration is as follows:

– Hardware configuration: CPU Intel Core i7-4700MQ,

2.40 GHz � 8, RAM 16 GB, Hard disk 500 GB.

– Software used: Ubuntu 16.04, Python 3.5.2, Numpy

1.15.2, SciPy 1.1.0, and Cython 0.27.3.

4.4 Experimental results

Table 6 summarizes the performance of SET-MLP and

MLPFixProb on all four datasets trained with extremely high

sparsity levels. We can observe that SET-MLP consistently

outperform MLPFixProb on all datasets, which means that

the adaptive sparse connectivity associated with SET-MLP

helps to find better sparse structures. This behavior sug-

gests that the SET algorithm indeed solves successfully the

combinatorial optimization problem. From the perspective

of continuous optimization, the optimizer used in this

experiment, momentum SGD, is used for optimizing model

weights. Both SET and momentum SGD are crucial to the

superior performance of sparse training [55].

For a better understanding of the learning process of our

method, we show the learning curves of SET-MLP and

MLPFixProb for all datasets in Fig. 1. It is shown that SET-

MLP can reach a higher accuracy than MLPFixProb as the

training epoch increases. More interestingly, the learning

curves of SET-MLP oscillate more frequently than the

fixed sparse networks during the training process. This

phenomenon makes sense since the weights rewiring

(pruning and regrowing) cycle within adaptive sparse

connectivity is triggered after each training epoch, chang-

ing 30% connections of the network. Furthermore, it is

noteworthy that, on SMK-CAN-187 dataset, MLPFixProb
seems to suffer from overfitting after around 350 epochs.

To provide deeper insights into the classification results

of our method, we illustrate the confusion matrices of the

best run of SET-MLP on Leukemia dataset in Fig. 2 and

the rest of the datasets in Fig. 3. We can see that the test

accuracy of the best run of Leukemia is 88.10%. Besides

this, we can observe that SET-MLP has a perfect recall for

class 1 (100.0%) of CLL-SUB-111, even though there are

extremely unfavorable conditions, i.e., very few training

samples. As shown in Fig. 3b, SET-MLP performs better

for class 2 than class 1 on SNK-CAN-187. It is noteworthy

that, for GLI-85, the best accuracy out of five runs of SET-

MLP is 100%, which means on Gli-85 whose available

data are extremely insufficient (85), SET-MLP can still

model the dataset perfectly.

To further evaluate the effectiveness of our proposed

method, we compare SET-MLP with the state-of-the-art

conventional two-phase techniques on these datasets in

terms of classification performance. To the best of our

knowledge, the state-of-the-art performance for Leukemia is

81.11% reported in the literature [40]. Therein, an ensemble

classifier is proposed to deal with microarray data by con-

necting several feature selection algorithms with MapRe-

duce-based proximal support vector machine (mrPSVM).

SET-MLP is able to achieve a higher accuracy of 87:60�
0:06 with exactly the same training and testing data splitting.

Among the feature selection-based methods to CLL-SUB-

111, an accuracy of 78.38% is obtained by using Incremental

Wrapper-basedAttribute Selection (IWSS) [5]. The state-of-

the-art accuracy on SMK-CAN-187 is (74.87±2.32%)

reported in [69], in which feature selectionwas performed by

preserving class correlation. Reported in [67], an ensemble

including three filter methods with a meta-heuristic algo-

rithm is used to achieve an accuracy of 94%.We can observe

that our method can outperform these traditional two-phase

techniques via one efficient end-to-end model. It is note-

worthy that although CLL-SUB-111, SMK-CAN-187, and

GLI-85 seriously suffer from an extremely small number of

Table 6 Test accuracy of SET-
MLP and MLPFixProb on the four
datasets

Methods Leukemia CLL-SUB-111 SNK-CAN-187 GLI-85

SET-MLP 87.60 ± 0.06 81.62 ± 0.05 75.24 ± 0.04 94.48 ± 0.05

MLPFixProb 82.74 ± 0.05 71.35 ± 0.04 68.57 ± 0.04 92.41 ± 0.06

Every number is averaged from 5 trials. The sparsity levels for Leukemia, CLL-SUB-111, SNK-CAN-187,
and GLI-85 are 99.93%, 99.78%, 99.88%, and 99.90%, respectively

Neural Computing and Applications (2021) 33:2589–2604 2597

123



samples, we are still able to obtain good performance with

efficient sparse training.

4.5 Results analysis

To understand better the connections reduction made by

the SET procedure in a SET-MLP model in comparison

with a fully connected MLP (FC-MLP) which has the same

amount of neurons, Fig. 4 and Table 7 provide the number

of connections for the SET-MLP models discussed above

and their FC-MLP counterparts on all four datasets. It is

clear that SET has dramatically reduced the connection

numbers in MLPs. For instance, a traditional FC-MLP on

the Leukemia dataset would have 2,260,307,500 connec-

tions, while SET-MLP has just 1,582,376 connections. This

quadratic reduction in the number of connections is the key

factor in guaranteeing that SET-MLP can run fine on a

standard laptop for datasets with tens (up to few hundreds)

of thousands of input features.

For a better understanding of SET computational

requirements, Table 8 shows the average training and

testing time per epoch of the SET-MLPs used on the

datasets. We can observe, as expected, that as the number

of features and samples increases the training time is also

increasing. Still, it is worth to highlight that although the

average training time of Leukemia is relatively long

(61.31s), it fulfills an almost impossible mission, that is,

running such a large model on a commodity laptop.

4.6 Extreme SET-MLP models on leukemia

While in the previous section, we have analyzed the

qualitative performance of our proposed approach, in this

section, we briefly discuss two extreme SET-MLP models

on the largest dataset used in this paper, i.e., Leukemia.

The goal is to assess how fast SET-MLP can achieve a

good performance and to see how large a trainable SET-

MLP model can be on a typical laptop. For each model, we

used a SET-MLP with two hidden layers and a Softmax

layer as output. For the small SET-MLP model, the number

of hidden neurons per layer was set to 1000, while for the

large SET-MLP model the number of hidden neurons per

(a) CLL-SUB-111 (b) CLL-SUB-111

(c) SMK-CAN-187 (d) GLI-85

Fig. 1 Test accuracy of SET-MLP and MLPFixProb on CLL-SUB-111, SMK-CAN-187, and GLI-85. All the test accuracy at each epoch is
averaged from 5 trials

2598 Neural Computing and Applications (2021) 33:2589–2604

123



layer was set to 500,000. In both cases, we have used a

very eager learning rate (0.05) and we trained the models

for 5 epochs. On each hidden layer, we applied a dropout

rate of 0.4. The other hyperparameters were set as in the

previous section for Leukemia and we have used the same

training/testing data splitting.

Table 9 presents SET-MLP performance in comparison

with the best state-of-the-art results of mrPSVM from [40].

We clarify that the goal of this experiment is not to obtain

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Target Class

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

O
u

tp
u

t 
C

la
s
s

 Confusion Matrix

2

0.3%

0

0.0%

1

0.1%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.1%

0

0.0%

50.0%

50.0%

0

0.0%

23

3.3%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

36

5.2%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

5

0.7%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

87.8%

12.2%

0

0.0%

0

0.0%

0

0.0%

56

8.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

2

0.3%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

96.6%

3.4%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

17

2.4%

0

0.0%

0

0.0%

2

0.3%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

89.5%

10.5%

0

0.0%

1

0.1%

0

0.0%

0

0.0%

0

0.0%

11

1.6%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

91.7%

8.3%

0

0.0%

0

0.0%

1

0.1%

0

0.0%

0

0.0%

0

0.0%

11

1.6%

2

0.3%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

78.6%

21.4%

0

0.0%

2

0.3%

3

0.4%

1

0.1%

3

0.4%

1

0.1%

6

0.9%

62

8.9%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.1%

78.5%

21.5%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

14

2.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

12

1.7%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

9

1.3%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.1%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

6

0.9%

5

0.7%

0

0.0%

0

0.0%

1

0.1%

0

0.0%

0

0.0%

46.2%

53.8%

1

0.1%

0

0.0%

0

0.0%

1

0.1%

0

0.0%

0

0.0%

0

0.0%

2

0.3%

0

0.0%

0

0.0%

0

0.0%

1

0.1%

102

14.6%

1

0.1%

0

0.0%

0

0.0%

6

0.9%

1

0.1%

88.7%

11.3%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

6

0.9%

11

1.6%

0

0.0%

0

0.0%

1

0.1%

0

0.0%

61.1%

38.9%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

148

21.2%

0

0.0%

1

0.1%

0

0.0%

99.3%

0.7%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.1%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.1%

0

0.0%

0

0.0%

21

3.0%

1

0.1%

1

0.1%

84.0%

16.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

6

0.9%

0

0.0%

1

0.1%

1

0.1%

57

8.2%

3

0.4%

83.8%

16.2%

4

0.6%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.1%

3

0.4%

18

2.6%

69.2%

30.8%

28.6%

71.4%

88.5%

11.5%

87.8%

12.2%

94.9%

5.1%

85.0%

15.0%

91.7%

8.3%

64.7%

35.3%

83.8%

16.2%

100%

0.0%

100%

0.0%

100%

0.0%

85.7%

14.3%

83.6%

16.4%

91.7%

8.3%

99.3%

0.7%

87.5%

12.5%

81.4%

18.6%

75.0%

25.0%

88.1%

11.9%

Fig. 2 Confusion matrix of the
best run with SET-MLP on the
Leukemia dataset

1 2 3

Target Class

1

2

3

O
u

tp
u

t 
C

la
s
s

 Confusion Matrix

7

18.9%

1

2.7%

1

2.7%

77.8%

22.2%

0

0.0%

11

29.7%

2

5.4%

84.6%

15.4%

0

0.0%

2

5.4%

13

35.1%

86.7%

13.3%

100%

0.0%

78.6%

21.4%

81.2%

18.8%

83.8%

16.2%

(a) CLL-SUB-111 dataset

1 2

Target Class

1

2

O
u

tp
u

t 
C

la
s

s

 Confusion Matrix

22

34.9%

3

4.8%

88.0%

12.0%

10

15.9%

28

44.4%

73.7%

26.3%

68.8%

31.2%

90.3%

9.7%

79.4%

20.6%

(b) SMK-CAN-187 dataset

1 2

Target Class

1

2

O
u

tp
u

t 
C

la
s
s

 Confusion Matrix

8

27.6%

0

0.0%

100%

0.0%

0

0.0%

21

72.4%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

(c) GLI-85 dataset

Fig. 3 Confusion matrix of the best run with SET-MLP on CLL-SUB-111, SMK-CAN-187, and GLI-85

Neural Computing and Applications (2021) 33:2589–2604 2599

123



the best accuracy possible with SET-MLP. Still, the small

SET-MLP model, which has in total 56,693 neurons and

581,469 connections, has a total training and testing time of

65 seconds. It is about 20 times faster than mrPSVM which

runs on conventional hardware and about 4.5 times faster

than mrPSVM which runs in a Hadoop cluster while

reaching with 1.7% better accuracy. At the same time, its

small standard deviation shows that the model is very

stable. Furthermore, we highlight that the very large SET-

MLP model which has in total 1,054,693 neurons with

about 19,383,046 connections takes about 16 min per

training epoch and in 5 epochs reaches a good accuracy,

better than state-of-the-art. All of these happen on 1 CPU

thread of a typical laptop. We highlight that this is the first

time in the literature when a MLP variant with over 1

million neurons is trained on a laptop, while the usual MLP

models trained on a laptop can have at maximum few

thousand of neurons. In fact, it is hard to quantify, but

according to [29], the size of the largest neural networks

which run currently in the cloud is about 10–20 million

neurons. Therefore, our results emphasize even more the

capabilities of SET-MLPs and open the path for new

research directions.

4.7 Sensitivity analysis of the number of hidden
layers

Previously, we have discussed the performance of the SET-

MLP models with two hidden layers on the Leukemia,

CLL-SUB-111, and SMK-CAN-187 datasets and with one

hidden layer on the GLI-85 datasets. We now explain our

choices on the number of hidden layers by presenting the

performance of SET-MLP models with one, two, and three

hidden layers on all datasets comparatively and by dis-

cussing the beneficial effect of dropout [36] on SET-MLP.

The number of neurons per hidden layer and the other

Fig. 4 The number of connections for the SET-MLP models with two
hidden layers used on the Leukemia, CLL-SUB-111, and SMK-CAN-
187 datasets and with one hidden layer used on the GLI-85 dataset,
plotted against their FC-MLP counterparts

Table 7 Number of connections and sparsity levels for SET-MLP and
FC-MLP on all datasets

Dataset Number of connections (#) Sparsity level (%)

FC-MLP SET-MLP

Leukemia 2,260,307,500 1,582,376 99.93

CLL-SUB-111 183,087,000 409,033 99.78

SMK-CAN-187 575,920,000 711,305 99.88

GLI-85 490,270,000 486,350 99.90

Table 8 Running time in
seconds (s) per epoch for SET-
MLP

Dataset Average training time (s) (per epoch) Average testing time (s) (per epoch)

Leukemia 61.31 2.36

CLL-SUB-111 6.65 0.06

SMK-CAN-187 27.17 0.18

GLI-85 32.87 0.05

Table 9 Two extreme SET-
MLP models on Leukemia
against state-of-the-art
(mrPSVM with ANOVA [40]
for feature selection)

Model Hardware Density level (%) Total time (s) (train ? test) Accuracy (%)

Small SET-MLP 1 CPU thread 1.04 65 82.88 ± 1.18

Large SET-MLP 1 CPU thread 0.007 4914 81.83 ± 1.11

mrPSVM [40] Conventional n/a 1265 81.1

mrPSVM [40] Hadoop cluster n/a 291 81.1

The numbers in brackets for SET-MLP reflect the number of neurons per layer from input to output. The
accuracy of SET-MLP is reported as the mean and standard deviation of 5 runs. The density level represents
the percentage of the number of existing connections in the SET-MLP model from the total number of
connections in its corresponding FC-MLP

2600 Neural Computing and Applications (2021) 33:2589–2604

123



hyperparameters are set to be the same with the previous

models. Figure 5 summarizes these experiments. From the

first row, it can be inferred that SET-MLP with two hidden

layers reaches the highest peak accuracy (88.12%) and has

relatively the most robust performance on the Leukemia

dataset. Similarly, SET-MLP with two hidden layers

reaches outstanding accuracy (81.11%) on the CLL-SUB-

111 dataset, while the accuracy cannot reach 80% with one

or three hidden layers.

As expected, but at the same time having the most

interesting results, due to the very small number of samples

of GLI-85 (Fig. 5, third row), SET-MLP with one hidden

layer avoids overfitting in exchange to quite an oscillating

behavior. At the same time, SET-MLP with two or three

hidden layers even if they are capable of also reaching

perfect accuracy of 100%, after about 200 epochs, they

have a dramatic drop in accuracy to about 80%. We

hypothesis that this situation happens due to overfitting as

the number of training samples is extremely insufficient. If

this is the case, adding dropout regularization to SET-MLP

is able to figure out this problem. We applied dropout with

0.5 dropout rate to both hidden layers. The performance is

shown in Fig. 6a. It is clear that the accuracy of SET-MLP

with dropout keeps the same trend as before, without any

drop in accuracy after 200 epochs. Moreover, we conduct

an extra experiment to test whether SET-MLP with no

hidden layers can achieve higher accuracy or not. Since the

number of input features is much higher than the number of

classes, the connectivity is almost dense. As shown in

Fig. 6b, it cannot reach 100% classification performance.

This phenomenon highlights the fact that our proposed

method can guarantee efficient training while not com-

promising performance.

5 Conclusion

Processing microarray data have been treated in the liter-

ature as a difficult task due to their very high number of

features but the little number of examples. Besides that,

this type of data suffers from imbalance and data shift

problems.

In this paper, an efficient implementation of SET-MLP,

a sparse multilayer perceptron trained with the sparse

evolutionary training procedure, is proposed to deal with

high-dimensional microarray datasets. This implementa-

tion makes use just of Python 3, sparse data structures from

SciPy, and Cython. With this implementation, we have

created for the first time in literature sparse MLP models

with over one million neurons which can be trained on a

standard laptop using a single CPU thread and without

GPU. This is with two orders of magnitude more than state-

of-the-art MLP models trained on commodity hardware.

Besides, we demonstrated four microarray datasets with

tens of thousands of input features and with up to just two

thousand samples that our approach reduces the number of

connections quadratically in large MLPs (about 99.9%

sparsity) while outperforming the state-of-the-art methods

on these datasets for the classification task. Moreover, our

proposed SET-MLP models showed to be robust to over-

fitting, imbalanced and data shift problems, which is not so

usual for fully connected MLPs. Additionally, the results

Fig. 5 Experiments with SET-
MLPs on all four datasets to
understand the effect of the

number of hidden layers (nh).
For each dataset, three cases for
the number of hidden layers are

considered, i.e., nh ¼ f1; 2; 3g.
Each row represents the test
classification accuracy of SET-
MLPs with one, two, or three
hidden layers on the same
dataset. Every model from each
row has been trained with the
same hyperparameters as in the
paper, except for the number of
hidden layers

Neural Computing and Applications (2021) 33:2589–2604 2601

123



suggest that our proposed approach can cope efficiently

with the ‘‘curse of dimensionality,’’ being capable of

learning from small amounts of labeled data, and outper-

forming the state-of-the-art methods (ensembles of classi-

fiers and feature selection methods) which are currently

employed on high-dimensional non-grid-like data (or tab-

ular data).

In the future, we intend to put our emphasis on other

types of neural layers, such as convolutional layers in CNN

which have been widely used to deal with graphic data with

grid-like topology. Furthermore, we intend to extend this

work to address problems from other fields that suffer from

the ‘‘curse of dimensionality’’ and which have ultrahigh-

dimensional data (e.g., social networks, financial networks,

semantic networks). The last but not the least future

research direction would be to parallelize our implemen-

tation to use all CPU threads of a typical workstation

efficiently and to incorporate it into usual Deep Learning

frameworks, such as TensorFlow or PyTorch. This proba-

bly would allow us to scale with one order of magnitude

more the SET-MLP models (up to the level of few tens of

millions of neurons), while still using commodity

hardware.

Acknowledgements We thank Ritchie Vink (https://www.ritchievink.
com/. Last visit June 3, 2018) for providing on Github.com a vanilla
fully connected MLP implementation and to Thomas Hagebols
(https://github.com/ThomasHagebols. Last visit January 25, 2019) for
analyzing the performance of SciPy sparse matrix operations.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Alipanahi B, Delong A, Weirauch MT, Frey BJ (2015) Predicting
the sequence specificities of dna-and rna-binding proteins by deep
learning. Nat Biotechnol 33(8):831

2. Bekkerman R, El-Yaniv R, Tishby N, Winter Y (2003) Distri-
butional word clusters vs. words for text categorization. J Mach
Learn Res 3(Mar):1183–1208

3. Belkin M, Hsu D, Ma S, Mandal S (2019) Reconciling modern
machine-learning practice and the classical bias-variance trade-
off. Proc Natl Acad Sci 116(32):15849–15854

4. Bellec G, Kappel D, Maass W, Legenstein R (2017) Deep
rewiring: training very sparse deep networks. arXiv preprint
arXiv:1711.05136

5. Bermejo P, de la Ossa L, Gámez JA, Puerta JM (2012) Fast
wrapper feature subset selection in high-dimensional datasets by
means of filter re-ranking. Knowl Based Syst 25(1):35–44

6. Bourgin DD, Peterson JC, Reichman D, Griffiths TL, Russell SJ
(2019) Cognitive model priors for predicting human decisions.
arXiv preprint arXiv:1905.09397

7. Caruana R, Sa VR (2003) Benefitting from the variables that
variable selection discards. J Mach Learn Res 3(Mar):1245–1264

8. Chandrashekar G, Sahin F (2014) A survey on feature selection
methods. Comput Electr Eng 40(1):16–28

9. Chauvin Y (1989) A back-propagation algorithm with optimal
use of hidden units. In: Advances in neural information pro-
cessing systems, pp 519–526

10. Chen Y, Li Y, Narayan R, Subramanian A, Xie X (2016) Gene
expression inference with deep learning. Bioinformatics
32(12):1832–1839

11. Cordón O, Damas S, Santamarı́a J (2006) Feature-based image
registration by means of the chc evolutionary algorithm. Image
Vis Comput 24(5):525–533

12. Cun YL, Denker JS, Solla SA (1990) Optimal brain damage. In:
Advances in neural information processing systems. Morgan
Kaufmann, pp 598–605

13. Dai X, Yin H, Jha N (2019) Nest: a neural network synthesis tool
based on a grow-and-prune paradigm. IEEE Trans Comput
68(10):1487–1497

Fig. 6 Test accuracy of SET-
MLP and MLPFixProb on GLI-
85. All the test accuracy at each
epoch is averaged from 5 trials

2602 Neural Computing and Applications (2021) 33:2589–2604

123

https://www.ritchievink.com/
https://www.ritchievink.com/
https://github.com/ThomasHagebols
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


14. Davidson JL, Jalan J (2010) Feature selection for steganalysis
using the mahalanobis distance. In: Media forensics and security
II, vol 7541. International Society for Optics and Photonics,
p 754104

15. de Jesús Rubio J (2009) Sofmls: online self-organizing fuzzy
modified least-squares network. IEEE Trans Fuzzy Syst
17(6):1296–1309

16. de Jesús Rubio J (2017) Usnfis: uniform stable neuro fuzzy
inference system. Neurocomputing 262:57–66

17. de Jesus Rubio J, Pan Y, Lughofer E, Chen M-Y, Qiu J (2020)
Fast learning of neural networks with application to big data
processes. Neurocomputing 390:294–296. https://doi.org/10.
1016/j.neucom.2019.10.057

18. Dean J, Ghemawat S (2008) Mapreduce: simplified data pro-
cessing on large clusters. Commun ACM 51(1):107–113

19. Destrero A, Mosci S, De Mol C, Verri A, Odone F (2009) Feature
selection for high-dimensional data. Comput Manag Sci
6(1):25–40

20. Dettmers T, Zettlemoyer L (2019) Sparse networks from scratch:
faster training without losing performance. arXiv preprint
arXiv:1907.04840

21. Elton DC (2020) Self-explainability as an alternative to inter-
pretability for judging the trustworthiness of artificial intelli-
gences. arXiv preprint arXiv:2002.05149

22. Erd}os P, Rényi A (1959) On random graphs i. Publ Math (De-
brecen) 6:290–297

23. Eshelman LJ (1991) The CHC adaptive search algorithm: How to
have safe search when engaging in nontraditional genetic
recombination. In: Rawlings GJE (ed) Foundations of genetic
algorithms, vol 1. Elsevier, pp 265–283

24. Evci U, Elsen E, Castro P, Gale T (2020) Rigging the lottery:
making all tickets winners. https://openreview.net/forum?id=
ryg7vA4tPB

25. Fakoor R, Ladhak F, Nazi A, Huber M (2013) Using deep
learning to enhance cancer diagnosis and classification. In: Pro-
ceedings of the international conference on machine learning,
vol 28

26. Forman G (2003) An extensive empirical study of feature
selection metrics for text classification. J Mach Learn Res
3(Mar):1289–1305

27. Frankle J, Carbin M (2018) The lottery ticket hypothesis: finding
sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635

28. Freije WA, Castro-Vargas FE, Fang Z, Horvath S, Cloughesy T,
Liau LM, Mischel PS, Nelson SF (2004) Gene expression pro-
filing of gliomas strongly predicts survival. Cancer Res
64(18):6503–6510

29. Goodfellow I, Bengio Y, Courville A (2016) Deep learning
(Subsection 1.2.3). The MIT Press, Cambridge

30. Guyon I, Elisseeff A (2003) An introduction to variable and
feature selection. J Mach Learn Res 3(Mar):1157–1182

31. Haferlach T, Kohlmann A, Wieczorek L, Basso G, Kronnie GT,
Béné MC, De JV, Hernández JM, Hofmann WK, Mills KI et al
(2010) Clinical utility of microarray-based gene expression pro-
filing in the diagnosis and subclassification of leukemia: report
from the international microarray innovations in leukemia study
group. J Clin Oncol 28(15):2529–2537

32. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten
IH (2009) The weka data mining software: an update. ACM
SIGKDD Explor Newsl 11(1):10–18

33. Han S, Pool J, Tran J, Dally W (2015) Learning both weights and
connections for efficient neural network. In: Advances in neural
information processing systems, pp 1135–1143

34. Han S, Pool J, Tran J, Dally WJ (2015) Learning both weights
and connections for efficient neural networks. In: Proceedings of
the 28th international conference on neural information

processing systems, vol 1. NIPS’15, MIT Press, Cambridge,
pp 1135–1143. http://dl.acm.org/citation.cfm?id=2969239.
2969366

35. Haslinger C, Schweifer N, Stilgenbauer S, Dohner H, Lichter P,
Kraut N, Stratowa C, Abseher R (2004) Microarray gene
expression profiling of b-cell chronic lymphocytic leukemia
subgroups defined by genomic aberrations and vh mutation status.
J Clin Oncol 22(19):3937–3949

36. Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhut-
dinov R (2012) Improving neural networks by preventing co-
adaptation of feature detectors. CoRR arXiv:abs/1207.0580

37. Jouppi NP, Young C, Patil N, Patterson D, Agrawal G, Bajwa R,
Bates S, Bhatia S, Boden N, Borchers A, et al (2017) In-data-
center performance analysis of a tensor processing unit. In: 2017
ACM/IEEE 44th annual international symposium on computer
architecture (ISCA). IEEE, pp 1–12

38. Kohavi R, John GH (1997) Wrappers for feature subset selection.
Artif Intell 97(1–2):273–324

39. Koller D, Sahami M (1996) Toward optimal feature selection.
Tech. rep, Stanford InfoLab

40. Kumar M, Rath SK (2015) Classification of microarray using
mapreduce based proximal support vector machine classifier.
Knowl Based Syst 89:584–602

41. Langley P (1994) Selection of relevant features in machine
learning. In: Proceedings of the AAAI Fall symposium on rele-
vance. pp 1–5

42. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature
521(7553):436

43. Liu S, Mocanu DC, Pechenizkiy M (2019) Intrinsically sparse
long short-term memory networks. arXiv preprint
arXiv:1901.09208

44. Liu S, Mocanu DC, Pechenizkiy M (2019) On improving deep
learning generalization with adaptive sparse connectivity. In:
ICML workshop on understanding and improving generalization
in deep learning

45. Louizos C, Welling M, Kingma DP (2017) Learning sparse
neural networks through $ l\_0 $ regularization. arXiv preprint
arXiv:1712.01312

46. Meda-Campaña JA (2018) On the estimation and control of
nonlinear systems with parametric uncertainties and noisy out-
puts. IEEE Access 6:31968–31973

47. Mejı́a-Lavalle M, Sucar E, Arroyo G (2006) Feature selection
with a perceptron neural net. In: Proceedings of the international
workshop on feature selection for data mining. pp 131–135

48. Michael H, Zhu SG (2018) To prune, or not to prune: exploring
the efficacy of pruning for model compression. In: International
conference on learning representations workshop

49. Min S, Lee B, Yoon S (2017) Deep learning in bioinformatics.
Brief Bioinform 18(5):851–869

50. Mocanu DC, Ammar HB, Puig L, Eaton E, Liotta A (2017)
Estimating 3d trajectories from 2d projections via disjunctive
factored four-way conditional restricted boltzmann machines.
Pattern Recognit 69:325–335

51. Mocanu DC, Mocanu E, Nguyen PH, Gibescu M, Liotta A (2016)
A topological insight into restricted Boltzmann machines. Mach
Learn 104(2–3):243–270

52. Mocanu DC, Mocanu E, Stone P, Nguyen PH, Gibescu M, Liotta
A (2018) Scalable training of artificial neural networks with
adaptive sparse connectivity inspired by network science. Nat
Commun 9(1):2383

53. Mocanu DC, et al (2017) Network computations in artificial
intelligence. Technische Universiteit Eindhoven

54. Molchanov D, Ashukha A, Vetrov, D (2017) Variational dropout
sparsifies deep neural networks. In: Proceedings of the 34th
international conference on machine learning, vol 70. JMLR. org,
pp 2498–2507

Neural Computing and Applications (2021) 33:2589–2604 2603

123

https://doi.org/10.1016/j.neucom.2019.10.057
https://doi.org/10.1016/j.neucom.2019.10.057
https://openreview.net/forum?id=ryg7vA4tPB
https://openreview.net/forum?id=ryg7vA4tPB
http://dl.acm.org/citation.cfm?id=2969239.2969366
http://dl.acm.org/citation.cfm?id=2969239.2969366


55. Mostafa H, Wang X (2019) Parameter efficient training of deep
convolutional neural networks by dynamic sparse reparameteri-
zation. arXiv preprint arXiv:1902.05967

56. Mundra PA, Rajapakse JC (2009) Svm-rfe with mrmr filter for
gene selection. IEEE Trans Nanobiosci 9(1):31–37

57. Narang S, Elsen E, Diamos G, Sengupta S (2017) Exploring
sparsity in recurrent neural networks. arXiv preprint
arXiv:1704.05119

58. Pessoa L (2014) Understanding brain networks and brain orga-
nization. Phys Life Rev 11(3):400–435

59. Plaku E, Kavraki LE (2007) Distributed computation of the knn
graph for large high-dimensional point sets. J Parallel Distrib
Comput 67(3):346–359

60. Pohjalainen J, Räsänen O, Kadioglu S (2015) Feature selection
methods and their combinations in high-dimensional classifica-
tion of speaker likability, intelligibility and personality traits.
Comput Speech Lang 29(1):145–171

61. Pudil P, Novovičová J, Kittler J (1994) Floating search methods
in feature selection. Pattern Recognit Lett 15(11):1119–1125

62. Reunanen J (2003) Overfitting in making comparisons between
variable selection methods. J Mach Learn Res 3(Mar):1371–1382

63. Romero E, Sopena JM (2008) Performing feature selection with
multilayer perceptrons. IEEE Trans Neural Netw 19(3):431–441

64. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning repre-
sentations by back-propagating errors. Nature 323(6088):533

65. Simon R, Radmacher MD, Dobbin K, McShane LM (2003) Pit-
falls in the use of dna microarray data for diagnostic and prog-
nostic classification. J Natl Cancer Inst 95(1):14–18

66. Strogatz SH (2001) Exploring complex networks. Nature
410(6825):268

67. Taheri N, Nezamabadi-pour H (2014) A hybrid feature selection
method for high-dimensional data. In: 2014 4th international
econference on computer and knowledge engineering (ICCKE).
IEEE, pp 141–145

68. Ullrich K, Meeds E, Welling M (2017) Soft weight-sharing for
neural network compression. arXiv preprint arXiv:1702.04008

69. Wang J, Wei J, Yang Z (2016) Supervised feature selection by
preserving class correlation. In: Proceedings of the 25th ACM
international on conference on information and knowledge
management. ACM, pp 1613–1622

70. Wen W, He Y, Rajbhandari S, Zhang M, Wang W, Liu F, Hu B,
Chen Y, Li H (2017) Learning intrinsic sparse structures within
long short-term memory. arXiv preprint arXiv:1709.05027

71. Yoon J, Yang E, Lee J, Hwang S.J (2017) Lifelong learning with
dynamically expandable networks. arXiv preprint
arXiv:1708.01547

72. Zhao Z, Morstatter F, Sharma S, Alelyani S, Anand A, Liu H
(2010) Advancing feature selection research. In: ASU feature
selection repository. pp 1–28

73. Zhu H, Jin Y (2019) Multi-objective evolutionary federated
learning. IEEE Trans Neural Netw Learn Syst 31(4):1310–1322

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

2604 Neural Computing and Applications (2021) 33:2589–2604

123


	Sparse evolutionary deep learning with over one million artificial neurons on commodity hardware
	Abstract
	Introduction
	Related work
	Artificial neural networks on microarray gene expression
	Intrinsically sparse neural networks
	Sparse evolutionary training
	Sparse initialization
	Weight pruning--regrowing cycle


	Proposed method
	Sparse matrices operations
	Implementation of weight pruning--regrowing cycle
	Implementation I
	Implementation II


	Experimental evaluation
	Datasets
	Evaluation metrics
	Experimental setup
	Experimental results
	Results analysis
	Extreme SET-MLP models on leukemia
	Sensitivity analysis of the number of hidden layers

	Conclusion
	Acknowledgements
	References


