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Abstract

We prove that bounded-degree expanders with non-negative Ollivier-Ricci curvature do not

exist, thereby solving a long-standing open problem suggested by Naor and Milman and publi-

cized by Ollivier (2010). In fact, this remains true even if we allow for a vanishing proportion of

large degrees, large eigenvalues, and negatively-curved edges. To establish this, we work directly

at the level of Benjamini-Schramm limits, and exploit the entropic characterization of the Li-

ouville property on stationary random graphs to show that non-negative curvature and spectral

expansion are incompatible “at infinity”. We then transfer this result to finite graphs via local

weak convergence. The same approach also applies to the Bacry-Emery curvature condition

CD(0,∞), thereby settling a recent conjecture of Cushing, Liu and Peyerimhoff (2019).
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1 Introduction

1.1 Non-negative curvature

The Ricci curvature of a manifold is a fundamental concept in Riemannian geometry, see e.g.

[28]. In two celebrated works [42, 43], Ollivier proposed a notion of curvature based on optimal

transport which applies to arbitrary metric spaces, hence in particular to the discrete setting of

graphs. Specifically, let G = (VG, EG) be a locally finite connected graph. As usual, write degG(x)

for the degree of a vertex x, and dG(x, y) for the length of a minimal path from x to y in G. Let

also PG : VG × VG → [0, 1] denote the transition matrix of the lazy simple random walk on G, i.e.

PG(x, y) :=





1
2 degG(x) if {x, y} ∈ EG;

1
2 if x = y;

0 else.

The Ollivier-Ricci curvature at an edge {x, y} ∈ EG is defined as

κG(x, y) := 1 −W1 (PG(x, ·), PG(y, ·)) ,

where W1 denotes the L1−Wasserstein distance on P1(VG,dG), see (20) below. Note that the

computation of κG(x, y) amounts to solving a finite-dimensional linear optimization problem, and is

therefore amenable to standard algorithmic techniques (see [22] for a beautiful interactive curvature

calculator). The Ollivier-Ricci curvature of the whole graph is then defined as

κ(G) := inf
{x,y}∈EG

κG(x, y).

This fundamental geometric quantity measures how distances are contracted, on average, under

the action of PG. When κ(G) ≥ 0, the graph G is called non-negatively curved. This is the case, for

example, when G is the Cayley graph of an abelian group, as witnessed by the obvious coupling that

uses the same random generators for both trajectories. Non-negative curvature is equivalent to the

requirement that PG is a contraction under the Wasserstein metric W1, and constitutes the essence

of the powerful path coupling method for bounding mixing times [18]. Consequences in terms of

geometry, mixing, and concentration of measure have been massively investigated, and quantified

by a variety of functional inequalities. The literature is too vast for an exhaustive account, and

we refer the reader to the seminal papers [42, 43, 34, 30], the survey [44], and the more recent

works [24, 41, 21, 32, 40] for details, variations, references, and open problems. In particular, the

present work was motivated by the following long-standing question, due to Naor and Milman, and

publicized by Ollivier [44, Problem T]. Recall that a family of expanders is a sequence of finite

graphs with uniformly bounded degrees, diverging sizes, and spectral gap bounded away from 0.
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Question 1 (Problem T in [44]). Is there a family of non-negatively curved expanders ?

An instructive special class of graphs for which non-negative curvature is completely understood

is that of cubic graphs. Specifically, it was shown in [22] that prism graphs and Möbius ladders are

the only cubic graphs with non-negative Ollivier-Ricci curvature. Since these are not expanders,

the answer to Question 1 is negative for cubic graphs. To the best of our knowledge, this is the only

result in the direction of Question 1, despite the rich body of works on non-negative curvature.

1.2 Main result

In the present paper, we answer Question 1 negatively in full generality, as well as its CD(0,∞)

analogue raised by Cushing, Liu and Peyerimhoff [23, Conjecture 9.11], see Remark 1 below. More-

over, we show that the answer to Question 1 remains negative even if we significantly relax the

required properties. Specifically, denote by ∆(G) the maximum degree of a finite graph G, and by

1 = λ1(G) ≥ λ2(G) ≥ . . . ≥ λN (G) ≥ 0,

the N = |VG| ordered eigenvalues of its transition matrix PG. With these notations, Question 1

simply asks whether there exist constants ∆ ≥ 1, ρ < 1 and arbitrary large graphs satisfying

(A) sparsity: ∆(G) ≤ ∆;

(B) spectral expansion: λ2(G) ≤ ρ;

(C) non-negative curvature: κ(G) ≥ 0.

Our main result says that no large graph can even come close to satisfying these three requirements.

Theorem 2 (Main result). Fix ∆ ≥ 1 and ρ ∈ (0, 1). Then, there exists a constant ε = ε∆,ρ > 0

such that every finite graph G must satisfy one of the following conditions:

• either G is far from satisfying the sparsity requirement (A), in the following sense:

∑

x∈VG

degG(x) log degG(x) > (∆ log ∆)|VG|;

• or G is far from satisfying the expansion requirement (B), in the following sense:

card{i : λi(G) > ρ} ≥ ε|VG|;

• or G is far from satisfying the curvature requirement (C), in the following sense:

card{e ∈ EG : κG(e) < −ε} ≥ ε|EG|.
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Note that the conclusion is only meaningful for large graphs, since the second condition is

trivially satisfied when |VG| ≤
1
ε . Here is an equivalent – but perhaps more intuitive – formulation.

Theorem 3 (Rephrasing). Let Gn = (Vn, En), n ≥ 1 be finite graphs with the sparsity property

sup
n≥1

{
1

|Vn|

∑

x∈Vn

degGn
(x) log degGn

(x)

}
< ∞. (1)

Suppose in addition that the Ollivier-Ricci curvature is almost non-negative on most edges, i.e.

∀ε > 0,
1

|En|
card{e ∈ En : κGn(e) < −ε} −−−→

n→∞
0. (2)

Then, a macroscopic proportion of eigenvalues of the transition matrix must accumulate near 1:

∀ρ < 1, lim inf
n→∞

{
1

|Vn|
card{i : λi(Gn) ≥ ρ}

}
> 0. (3)

Here again, the theorem is only meaningful in the large-size limit |Vn| → ∞, since the conclusion

(3) trivially holds otherwise. The high-level message is that on large sparse graphs, non-negative

curvature (in an even weak sense) induces extremely poor spectral expansion. This stands in stark

contrast with the traditional idea – quantified by a broad variety of functional inequalities over the

past decade – that non-negative curvature is associated with good mixing behavior.

Remark 1 (Bacry-Emery curvature). Bacry and Emery [7, 8, 9] developed a different notion of

non-negative curvature based on Γ−calculus and known as the CD(0,∞) condition, see also [33, 26].

Since this notion is local, our proof also applies, with the role of Theorem 11 being played by a recent

result of Hua [27, Theorem 2]. Consequently, there is no family of expanders satisfying CD(0,∞),

as conjectured by Cushing, Liu and Peyerimhoff [23, Conjecture 9.11]. We note that the weaker

statement obtained by replacing CD(0,∞) with CD(0, n) was recently established by Münch [39].

We warmly thank David Cushing, Shiping Liu and Florentin Münch for pointing this out.

Remark 2 (Laziness). The literature actually contains a whole family of variants (κα)α∈[0,1) of the

Ollivier-Ricci curvature κ, obtained by replacing the matrix PG with its α−idle version:

P
(α)
G := (2 − 2α)PG + (2α − 1) Id.

There is even a continuous-time version κ⋆ := limα→1
κα

1−α , proposed in [34] and largely adopted

since then. In fact, it was later shown (see [19, Remark 5.4]) that κα

1−α ≤ κ⋆ = 2κ, where κ = κ1/2

is the version considered in the present paper. Consequently, our result is stated in the strongest

possible form, and applies to all versions of the Ollivier-Ricci curvature.

Remark 3 (Eigenvectors). Our proof will actually reveal more than (3): not only are there many

eigenvalues near 1, but the corresponding eigenvectors furthermore charge most vertices signifi-

cantly. In other words, the poor spectral expansion of non-negatively curved graphs is not restricted

to any specific region: it applies everywhere. See Remark 6 for a precise statement.
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1.3 Proof outline

Proof outline. The most natural route towards Question 1 would consist in looking for a quan-

titative upper-bound on the spectral gap of a finite non-negatively curved graph, in terms of its size

and maximum degree. Interestingly, we do not pursue this approach here. Neither do we try to ob-

tain asymptotic estimates along a sequence of sparse graphs (Gn)n≥1 with non-negative curvature.

Instead, we work directly at the elegant level of local weak limits of finite graphs, and exploit their

built-in stationarity to prove that non-negative curvature and spectral expansion are incompatible

“at infinity”. This relies on the central concept of asymptotic entropy, and its classical relations

with the Liouville property and the spectral radius. We then transfer this incompatibility result to

finite graphs via a relative-compactness argument. As far as we know, the idea of using local weak

limits as a tool to deduce generic bounds on the mixing parameters of sparse Markov chains have

not received much attention. We firmly believe that this viewpoint will have many applications.

Further questions. The surprising “deg log deg” requirement (1) is used to define the asymptotic

entropy on which our whole argument relies. We do not know whether it is necessary for the

conclusion (3) to hold, or whether it can be further relaxed. Note that some degree restriction is

necessary, since the complete graph satisfies λ2(G) = κ(G) = 1/2, regardless of its size. Also, a

drawback of our approach – as of any limit argument – is its non-quantitative nature. It would

be interesting to find an explicit upper-bound (vanishing as n → ∞) on the spectral gap of a

non-negatively curved graph with n vertices and maximum degree ∆, i.e. to estimate

γ∆(n) := max{1 − λ2(G) : |VG| = n,∆(G) ≤ ∆, κ(G) ≥ 0}.

Organization of the paper. The remainder of the paper is organized as follows: Section 2 offers

a brief, self-contained introduction to the framework of random rooted graphs. In particular, we

recall the definition of local weak convergence (Section 2.1), introduce the key notions of unimod-

ularity, stationarity and tightness (Section 2.2), and gather important results on the asymptotic

entropy of random walks on stationary graphs (Section 2.3). Section 3 is devoted to the proof of

the main result, which is reduced (in Section 3.1) to the following two main steps:

1. Proving that non-negative curvature implies zero-entropy (Section 3.2).

2. Proving that zero-entropy causes poor spectral expansion (Section 3.3).

Acknowledgment. The author warmly thanks Itai Benjamini, David Cushing, Nicolas Curien,

Shiping Liu, Russell Lyons, Florentin Münch and Pierre Pansu for many wonderful comments,

connections and references. This work was partially supported by Institut Universitaire de France.
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2 Random rooted graphs

In this section, we provide a self-contained introduction to the framework of local weak convergence.

This limit theory for sparse graphs was introduced by Benjamini and Schramm [14] and developed

further by Aldous and Steele [2] and Aldous and Lyons [1]. The limit points are random rooted

graphs enjoying a powerful form of stationarity. They describe the “internal” geometry of large

graphs, as seen from a uniformly chosen vertex. Local weak limits are often much more convenient

to work with than the finite-graph sequences that they approximate, and have been shown to

capture the asymptotic behavior of a number of natural graph parameters, see, e.g. [35, 17, 16, 3].

The present paper can be viewed as another illustration of the strength of this modern viewpoint.

2.1 Local weak convergence

The space of rooted graphs. All graphs considered in this paper will be simple, undirected,

countable, and locally finite. A rooted graph is a pair (G, o), where G is a graph and o is a

distinguished vertex, called the root. Two rooted graphs (G, o) and (G′, o′) are isomorphic, written

G ≃ G′, if there is a bijection φ : VG → VG′ which preserves the root (φ(o) = o′) and the edges:

∀x, y ∈ VG, {x, y} ∈ EG ⇐⇒ {φ(x), φ(y)} ∈ EG′ .

We let G• denote the set of connected rooted graphs, considered up to the isomorphism relation

≃. To lighten the exposition, we will use the same notation (G, o) for the rooted graph and its

equivalence class. We write Bt(G, o) for the ball of radius t around the root in G, i.e. the (finite)

rooted subgraph of G induced by the set {x ∈ VG : dG(o, x) ≤ t}. We equip G• with the local metric

dloc : G• × G• → [0, 1], defined by

dloc((G, o), (G′ , o′)) :=
1

1 + r
, with r = sup{t ≥ 0: Bt(G, o) ≃ Bt(G

′, o′)}.

In words, two elements of G• are “close” to each other if one has to look “far away” from the root

to distinguish them apart. It can be shown that (G•,dloc) is a complete separable metric space.

We equip it with its Borel σ−algebra, and call G•−valued random variables random rooted graphs.

Local weak convergence. Write P(G•) for the space of Borel probability measures on G•,

equipped with the usual topology of weak convergence. If G is an arbitrary finite graph, define its

local profile LG ∈ P(G•) to be the empirical distribution of all possible rootings of G, i.e.

LG :=
1

|VG|

∑

x∈VG

δ(G,x), (4)
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where (G,x) is here implicitly restricted to the connected component of x if G is not connected.

Finally, if Gn = (Vn, En), n ≥ 1 are finite graphs whose local profiles (LGn)n≥1 admit a limit L in

P(G•), we call L the local weak limit of the sequence (Gn)n≥1, and write simply

Gn −−−→
n→∞

L.

In words, L is the law of a random rooted graph which describes how the deterministic graph Gn

asymptotically looks when seen from a uniformly chosen root. More formally,

1

|Vn|

∑

x∈Vn

f(Gn, x) −−−→
n→∞

L [f(G, o)] ,

∫

G•

f dL, (5)

for each continuous, bounded observable f : G• → R. The left-hand side can be thought of as

a spatial average of “local contributions” from the various vertices of Gn. In short, local weak

convergence allows one to conveniently replace the asymptotic analysis of such averages with the

direct computation of an expectation at the root of a certain random graph.

Local observables. The class of continuous functions on G• clearly contains (but is not restricted

to) all t−local observables (t ≥ 0), where f : G• → R is called t−local if the value f(G, o) is

determined by the (isomorphic class of the) finite ball Bt(G, o). Here is a short list of examples,

which will be used throughout the paper without notice:

• The root degree (G, o) 7→ degG(o) is 1−local.

• The minimum curvature at o, (G, o) 7→ minx∼o κG(o, x) is 2−local.

• For each t ≥ 0, the return probability (G, o) 7→ P t
G(o, o) is t−local (in fact, (⌊t/2⌋+1)−local).

• For each t ≥ 0, the t−step entropy (G, o) 7→ −
∑

x∈VG
P t
G(o, x) log P t

G(o, x) is t−local.

2.2 Tightness, unimodularity and stationarity

Tightness. One of the many reasons for the success of the local weak convergence framework

(compared to other limit theories for sparse graphs) is the fact that every “reasonable” sequence

of sparse graphs admits a local weak limit. The following tightness criterion, due to Benjamini,

Lyons and Schramm, gives an honest mathematical content to this vague claim. Note, of course,

that passing to sub-sequences is unavoidable.

Theorem 4 (Tightness, see Theorem 3.1 in [12]). Let Gn = (Vn, En), n ≥ 1 be finite graphs so that

sup
n≥1

{
1

|Vn|

∑

x∈Vn

φ
(
degGn

(x)
)
}

< ∞,
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for some function φ : Z+ → R+ satisfying φ(d) ≫ d as d → ∞. Then, (Gn)n≥1 has a subsequence

which admits a local weak limit.

In particular, this criterion applies to the sequence (Gn)n≥1 in Theorem 3, with φ(d) = d log d.

This will ensure that we can “pass to the limit” and study the question of existence of non-negatively

curved expanders directly at the level of local weak limits.

Unimodularity. Local weak limits of finite graphs happen to enjoy a powerful distributional

invariance, which is directly inherited from the fact that the root is equally likely to be any vertex

under the local profile (4). More precisely, a measure L ∈ P(G•) is called unimodular if it satisfies

L



∑

x∈VG

f(G, o, x)


 = L



∑

x∈VG

f(G,x, o)


 , (6)

for every Borel function f : G•• → [0,∞], where G•• denotes the analogue of the space G• with two

distinguished roots instead of one. Thinking of f(G, o, x) as an amount of mass sent from o to x,

the identity (6) expresses the fact that the expected masses received and sent by the root coincide.

This Mass Transport Principle is clearly satisfied when L is the local profile of a finite graph, and

is preserved under weak convergence. Thus, we obtain the following fundamental result.

Theorem 5 (Inherited unimodularity). All local weak limits of finite graphs are unimodular.

Whether the converse holds is a notoriously hard open problem with deep implications, see

[1, 25, 12]. Let us here record a first simple consequence of unimodularity, which will be useful.

Lemma 6 (Everything shows at the root, see Lemma 2.3 in [1]). Suppose that L ∈ P(G•) is

unimodular, and let B ⊆ G• be a Borel set such that L(B) = 1. Then we also have,

L ({∀x ∈ VG, (G,x) ∈ B}) = 1.

Proof. Just apply the Mass Transport Principle with f(G, o, x) = 1(G,o)/∈B .

Stationarity. Under a mild integrability condition and a trivial change of measure, unimodularity

can be rephrased as reversibility under a natural Markov chain on G•. We will here only need the

weaker notion of stationarity. Specifically, we say that a law L ∈ P(G•) is stationary if it is invariant

for the Markov chain on G• which, at each step, keeps the underlying graph as it is and moves the

root according to the transition matrix PG. In other words, L is stationary if

L



∑

x∈VG

P t
G(o, x)h(G,x)


 = L [h(G, o)] , (7)
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for every Borel function h : G• → [0,∞] and every t ≥ 0 (equivalently, for t = 1). The relation with

unimodularity is summed up in the following classical lemma (see, e.g. [10]).

Lemma 7 (Degree-biasing). Let L ∈ P(G•) be a unimodular law with deg(L) := L[degG(o)] < ∞.

Then, the law L̂ ∈ P(G•) defined by the following change of measure is stationary:

dL̂(G, o) :=
degG(o)

deg(L)
dL(G, o). (8)

Proof. Apply the Mass Transport Principle to L with f(G, o, x) = h(G, o)1{x,o}∈EG
.

Remark 4 (Mutual absolute continuity). It follows from (8) that the original law L and its degree-

biased version L̂ are mutually absolutely continuous. In other words, we have

L(B) = 1 ⇐⇒ L̂(B) = 1,

for any Borel set B ⊆ G•, allowing us to transfer results from one law to the other.

2.3 Spectral radius, entropy and the Liouville property

Stationarity is a powerful property, because it enables the development of an ergodic theory of

random rooted graphs. See the inspiring works [37] on Galton-Watson trees, [10] on random rooted

graphs, and [11] on general random environments. In particular, a classical application of Kingman’s

sub-additive ergodic theorem allows one to define the (quenched) asymptotic entropy of random

walks on stationary random graphs, as recalled in the following lemma.

Lemma 8 (Entropy). Let L ∈ P(G•) be stationary with L[log degG(o)] < ∞. Then the limit

H (G, o) := lim
t→∞

1

t

∑

x∈VG

P t
G(o, x) log

1

P t
G(o, x)

,

exists L−almost-surely and in L1(G•,L), and does not depend on the choice of the root o.

We will henceforth simply write H (G) instead of H (G, o), and call this the entropy of G.

Proof. Let (G, o) have law L, and conditionally on (G, o), let X = (Xt)t≥0 be a lazy simple random

walk on G starting from X0 = o. For 0 ≤ s ≤ t, define a non-negative random variable Zs,t by

Zs,t := log
1

P t−s
G (Xs,Xt)

.

9



Note that Zt,s
d
= Z0,t−s. Indeed, for any Borel function f : R+ → R+, we have by definition

E [f(Zs,t)] = E


 ∑

x,y∈VG

P s
G(o, x)P t−s

G (x, y)f

(
log

1

P t−s
G (x, y)

)


= E


∑

y∈VG

P t−s
G (o, y)f

(
log

1

P t−s
G (o, y)

)


= E [f(Z0,t−s)] ,

where the second line uses the stationarity (7) with h(G, o) =
∑

y P
t−s
G (o, y)f

(
log 1

P t−s
G

(o,y)

)
. More-

over, the trivial inequality P t
G(o, y) ≥ P s

G(o, x)P t−s
G (x, y) readily implies the sub-additive property

Z0,t ≤ Z0,s + Zs,t. (9)

Finally, the assumption L[log degG(o)] < ∞ ensures that E[Z0,1] < ∞. Consequently, Kingman’s

sub-additive ergodic theorem (see, e.g. [38, Theorem 14.44]) guarantees the existence of a non-

negative, integrable random variable Z∞ such that almost-surely and in L1,

Z0,t

t
−−−→
t→∞

Z∞.

Averaging this convergence over the random walk X (i.e., taking conditional expectation given the

random rooted graph) yields the existence of the limit H (G, o). By Lemma 6, the same is true if

o is replaced by any x ∈ VG. Moreover, the sub-additive property (9) with s = 1 shows that

H (G, o) ≤
∑

x∈VG

PG(o, x)H (G,x),

L−almost-surely. Since θ 7→ (θ − a)+ is monotone and convex for a ≥ 0, this inequality implies

∀a ≥ 0, (H (G, o) − a)+ ≤
∑

x∈VG

PG(o, x) (H (G,x) − a)+ .

But the two sides have the same law by stationarity, so they must coincide L−almost-surely. The

fact that this is true for all a ≥ 0 deterministically forces the equality H (G,x) = H (G, o) for all

neighbours x of o, and hence for all x ∈ VG by Lemma 6.

The Liouville property. One of the interests of asymptotic entropy lies in its relation with the

Liouville property. A function f : VG → R is called harmonic on G if PGf = f , where

∀x ∈ VG, (PGf)(x) :=
∑

y∈VG

PG(x, y)f(y). (10)

This is trivially the case, in particular, when f is constant. The graph G has the Liouville property

if it admits no non-constant bounded harmonic function. For stationary random graphs, this

functional-analytic property turns out to admit the following simple entropic characterization.
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Theorem 9 (Entropic characterization of the Liouville property). The equivalence

H (G) = 0 ⇐⇒ G has the Liouville property,

holds almost-surely under any stationary law L ∈ P(G•) with L[log degG(o)] < ∞.

This remarkable result has a long history: it originates with the pioneering works of Avez

[5, 6, 4], and was then made famous in a celebrated paper of Kaimanovich and Vershik [31]. In

the present setting of stationary random graphs, the implication =⇒ was established by Benjamini

and Curien [10], and refined by Benjamini, Duminil-Copin, Kozma and Yadin [11]. The converse

⇐= was proved by Carrasco Piaggio and Lessa [20] (see also [13]), but under an additional growth

assumption. Since this is the implication that we are going to use, we need to give more details.

Proof of Theorem 9. Fix a connected graph G, and let X = (Xt)t≥0 denote a lazy simple random

walk on G starting at some fixed vertex o ∈ VG. Write PG for its law, which is a probability

measure on the product space V
Z+

G . On this space, let I denote the σ−field of all events which are

invariant under the natural shift (xt)t≥0 7→ (xt+1)t≥0. Then [38, Proposition 14.12] states that

G has the Liouville property ⇐⇒ I is PG−trivial.

On the other hand, writing T =
⋂∞

t=0 σ(xt, xt+1, . . .) for the tail σ−field on V
Z+

G , we have

I is PG−trivial ⇐⇒ T is PG−trivial,

by Theorem [38, Theorem 14.18] and because X is lazy. Finally, the equivalence

L
(
T is PG−trivial

)
= 1 ⇐⇒ L(H (G) = 0) = 1,

was proved in [10, Theorem 3.2] for any stationary law L with L[log degG(o)] < ∞. Thus,

L(G has the Liouville property) = 1 ⇐⇒ L (H (G) = 0) = 1, (11)

and this annealed statement will actually suffice for the present paper. However, deducing the

quenched claim is easy, as we now explain. Define the events A := {G has the Liouville property}

and B := {H (G) = 0}, and let A∆B denote their symmetric difference. We want to show that

L(A∆B) = 0, (12)

for any stationary law L with L[log degG(o)] < ∞. We already know this if A,B are L−trivial,

thanks to (11). Moreover, the events A,B are clearly root-invariant, in the sense that

(G, o) ∈ A =⇒ {∀x ∈ VG, (G,x) ∈ A}.

Consequently, (12) holds under the extra assumption that root-invariant events are L−trivial. But

this is known as ergodicity, and any stationary law can be decomposed as a mixture of ergodic laws,

by [1, Theorem 4.7]. Thus, (12) extends to all stationary laws L with L[log degG(o)] < ∞.
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Spectral radius. The entropy H (G) is related to several other fundamental graph-theoretical

quantities, such as the speed, growth, or spectral radius, see [38]. Let us recall the last notion. Fix

a rooted graph (G, o) ∈ G•. For any t, s ≥ 0, we trivially have P t+s
G (o, o) ≥ P t

G(o, o)P s
G(o, o). By

Fekete’s lemma, we deduce that the limit

̺(G, o) := lim
t→∞

(
P t
G(o, o)

) 1

t , (13)

exists in (0, 1]. Moreover, the connectivity of G together with the trivial inequality

P t+2s
G (o, o) ≥ P s

G(o, x)P t
G(x, x)P s

G(x, o),

shows that ̺(G, o) does not depend on the choice of the root o. Thus, we will henceforth simply

write ̺(G), and call this quantity the spectral radius of G.

Lemma 10 (Spectral radius vs entropy). The inequality

H (G) ≥ 2 log
1

̺(G)
,

holds almost-surely under any stationary law L with L[log degG(o)] < ∞.

Proof. For any rooted graph (G, o) and any t ≥ 0, we have by concavity

log
(
P 2t
G (o, o)

)
= log


∑

x∈VG

P t
G(o, x)P t

G(x, o)




≥
∑

x∈VG

P t
G(o, x) log P t

G(x, o)

=
∑

x∈VG

P t
G(o, x) log P t

G(o, x) +
∑

x∈VG

P t
G(o, x) log

(
degG(o)

degG(x)

)
,

where the last line uses the reversibility degG(o)P t
G(o, x) = degG(x)P t

G(x, o). Dividing by −2t and

taking the limit as t → ∞ in L1(G•,L) yields the claim, provided we can show that

1

t

∑

x∈VG

P t
G(o, x) log

(
degG(o)

degG(x)

)
L1(G•,L)
−−−−−→

t→∞
0.

But this follows from the crude bound

L



∣∣∣∣∣∣

∑

x∈VG

P t
G(o, x) log

(
degG(o)

degG(x)

)∣∣∣∣∣∣


 ≤ L



∑

x∈VG

P t
G(o, x) (log degG(o) + log degG(x))




= 2L [log degG(o)] ,

where the second line simply uses the stationarity property (7) with h(G, o) = log degG(o).

Remark 5 (Unimodular analogues). By Lemma 7 and Remark 4, all results in this section also

apply to any unimodular law L ∈ P(G•) with L[degG(o) log degG(o)] < ∞.
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3 Proof of the main result

We are now ready to prove our main result. We work with the formulation given in Theorem 3.

Section 3.1 below reduces it to two key results, which are then proved in Sections 3.2 and 3.3.

3.1 Setting the stage

Let Gn = (Vn, En), n ≥ 1 be finite graphs satisfying the assumptions of Theorem 3, i.e.

sup
n≥1

{
1

|Vn|

∑

x∈Vn

degGn
(x) log degGn

(x)

}
< ∞; (14)

∀ε > 0,
1

|En|
card{e ∈ En : κGn(e) < −ε} −−−→

n→∞
0. (15)

Recall that our goal is to establish

∀ρ ∈ (0, 1), lim inf
n→∞

{
1

|Vn|
card{i : λi(Gn) > ρ}

}
> 0. (16)

By (14) and Theorem 4, we may assume, upon extracting a subsequence if necessary, that

Gn −−−→
n→∞

L, (17)

for some L ∈ P(G•). Note that L is automatically unimodular by Theorem 5, and such that

L [degG(o) log degG(o)] < ∞. (18)

Just like the degree, the curvature is a local notion, hence it also “passes to the limit”, i.e

L (κ(G) ≥ 0) = 1. (19)

Proof. As already mentioned, the observable f : (G, o) 7→ minx∼o κG(o, x) is 2−local, hence contin-

uous on G•. By the Portmanteau Theorem, we deduce that for any ε > 0,

L (f < −ε) ≤ lim inf
n→∞

LGn (f < −ε)

= lim inf
n→∞

{
1

|Vn|
card{o ∈ Vn : f(Gn, o) < −ε

}

≤ lim inf
n→∞

{
2

|Vn|
card{e ∈ En : κGn(e) < −ε

}

= L [degG(o)] lim inf
n→∞

{
1

|En|
card{e ∈ En : κGn(e) < −ε

}
,

where the last inequality follows from the observation that 2|En|
|Vn|

→ L[degG(o)], by the continuity

and uniform integrability of (G, o) 7→ degG(o). Sending ε → 0 yields L(f < 0) = 0, by (15). To

conclude, we simply apply Lemma 6 to the event B = {f ≥ 0}.

13



The first crucial step in our proof consists in deducing from (19) that the entropy is zero under

L. This is the content of the following theorem, which will be proved in Section 3.2.

Theorem 11 (Non-negative curvature implies zero-entropy). The implication

κ(G) ≥ 0 =⇒ H (G) = 0

holds almost-surely under any stationary law L ∈ P(G•) satisfying L [log degG(o)] < ∞.

In view of Remark 4, this result also applies to any unimodular law L ∈ P(G•) satisfying

L [degG(o) log degG(o)] < ∞, hence in particular to the limit L in (17). Combining this with

Lemma 10, we immediately deduce that our local weak limit satisfies

L(ρ(G) = 1) = 1.

It turns out that this simple condition suffices to guarantee (16). This is the content of the following

second result, established in Section 3.3 below, and which completes the proof of our main result.

Theorem 12 (Zero-entropy implies poor spectral expansion). Let Gn = (Vn, En), n ≥ 1 be finite

graphs having local weak limit L, and suppose that L (ρ(G) = 1) = 1. Then, for any ρ < 1,

lim inf
n→∞

{
1

|Vn|
card {i : λi(Gn) > ρ}

}
> 0.

In fact, a stronger statement about eigenvectors will be derived, as claimed in Remark 3.

3.2 Non-negative curvature implies zero entropy

Consider a connected graph G and two vertices x, y ∈ VG. The proof of Theorem 11 relies on

the following intuitive idea: if G has non-negative curvature and bounded degrees, then it takes

time O(d2
G(x, y)) for two random walks starting at x and y to meet. This classical observation

constitutes the very essence of the path coupling method of Bordewich and Dyer [18]. It was later

re-discovered and further developed by Münch [40]. We will here prove a refinement that does not

require bounded degrees, see Corollary 16 below. Write Bx,By for the balls of radius 1 around x

and y, and recall that the Wassertein distance W1 (PG(x, ·), PG(y, ·)) is defined as

W1 (PG(x, ·), PG(y, ·)) = inf
π




∑

u∈Bx

∑

v∈By

π(u, v) dG(u, v)



 , (20)

where the infimum runs over all probability distributions π ∈ P(Bx × By) with marginals PG(x, ·)

and PG(y, ·). By compactness, the above infimum is actually achieved, and the minimizers will be

14



called optimal couplings. As in [18, 40], our first task consists in showing that an optimal coupling

can always be chosen so as to assign a “decent” probability to the “good” set

Γ := {(u, v) ∈ Bx × By : dG(u, v) < dG(x, y)} .

The argument crucially uses the laziness of PG but is otherwise rather general.

Lemma 13 (Good optimal couplings). If x 6= y, then there is an optimal coupling π such that

π (Γ) ≥
1

2
max

{
1

degG(x)
,

1

degG(y)

}
.

Proof. By compactness, we can find an optimal coupling π which, among all optimal couplings,

maximizes π(Γ). Suppose for a contradiction that this “doubly optimal” coupling satisfies

π (Γ) <
1

2 degG(x)
. (21)

The set A := {u ∈ Bx : (u, y) ∈ Γ} is not empty, since it contains the first vertex on a geodesic from

x to y. Thus, π(A× By) ≥ 1/(2 degG(x)). In view of (21), this forces π((A× By) \ Γ) > 0, i.e.

∃(x0, y0) ∈ (A× By) \ Γ, π(x0, y0) ≥ ε, (22)

for some ε > 0. On the other hand, we have π(A×{y}) +π(Ac×{y}) = PG(y, y) = 1
2 . This forces

π(Ac × {y}) > 0, because π(A× {y}) ≤ π(Γ) < 1
2 . In other words,

∃x1 ∈ Ac, π(x1, y) ≥ ε, (23)

provided ε > 0 is chosen small enough. We now use the vertices x0, y0, x1 found at (22)-(23) to

construct a new coupling π̂ which contradicts the optimality of π. For all (u, v) ∈ Bx × By, we set

π̂(u, v) :=





π(u, v) if u /∈ {x0, x1} and b /∈ {y0, y};

π(u, v) − ε if (u, v) = (x0, y0) or (u, v) = (x1, y);

π(u, v) + ε if (u, v) = (x0, y) or (u, v) = (x1, y0).

By construction, π̂ is non-negative on Bx × By and has the same marginals as π. Thus, it is a

coupling of PG(x, ·), PG(y, ·). This coupling is moreover optimal, since

∑

u∈Bx

∑

v∈By

dG(u, v) (π̂(u, v) − π(u, v)) = ε (dG(x0, y) + dG(x1, y0) − dG(x0, y0) − dG(x1, y))

≤ ε (dG(x, y) − 1 + dG(x1, y0) − dG(x, y) − dG(x1, y))

≤ 0,
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where the first inequality uses x0 ∈ A and (x0, y0) /∈ Γ, while the second uses the triangle inequality

dG(x1, y0) ≤ dG(x1, y)+dG(y, y0). Finally, since Γ contains (x1, y) but not (x0, y0), (x1, y), we have

π̂(Γ) ≥ π(Γ) + ε,

contradicting the definition of π. Thus, (21) can not be true, and the claim follows by symmetry.

We will also need the following technical lemma, which is of independent interest and quantifies

the intuition that non-negative super-martingales that “move a lot” must “quickly” hit zero.

Lemma 14 (Non-negative super-martingales quickly hit zero). Let τ := inf{t ≥ 0: Zt = 0} be the

hitting time of zero by a non-negative super-martingale Z = (Zt)t≥0. Suppose that Z0 = z, and that

all increments (Zt+1 − Zt)t≥0 are upper-bounded by a constant K. Then,

P (τ ≥ t) ≤ z

(
2a + K − z

a2

)
+ P

(
τ ≥ t,

t−1∑

s=0

Ws < a2

)
,

for all t ∈ Z+, a > 0, where Ws = E
[
(Zs+1 − Zs)

2|Fs

]
and (Fs)s≥0 is the underlying filtration.

Proof. First note that the process Z is trivially square-integrable, because Zt ∈ [0, z +Kt] for each

t ≥ 0. Now fix t ≥ 0 and a > 0, and consider the bounded stopping time

σ := inf {s ≥ 0: Zs ≥ a} ∧ t.

Using the Optional Stopping Theorem, the non-negativity of Z and the definition of σ, we have

z ≥ E [Zσ∧τ ]

≥ E
[
Zσ∧τ1(σ<τ∧t)

]

≥ aP (σ < τ ∧ t) .

On the other hand, observe that for all s ≥ 0, we may rewrite Ws as

Ws = E
[
Z2
s+1 − Z2

s |Fs

]
+ 2ZsE[Zs − Zs+1|Fs].

Note that the second conditional expectation is non-negative by assumption. Moreover, we have

Zs ≤ a on the event {σ > s}, which is in Fs. Thus,

Ws1σ>s ≤ E
[(
Z2
s+1 − Z2

s

)
1σ>s|Fs

]
+ 2aE [(Zs − Zs+1)1σ>s|Fs] .

Taking expectations and summing over all s ≥ 0, we obtain

E

[
σ−1∑

s=0

Ws

]
≤ E

[
Z2
σ

]
− 2aE[Zσ] − z2 + 2az

≤ (K + a− z)z,
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where the second inequality follows from the observations that Zσ ≤ K + a and E[Zσ] ≤ z. Let us

now use these two estimates to conclude. By union bound, we have

P (τ ≥ t) ≤ P (σ < τ ∧ t) + P (σ ∧ τ ≥ t)

≤ P (σ < τ ∧ t) + P

(
τ ≥ t,

σ−1∑

s=0

Ws ≥

t−1∑

s=0

Ws

)

≤ P (σ < τ ∧ t) + P

(
σ−1∑

s=0

Ws ≥ a2

)
+ P

(
τ ≥ t,

t−1∑

s=0

Ws < a2

)

≤
z

a
+

(K + a− z)z

a2
+ P

(
τ ≥ t,

t−1∑

s=0

Ws < a2

)
.

This is exactly the claimed bound.

Combining these two lemmas, we may now deduce the following estimate, which exploits non-

negative curvature to control the action of PG on the variations of bounded observables.

Proposition 15 (Variational estimate via non-negative curvature). Let G be a connected graph

with κ(G) ≥ 0. Then, for any f : VG → [−1, 1], any vertices x, y ∈ VG, and any a > 0, t ∈ Z+,

|P t
Gf(x) − P t

Gf(y)| ≤
8dG(x, y)

a
+ 2P

(
t−1∑

s=0

1

degG(Xs)
< 2a2

)
,

where X denotes a lazy random walk on G starting from x.

Proof. Let (X,Y ) be the Markov chain on VG × VG which, from any state (x, y) ∈ VG × VG, draws

the next state according to the “good” optimal coupling of PG(x, ·), PG(y, ·) described in Lemma

13. We use the standard notations P(x,y)(·),E(x,y)[·] to specify the choice of the initial state. Since

the two coordinates X,Y are marginally distributed as lazy random walks on G, we have

∣∣P t
Gf(x) − P t

Gf(y)
∣∣ = |Ex,y [f(Xt)] − Ex,y [f(Yt)]|

≤ Ex,y [|f(Xt) − f(Yt)|]

≤ 2Px,y (Xt 6= Yt)

≤ 2Px,y (τ > t) ,

where τ = inf{t ≥ 0: Xt = Yt} denotes the meeting time of the two walkers. Note that τ is also

the hitting time of zero by the non-negative process Z = (Zt)t≥0 defined as follows:

∀t ≥ 0, Zt := dG(Xt, Yt).
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We claim that Z is a super-martingale w.r.t. the natural filtration (Ft)t≥0 associated with (X,Y ).

Indeed, by the Markov property and the optimality of the chosen couplings, this claim reduces to

W1 (PG(x, ·), PG(y, ·)) ≤ dG(x, y),

for all x, y ∈ VG. But this inequality readily follows from the assumption κG(x, y) ≥ 0 in the case

{x, y} ∈ EG, and it then automatically extends to all x, y ∈ VG by the triangle inequality of W1(·, ·)

(see, e.g., [45]). On the other hand, Lemma 13 ensures that on the event {τ > t},

Ex,y

[
(Zt+1 − Zt)

2|Ft

]
≥

1

2 degG(Xt)
.

Finally, note that the distance between the two walkers can not increase by more than 2 at each

step. Thus, we may invoke Lemma 14 to conclude that

Px,y (τ ≥ t) ≤ 2dG(x, y)

(
a + 1

a2

)
+ Px,y

(
t−1∑

s=0

1

degG(Xs)
< 2a2

)

≤
4dG(x, y)

a
+ Px,y

(
t−1∑

s=0

1

degG(Xs)
< 2a2

)
,

where the second line follows from the first if a ≥ 1, and is trivial otherwise.

In particular, this applies to any bounded harmonic function f , after a trivial normalization.

Since P t
Gf = f for all t ≥ 0, we may send t → ∞ and then a → ∞ in the resulting estimate

to obtain the following key result, which ensures that non-negatively curved graphs satisfy the

Liouville property, provided they have a “decent proportion” of vertices with “reasonable” degree.

Corollary 16 (Liouville property and non-negative curvature). Let G be a connected graph with

κ(G) ≥ 0. Fix o ∈ VG and suppose that the simple random walk X on G starting from o satisfies

P

(
∞∑

t=0

1

degG(Xt)
= ∞

)
= 1. (24)

Then, G has the Liouville property.

A simple situation where the above condition trivially holds is that where G has bounded

degrees. In that case, the Liouville property was recently established by Jost, Münch, and Rose

[29]. Our relaxation allows for arbitrary large degrees, as long as the random walk can avoid them

from times to times. This is the case under any stationary law by Birkhoff’s Ergodic Theorem,

allowing us to prove Theorem 11.
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Proof of Theorem 11. Let (G, o) have law L and, conditionally on (G, o), let X be a lazy random

walk starting from the root. Then the process Z = (Zt)t≥0 defined by

∀t ≥ 0, Zt :=
1

degG(Xt)

is stationary, in the usual sense that its law is invariant under the shift (zt)t≥0 7→ (zt+1)t≥0 on

[0, 1]Z+ . Thus, Birkhoff’s Ergodic Theorem (see, e.g. [38, Theorem 14.43]) ensures that

1

t

t−1∑

s=0

Zs −−−→
t→∞

E[Z1|I ],

almost-surely, where I is the invariant σ−algebra. Since Z1 is almost-surely positive, we deduce

∞∑

s=0

Zs = ∞,

almost-surely. In other words, the random graph (G, o) satisfies (24) almost-surely. By the above

corollary, this implies that G has the Liouville property almost-surely on the event {κ(G) ≥ 0}.

By Theorem 9, we conclude that H (G) = 0 almost-surely on the same event.

3.3 Zero entropy implies poor spectral expansion

This final section is devoted to proving Theorem 12, which relates the eigenvalues of finite graphs

to the spectral radius of their local weak limits. If G is a finite graph, the N = |VG| eigenvalues

λ1(G) ≥ . . . ≥ λN (G) of its transition matrix PG can be conveniently encoded into a probability

measure µG ∈ P([0, 1]), called the empirical eigenvalue distribution of the matrix PG:

µG :=
1

N

N∑

i=1

δλi(G).

It turns out that the large-size asymptotics of this fundamental object can be understood directly at

the level of local weak limits. When PG is replaced with the more standard adjacency matrix, this

classical observation is the starting point of a rich and well-established theory, see the comprehensive

introductory survey [15] by Bordenave, and the references therein.

Local spectral measures. The transition kernel PG of a graph G can be viewed as a linear

operator acting via (10) on the Hilbert space

ℓ2(G) :=



f ∈ C

VG :
∑

o∈VG

degG(o)|f(o)|2 < ∞



 ,
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with inner product 〈f, g〉 =
∑

o∈VG
degG(o)f(o)g(o). The stochasticity, laziness and reversibility

∑

y∈VG

PG(x, y) = 1, PG(x, x) ≥ 1/2, degG(x)PG(x, y) = degG(y)PG(y, x),

easily (and classically) imply that PG is a positive contraction on ℓ2(G), i.e.

∀f ∈ ℓ2(G), 0 ≤ 〈f, PGf〉 ≤ 〈 f, f〉.

In particular, for each o ∈ VG, the spectral theorem for self-adjoint operators ensures the existence

of a local spectral measure µ(G,o) ∈ P([0, 1]), characterized by the moment identity

∀t ≥ 0,

∫ 1

0
λtµ(G,o)(dλ) = P t

G(o, o). (25)

As we will now see, µ(G,o) can be interpreted as the local contribution of o to the spectrum of PG.

Local spectral measures are a powerful tool to investigate the mixing properties of graphs, see [36].

The finite case. When G is finite with N vertices, there is an orthonormal basis (φ1, . . . , φN ) of

ℓ2(G) consisting of eigenvectors of PG with eigenvalues λ1(G), . . . , λN (G), and we easily find

µ(G,o) =

N∑

i=1

degG(o)|φi(o)|2δλi(G). (26)

Thus, the local spectral measure µ(G,o) is a mixture of Dirac masses located at the various eigen-

values of PG, and weighted by the squared amplitudes of the corresponding eigenvectors at o.

Moreover, thanks to the orthonormality of (φ1, . . . , φN ), the identity (26) readily implies

µG =
1

|VG|

∑

o∈VG

µ(G,o). (27)

In other words, the empirical eigenvalue distribution of a finite graph G coincides with the spatial

average of its local spectral measures.

Spectral continuity. In light of (5), it is tempting to pass to the limit in the formula (27) along

a convergent sequence of finite graphs (Gn)n≥1. This is made rigorous by the following continuity

principle. As usual, P([0, 1]) is here equipped with the topology of weak convergence.

Lemma 17 (Spectral continuity). The map (G, o) 7→ µ(G,o) is continuous on G•. In particular, if

a sequence of graphs (Gn)n≥1 admits a local weak limit L, then

µGn(dλ) −−−→
n→∞

µL(dλ) := L
[
µ(G,o)(dλ)

]
.
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Proof. For each fixed t ≥ 0, the observable (G, o) 7→ P t
G(o, o) is clearly t−local, hence continuous.

In particular, via the identity (25), the convergence (Gn, on) → (G, o) in G• implies

∀t ≥ 0,

∫ 1

0
λt µ(Gn,on)(dλ) −−−→

n→∞

∫ 1

0
λt µ(G,o)(dλ). (28)

Since convergence in P([0, 1]) is equivalent to the convergence of moments, we conclude that

µ(Gn,on) −−−→
n→∞

µ(G,o), and the continuity is proved. Similarly, the second claim is obtained by

applying (5) to the t−local observable f : (G, o) 7→ P t
G(o, o), for each t ≥ 1.

Corollary 18 (Unit spectral radius implies poor spectral expansion). Let Gn = (Vn, En), n ≥ 1 be

finite graphs having a local weak limit L such that L(ρ(G) = 1) = 1. Then, for any 0 ≤ ρ < 1,

lim inf
n→∞

µGn ([ρ, 1]) > 0. (29)

Moreover, we have the refinement

sup
n≥1

∣∣{x ∈ Vn : µ(Gn,x)([ρ, 1]) ≤ ε
}∣∣

|Vn|
−−−→
ε→0

0. (30)

Proof. Fix 0 ≤ ρ < 1. By the second part of Lemma 17 and the Portmanteau Theorem, we have

lim inf
n→∞

µGn([ρ, 1]) ≥ L
[
µ(G,o)((ρ, 1])

]
. (31)

On the other hand, comparing (25) with the definition of the spectral radius, we see that ρ(G) is

exactly the supremum of the support of µ(G,o), for any (G, o) ∈ G•. In other words,

µ(G,o)((ρ, 1]) > 0 ⇐⇒ ρ(G) > ρ.

In particular, since L(ρ(G) = 1) = 1, the right-hand side of (31) is positive, as desired. To

prove the second claim, note that the continuity of (G, o) 7→ µ(G,o) implies that the event Fε =
{
µ(G,o)([ρ, 1]) ≤ ε

}
is closed in G•. Consequently, the convergence Gn → L implies

lim sup
n→∞

LGn(Fε) ≤ L(Fε),

and the right-hand side tends to L(F0) ≤ L(ρ(G) ≤ ρ) = 0 as ε → 0. The limsup can then be

replaced with a sup, since for each n ≥ 1, LGn(Fε) decreases monotonically to 0 with ε.

Remark 6 (Corollary 18 vs Theorem 12). The statement (29) asserts that a macroscopic proportion

of eigenvalues of Gn accumulate in [ρ, 1], which is exactly the conclusion of Theorem 12. The

refinement (30), on the other hand, constitutes a rigorous formalization of the “delocalization”

announced in Remark 3. To see this, recall that for any graph G with N vertices, we have by (26),

µ(G,x)([ρ, 1]) =
N∑

i=1

degG(x)|φi(x)|21λi(G)≥ρ.
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In words, the number µ(G,x)([ρ, 1]) ∈ [0, 1] measures the cumulative squared amplitude at x of all

the basis eigenvectors corresponding to “bad” eigenvalues (those in [ρ, 1]). In particular, the set

{x ∈ VG : µ(G,x)([ρ, 1]) ≤ ε} represents the region where these “bad” eigenvectors have a small

cumulative squared amplitude. The statement (30) asserts that the relative size of this region can

be made arbitrarily small by choosing ε small, uniformly in n. Thus, bad eigenvectors have their

cumulative mass “spread out” across most vertices.
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R. Acad. Sci. Paris Sér. A, 279:25–28, 1974.
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