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ABSTRACT

Sparse Fast Fourier Transform (sFFT) [1][2], has been re-

cently proposed to outperform FFT in reducing computational

complexity. Assume that an input signal of length N in the

frequency domain is K-sparse, where K ≤ N . sFFT costs

O(K logN) instead of O(N logN) in FFT.

In this paper, a new fast sFFT algorithm is proposed and

costs O(K logK) averagely without any operations being re-

lated to N . The idea is to downsample the original input sig-

nal at the beginning. Subsequent processing operates under

downsampled signals, which length is proportional to O(K).
However, downsampling possibly leads to “aliasing.” By shift

theorem of DFT, the aliasing problem can be formulated as

the “Moment-preserving problem.” In addition, a top-down

iterative strategy combined with different downsampling fac-

tors further saves computational costs. Complexity analysis

and experimental results show that our method outperforms

FFT and sFFT.

Index Terms— Sparsity, FFT, Sparse FFT, Downsampling

1. INTRODUCTION

Fast Fourier transform (FFT) is a well-known approach for

computing DFT with O(N logN), where N is the length of

a signal. How to outperform FFT is a significant challenge in

the signal processing community.

Recently, the researchers in MIT propose, as a break-

through, a new technique, called Sparse Fast Fourier Trans-

form (sFFT) [1][2], that is proved to outperform FFT. Let

x ∈ CN be the input signal in the time domain and let

X ∈ CN be the Fourier transform of x. Assume that x
is K-sparse in that there are K non-zero entries in X , i.e.,

supp(X) = K and K ≤ N . sFFT costs O(K logN).
The idea behind sFFT is to sample fewer (proportional

to K) instead of keeping all frequency grids since most

frequency grids are zero and do not need to be calculated.

FFT based on such subsampling strategy will only cost

O(K logK) calculations. However, because the locations

and values of the K non-zero entries are unknown, sub-

sampled frequency grids often lead to data loss and cannot

achieve perfect reconstruction.

In order to cope with this difficulty, sFFT is proposed

to include the strategies of filtering and permutation that

can increase the probability of capturing useful information

from subsampled frequency grids. These operations cost

O(K logN). According to [1][2], sFFT is faster than FFTW

[3] (a very fast C subroutine library for computing FFT)

when X is an exact K-sparse signal with K ≤ N
26 . sFFT also

outperforms previous works such as [4][5].

Even though sFFT is outstanding, there are some limita-

tions summarized as follows. 1) Filtering and permutation

are operated on x. Since x ∈ CN , these operations are re-

lated to N . Thus, sFFT is still influenced by N and cannot

achieve the most ideal complexity O(K logK). 2) sFFT only

succeeds with a constant probability; i.e., it possibly fails.

In this paper, a new fast sFFT algorithm with complexity

of O(K logK) by downsampling in the time domain is pro-

posed and dubbed as sFFT-DT. The idea behind sFFT-DT is to

downsample the original input signal first and then all subse-

quent operations are conducted on the downsampled signals.

When the length of a downsampled signal is O(K), no op-

erations related to N are required in our method. However,

downsampling possibly leads to “aliasing,” where different

signals become indistinguishable in terms of their locations

and values. To overcome this problem, we consider the loca-

tions and values of K non-zero entries as variables and the

“aliasing problem” is found to be equivalent to “Moment-

preserving problem,” which can be solved via orthogonal

polynomials [6]. Moreover, our method, conducted in a

manner of top-down iterative strategy under different down-

sampling factors, can further reduce computational complex-

ity. Our method sFFT-DT is analytically and experimentally

verified to outperform FFT and sFFT.

2. PROPOSED METHOD: SFFT-DT

We describe the proposed method and analyze its computa-

tional complexity. The proposed method contains three steps:

1) Downsample the original signal. 2) Calculate Fourier

transform of the downsampled signal by FFT. 3 ) The Fourier

transform of the downsampled signal is used to locate and

estimate K non-zero entries of X . Steps 1 and 2 are simple

and straightforward. Thus, we focus on Step 3 here.
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2.1. Problem Formulation

Let xd be the downsampled signal, where xd[k] = x[dk],
k ∈ [0, Nd − 1], and d is the downsampling factor. Let Xd be
discrete Fourier transform (DFT) of xd, where

Xd[k] =(X[k] +X[k +
N

d
] +X[k + 2

N

d
]

...+X[k + (d− 1)
N

d
])/d.

(1)

Note that each frequency grid of Xd is a summation of d
terms of X . When more than two terms of X are non-zero,

“aliasing” occurs, as illustrated in Fig. 1. Fig. 1(a) shows

an original signal in the frequency domain, where only 3 fre-

quency grids are non-zero. Fig. 1(b) shows the downsampled

signal in the frequency domain when d = 2. Aliasing appears

at 0.8π because two terms are summed together. Fig. 1 will

be further explained in detail in Sec. 2.3.

Fig. 1. Aliasing and its iterative solver. (a) Original signal

in frequency domain. (b) Downsampled signal in frequency

domain with d = 2. If we want to solve all frequency grids

once, it requires 4 FFTs. (c) Similar to (b), however, fre-

quency grids at d = 2 are solved first and require 2 FFTs. (d)

Remaining frequency grids require 2 extra FFTs at d = 4.

Another useful property of DFT is the shift theorem. Let
xd,l[k] = x[dk + l], where l denotes the shift factor. Each
element of Xd,l is denoted as:

Xd,l[k] = (X[k]ei2πkl/N +X[k +
N

d
]ei2π(k+N

d
)l/N+

...+X[k + (d− 1)
N

d
]ei2π(k+(d−1)N

d
)l/N)/d.

(2)

Thus, Eq. (2) degenerates to Eq. (1) when l = 0.

In practice, all we can obtain are Xd,l[k]’s for different
l’s. For each downsampling factor d, there will be no more
than d terms on the right side of Eq. (2), where each term

contains two unknown variables. For example, X [k]ei2πkl/N

is composed of two variables, X [k] and ei2πkl/N . Let a, 1 ≤
a ≤ d, denote the number of terms on the right side of Eq. (2).
Therefore, we need 2a equations to solve these 2a variables,
and l is within the range of [0, 2a − 1]. By taking the above

into consideration, the problem can be formulated as:

p0z
0
0 + p1z

0
1 + ...+ pa−1z

0
a−1 = m0,

p0z
1
0 + p1z

1
1 + ...+ pa−1z

1
a−1 = m1,

.

..

p0z
2a−1
0 + p1z

2a−1
1 + ...+ pa−1z

2a−1
a−1 = m2a−1,

(3)

where Xd,l[k] is known and is denoted as ml while pj and

zlj , respectively, represent unknown X [sj] and ei2πsj l/N for

sj ∈ {k, k + N
d , ... , k + (d− 1)Nd } and j ∈ [0, a− 1].

It is trivial that no aliasing occurs if a = 1, irrespective

of whatever the downsampling factor is. Under this circum-

stance, we have m0 = Xd,0[k], m1 = Xd,1[k], m0 = p0z
0
0 =

X [s0]/d, and m1 = p0z
1
0 = X [s0]e

i2πs0/N/d, according to

Eq. (3). It is easy to obtain that |m0| = |X [s0]|/d = |m1|
and m1/m0 = ei2πs0/N . After some derivations, we can

solve s0 and obtain X [s0] = dXd,0[k] at the position s0. The

above solution is based on the shift theorem of DFT and can

only work under a non-aliasing environment. However, when

aliasing appears (i.e., a > 1), Eq. (3) is unsolvable because
m1

m0
=

p0z
1
0+p1z

1
1

p0z0
0+p1z0

1
for a = 2.

To cope with the aliasing problem, we consider Eq. (3)

from another point of view. It is observed that the i’th row

in Eq. (3) is the i’th moment with mi =
∑a−1

j=0 pjz
i
j . The

issue of solving pj’s and zj’s given different moments (mi’s)

is the “Moment-preserving problem (MPP).” We find that the

solution to MPP [6][7] based on orthogonal polynomials is

useful and will be discussed in the next subsection.

2.2. The Solution to Moment-Preserving Problem

Note that the moment-preserving problem (Eq. (3)) is non-
linear and cannot be solved by simple matrix operations. On
the contrary, we have to solve zj’s first such that Eq. (3)
becomes linear. Then, pi’s can be solved by matrix inver-
sion. Thus, the main difficulty is how to solve zj’s given
known moments. According to [6], given the unique mo-
ments with m0, m1, ..., m2a−1, there must exist the corre-
sponding orthogonal polynomial equation, P (z), with roots
zj’s for 0 ≤ j ≤ a − 1. Then, zj’s can be obtained as the
roots of P (z). The steps of solving MPP are as follows.
(i) Let the orthogonal polynomial equation P (z) be:

P (z) = za + ca−1z
a−1 + ...+ c1z + c0. (4)

The relationship between P (z) and the moments is:

c0m0 + c1m1 + ...+ ca−1ma−1 = −ma,

c0m1 + c1m2 + ... + ca−1ma = −ma+1,

...

c0ma−1 + c1ma + ...+ ca−1m2a−2 = −m2a−1.

(5)

Eq. (5) is solved by matrix inversion to obtain cj’s.

(ii). Find the roots of P (z) in Eq. (4). These roots are the

solutions of z0, z1,...za−1, respectively.
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(iii). Substitute all zj’s into Eq. (3) and solve the resulting

equations to obtain pj’s.
Tsai [7] proposed a complete analytic solution composed

of the above three steps for a ≤ 4 based on the constraint that
p0+p1+...+pa−1 = 1. Nevertheless, for the aliasing problem
considered here, the constraint is p0 + p1 + ... + pa−1 =
Xd,0[k], as indicated in Eq. (2). Thus, the complete analytic
solution is derived for a = 2 as:

cd = |
m0 m1

m1 m2
|,

c0 = (
1

cd
)|

−m2 m1

−m3 m2
|, c1 = (

1

cd
)|

m0 −m2

m1 m3
|,

z0 =
1

2
[−c1 − (c21 − 4c0)

1
2 ], z1 =

1

2
[−c1 + (c21 − 4c0)

1
2 ],

pd = z1 − z0,

p0 = (
1

pd
)|

m0 1
m1 z1

|, p2 = m0 − p0.

(6)

Eq. (6) costs O(a3) operations. In other words, even

though aliasing occurs for all K non-zero entries of X ,

O(Ka3) is required under the worst case, which is unrelated

to N . However, there is no close-form solution to step (ii) for

a > 4. Under the situation, (ii) can be solved by numerical

analysis like Newton’s method.

In general, aliasing seldom occurs if the locations of non-

zero entries of X are random. Let N+ = N
dK be the ratio of

the length (Nd ) of a downsampled signal to K . Fig. 2 shows

the probability of aliasing (a ≥ 2) at different N+’s. For

a > 4, the probability is very low. In other words, 6 ∼ 8 FFTs

in downsampled signals are enough to recover most frequency

grids of X . However, when the signal is not so sparse with

K approaching N (e.g., K = N
8 and N+ = 20), the cost of 8

FFTs in downsampled signals is almost equivalent to that of

one FFT in the original signal. To further reduce the cost, a

top-down iterative strategy is proposed in the next subsection.
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Fig. 2. Probability of aliasing at different N+’s. a denotes

the number of terms on the right side of Eq. (2). The results

show that aliasing (a ≥ 2), in fact, seldom occurs.

2.3. Top-Down Iterative Strategy

An iterative strategy is proposed to solve the aliasing problem

with iterative increase of the downsampling factor d. Fig 1

illustrates an example. In Fig. 1(b), if we try to solve all

aliasing problems at one iteration, 4 FFTs are required since

the maximum value of a is 2. If we first solve the problem

with a = 1, it costs 2 FFTs, as shown in Fig. 1(c). Since 2
FFTs are not enough for solving the aliasing problem under

a = 2, 2 extra FFTs are required.

The key is how to calculate 2 extra FFTs with less cost in

the above example. The idea motivated by sFFT is to discard

the solved frequency grids in the frequency domain. Thus, if

K
′

frequency grids are subtracted from the original X , the

sparsity of the remaining signal is K − K
′

. Since a more

sparse signal is generated in an iterative manner, d can be set

to be larger under fixed N+. As shown in Fig. 1(d), 2 extra

required FFTs can be fast done with a larger d (=4). From

Fig. 2, the probability at a = i is at least 2 times larger than

that at a = i + 1 for N+ = 21 and i ≥ 1. Consequently, d is

doubled iteratively and the cost of total FFTs is bound by that

required at the first iteration.

2.4. Algorithm

Algorithm 1 depicts the proposed algorithm, sFFT-DT, which

is composed of three functions, main, SubFreq and MPP. At

the initialization stage, the sets S and T record the positions

of solved and unsolved frequency grids, respectively.

The function main is executed in a top-down manner by

doubling the downsampling factor iteratively. It should be

noted that in the function main, Xd,j[k] = 0, initially defined

in Eq. (2), may imply: 1) X [k + jN
d ]’s for all j ∈ [0, d− 1]

are zero and 2) X [k + jN
d ]’s are non-zero but their sum is

zero. To distinguish both, |Xd,j[k]| > 0, j ∈ [0, 2l + 1], is a

sufficient condition. If the number of aliasing frequency grids

(unknowns) is less than or equal to 2l + 2, it is enough to

distinguish both by checking whether any one of the 2l + 2
equations is not equal to 0. If yes, it implies that at least a

frequency gird is non-zero; otherwise, all X [k + jN
d ]’s are

definitely zero. More specifically, the condition (Line 9) is

equivalent to checking 2l + 2 equations at l’th iteration. At

l = 0, two equations (Xd,0[k] and Xd,1[k]) are checked to

ensure that all frequency grids with a ≤ 2 are distinguished.

At l = 1, if k ∈ T , it is confirmed that X [k + jN
d ]’s are non-

zero at the previous iteration. On the contrary, if k /∈ T , extra

2 equations (Xd,2[k] and Xd,3[k]) are added to ensure that all

frequency grids with a ≤ 4 are distinguished. Thus, at l’th
iteration, total 2l + 2 equations are checked.

In addition, due to the iterative framework, we solve the

aliasing problem via the function MPP by assuming the num-

ber of unknown s (locations) and p (estimations) in advance.

If the assumption is true, the condition, sj mod d = k for

all j ∈ [0, l] (Line 30), must be true. For each iteration, the

solved frequency grids are subtracted from the original fre-

quency grids via the function SubFreq such that the resul-

tant signal is more sparser and can be recovered using larger

downsampling factors.
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Algorithm 1 The Proposed Algorithm: sFFT-DT

Input: x, t, K; Output: X;

Initialization: X = 0, d = O(NK ), S = {}, T = {};

01. function main()

02. for l = 0 to t− 1
03. xd,2l[k] = x[dk + 2l] for k ∈ [0, Nd − 1];
04. xd,2l+1[k] = x[dk + 2l+ 1] for k ∈ [0, Nd − 1];
05. Xd,2l = FFT(xd,2l)× d;

06. Xd,2l+1 = FFT(xd,2l+1)× d;

07. SubFreq(Xd,2l,Xd,2l+1,X, d, l, S);
08. for k = 0 to N

d − 1
09. if (k ∈ T or |Xd,2l[k]| > 0 or |Xd,2l+1[k]| > 0)

10. mj = Xd,j[k] for j ∈ [0, 2l+ 1];
11. MPP(m, l, d, k,X, S, T );
12. end if

13. end for

14. d = 2d;

15. All elements in T modulo N
d .

16. end for

17. function SubFreq (Xd,2l,Xd,2l+1,X, d, l, S)
18. for k ∈ S
19. kd = k mod N

d ;

20. Xd,2l[kd] = Xd,2l[kd]−X [k]e
i2πk(2l)

N ;

21. Xd,2l+1[kd] = Xd,2l+1[kd]−X [k]e
i2πk(2l+1)

N ;

22. end for

23. function MPP (m, l, d, k,X, S, T )
24. if l = 0
25. z0 = (

ml+1

ml
); p0 = m0;

26. else

27. Solve the aliasing problem with a = l + 1 by

the solution described in Sec. 2.2.

28. end if

29. sj = (ln zj)N/i2π for all j ∈ [0, l];
30. if (sj mod d) = k for all j ∈ [0, l]
31. S = S ∪ s;

32. X [sj] = pj for all j ∈ [0, l];
33. else

34. T = T ∪ s;

35. end if

2.5. Computational Complexity of sFFT-DT

The outer loop of main runs t times. If non-zero frequency

grids are distributed uniformly, given d = O(NK ) and N+ ∈
[21 22], t is set to be 4 because most frequency grids are non-

aliasing for a = 1 or suffer aliasing for 2 ≤ a ≤ 4 according

to Fig. 2. The cost of outer loop is bounded by two FFTs.

Since d = O(NK ) is set, the dimension of xd,2l and xd,2l+1 is

O(K) and FFT costs O(K logK) at the first iteration. Since

d is doubled iteratively, the total cost of t iterations is still

bounded by O(K logK). In addition, SubFreq costs O(K)
operations due to |S| ≤ K .

The inner loop of main totally runs O(K) times, which

is not related to the outer loop, since at most K frequency

grids are necessary to be solved. The cost at each iteration

is bounded by MPP. For 0 ≤ l ≤ 3, the analytic solu-

tion, described in Sec. 2.2, costs O(a3) (without optimiza-

tion). For l > 3, steps (i) and (iii) in Sec. 2.2 cost O(a3).
Though step (ii) has no close-form solution, it can be solved

in O(da) because we know the roots must belong to the set,

{ei2π(k+
N
k
l)/N | l ∈ [0, d − 1]}. Since a is a constant, MPP

costs O(d). Thus, the inner loop costs O(dK = N), given

d = O(NK ). In sum, the proposed algorithm, sFFT-DT, is

dominated by FFT and costs O(K logK) operations.

3. EXPERIMENTAL RESULTS

Our method, sFFT-DT, was numerically verified and com-

pared with FFTW (http://www.fftw.org/). The simulations

were conducted under Visual Studio 2008 with an Intel CPU

Q6600 and 2.99 GB RAM under Win 7. The signal x in time

domain is produced as follows: 1) Generate a K-sparse sig-

nal Xori and 2) Produce x as inverse FFT of Xori. The

approximation error is defined as
‖X−Xori‖1

‖Xori‖1
.

Fig. 3(a) shows the computational time versus spar-

sity, where N = 224 and t = 4. The initial d is set

according to N+ = 22. For K ≤ N
24 , our algorithm

outperforms FFTW. The approximation error is less than

0.07%. Moreover, sFFT [1] is only faster than FFTW

when K ≤ N
26 (results of sFFT can be found in http://

groups.csail.mit.edu/netmit/sFFT/results.html). Compared

to sFFT, our method, sFFT-DT, is able to deal with non-

sparser signals (with large K). Fair and direct comparisons

with sFFT [1][2] will be conducted in the future.

Fig. 3(b) shows the computational time versus signal di-

mension under fixed K . d is initially set based on N+ = 22.

The computational time of our method is invariant to N .
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Fig. 3. (a) Computational time vs. Sparsity under N = 224

and a = 4. (b) Computational time vs. Signal dimension

under K = 216 and a = 4.
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