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Abstract

We define the higher order moments associated to the stochastic solution of an elliptic BVP in D ¢ R?
with stochastic input data. We prove that the k-th moment solves a deterministic problem in D ¢ R%,
for which we discuss well-posedness and regularity. We discretize the deterministic k-th moment
problem using sparse grids and, exploiting a spline wavelet basis, we propose an efficient algorithm, of
logarithmic-linear complexity, for solving the resulting system.

AMS Subject Classification: 65N30.

Keywords: Stochastic pde, sparse grids, finite elements, wavelets.

1 Introduction

We consider an elliptic boundary value problem with stochastic input data in a
domain D. Namely, let (Q,X,P) be a o-finite probability space and D ¢ R? a
bounded open set with Lipschitz boundary dD. Consider also a deterministic and
uniformly positive on D diffusion coefficient 4 € L*>(D, R;’;fl). We define a random
field on a submanifold M of R? (it will always be D or some part of its boundary) as
a jointly measurable function from M x Q to R. Suppose 0D = 'y U T} (disjoint
union), where I'y has positive surface measure, and let f, g and 4 be random fields

on D, Ty and I'; respectively. We consider the following model problem

L(0y)u —div(4(x)Vu(x, ®)) f(x,w) inD
Yo(u) ¢ = ulx,w) |r, p =14 9(x,w) onTy, (1)
7, () n"A(x)Vu(x, ») Ir, h(x,w) on T}

where the operators involved in the boundary conditions should be thought of as
stochastic counterparts of the classical trace on Iy, I'y and distributional
conormal derivative operators, y,, y; and 7y, respectively. Note that if Q reduces to

* Supported in part under the IHP network Breaking Complexity of the EC (contract number HPRN-
CT-2002-00286) with support by the Swiss Federal Office for Science and Education under grant
No. BBW 02.0418.
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only one point of mass one, the dependence of (1) on w can be dropped, the
stochastic character dissapears, and we are left with a classical mixed BVP, which
will be refered to in the following as ‘deterministic case’. Since for a stochastic
problem the data is uncertain and, moreover, knowing all joint probability den-
sities is in practice hardly the case, reasonable assumptions can be made only on
some ‘statistics’ associated to the data. Here we assume that the k-th order
moment, sometimes called k-point correlation of the random data f(x, w) in (1)
and given by

)5 xe) = /f(x,,w) L0, @) - -+ g, w)dP(),
Q

xjeD, j=1,2,...,k, whenever such an integral exists, is available. Corre-
spondingly one is often interested in the higher moments of the stochastic solu-
tion. We devoted [9] to the theoretical and numerical study of the expectation
(that is, the mean field or first order moment) and two-point correlation of the
solution. Both these ‘statistics’ have been shown to satisfy deterministic elliptic
problems which are numerically solvable at essentially the same cost (number of
operations, memory requirements for a prescribed relative accuracy) as the
deterministic mean field problem,

L(D)E, ~div(A(x)VE,(x)) Ef(x) inD
Wo(E) = Eux)Ir, = Ey(x) onTy. (2)
,(E) nTAG)VE) I, Eyx) onT,

Here the mean field, or expectation, E, associated to u, solution of (1), is given by

E,(x) = 4" (u)(x) = /Qu(x, w)dP(w), x€D.

We shall study in the present paper existence, regularity, discretization and
complexity issues for the k-point correlation of u, the stochastic solution to (1).
Our main goal will be to derive and analyze an algorithm that makes these high
order statistics available at a computational cost which exhibits only a mild
dependence on %.

2 Problem Formulation

Let k£ > 1 be an integer, (Q, X, P) a o-finite probability space and H a separable
Hilbert space. We define the Banach space of L¥, H-valued functions on Q (see

[11]) by
LK H) = {f Q- H|fmeasurable,/ I/ (0)]||%,dP(w) < oo}/ ~
Q

11y = /Q 1 (@) [ dP(w),



Sparse Finite Elements for Stochastic Elliptic Problems 45
where we use the same notation for a P-a.e. equivalence (denoted by ~) class and

one of its members. Bochner’s Theorem (see [11]) asserts that f € LF(Q; H) if and
only if there exists a sequence of H-valued step functions (f;) N such that

fi—f Pac.onQ and /ﬂﬁ—ﬂﬂﬂowwfem‘ (3)
Q

For each f € L'(Q; H) one can then define the vector-valued integral
| 1w e )
Q

by means of a sequence of H-valued step functions (f;) jeN satisfying (3) for k = 1.
Namely,

[ r@ap) = lim [ foap@). in . )
We shall consider data for (1) satisfying the regularity assumption with &£ > 2,
el @u (D) c L@ H (D) ~H (D) ® LX(Q),
g € LNQH'*(Ty)) € LXH(Q H'*(Ty)) ~ H'*(Ty) ® L*(Q), (6)
he L5QH™V2(T))) c LH(QH VX)) ~ H V() @ L(Q).

For any Sobolev space H we denote by  its stochastic counterpart, that is, the
Hilbert space H ® L*(Q) (we refer the reader again to [11] for tensor products of
Hilbert spaces). We shall use for instance #(D) := L*(D) @ L*(Q), # (o (D) :=
H{) (D) © L*(Q) AV = H'2(T)) @ LX(Q), etc. We consider also a deter-
ministic diffusion coefficient 4 € L*°(D, [R;"yfnd), uniformly positive on D, i.e.

Jo, > 0 st of|E)P < ETA)E<BIE)? VéeRYandae zeD.  (7)
With this setup one can prove (see [9]) that (1) has a rigorous variational for-
mulation and a unique random solution, as follows. Note that Id stands for the

identity operator in L*(Q).

Theorem 2.1. Assume that f,g,h satisfy (6). Then there exists a unique random
solution u € #'(D) such that (y, ® 1d)u = g and

(A4 ®1d)(V @ Id)u, (V@ 1d)v) 42 e = (f, v>,7f"(D),,7fgo)(D)
+ <ha (Vl ® Id)U>y//*1/2(rl),y/1/2(rl) (8)

Sforall v e J/f%o) (D).
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Proof. Since H'(D)/H}, (D) ~ H'*(I')) as topological spaces, there exists
u; € #'(D) such that (y,®1d)(u;) =g, so that the problem reduces to the
existence and uniqueness of uy € # 30) (D) satisfying

A (19, 0) := (4 ® 1d)(V @ Id)ug, (V @ 1d)1) 42 0
—((4 @ 1d)(V @ 1d)ur, (V@ 1d)v) yo e + (f,0) 4 #ly (D)

+{h(n® Id)v>%”'/z(l"1),%1/2(l"l) )

forallv e # go) (D). And this is a simple consequence of Lax-Milgram Lemma in
H (1 )(D), as soon as we note that, on account of (7), the bilinear form </ defined
by the L.h.s. of (9) is bounded and coercive on % 0)(D) (I(V @ 1d) - || 42 e defines
a norm on ¥ (0)(D), equivalent to the usual one) Whlle the r.hes. is a contmuous
linear functional on the same space. O

Remark 2.2. Let (e),., be an ONB in L*(Q) and expand f=",f; ®e; with
> ||f\|L2(D < oo, (similarly for g and h). Then the solution (in the sense given by
Theorem 2.1) u to (8) is given by u ="y, u; @ e; where the series converges abso-
lutely in ,%”I(D) and the coefficient function u; solves the deterministic mixed BV P

L(Oy)u; fi inD
volw;) p =14 ¢g; onTy.
VYn (M,) h[ on Fl

This can be seen by choosing the test function in (8) of the form v = w ® ¢;, with
we H(l0 (D). Note that the deterministic character of 4 is essential for this
decomposition of (1).

Well-posedness of (1) (in the sense given by (8)) being established, we now
investigate the existence and the deterministic computation of the k-th order
moment of u solution to (1), for £ > 2.

3 Existence and Regularity of Higher Order Moments ./#/*(u)

We use here the setup and notations of the previous section and assume for
simplicity g = 0. We deduce next the existence of the higher order moments
associated to the pair (f,%). For o = ( %) <<k € {0, 1} and s > 0, we define first
the deterministic Hilbert spaces X}* := Ej X2 where X3 = B (D), X320 =
H**'/2(T'). Consider also the mapping

H:Q — X% é (a,f + (1 — o) h) (). (10)

The strong measurability of FH can be deduced by tensorizing sequences of step
functions approximating f and 4, while the norm integrability is a consequence of
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(6) and the Hélder inequality for the pair of functions |f(- )”'13‘4(0) e LM (Q),
()|l ‘fj‘z € L¥/*=12)(Q). This means, in view of (3), FH € L'(Q;X%%).
Consequent y, M*(f, h), the o-moment of the pair (f, #) can be defined according

to (4), by
(S h) ::/FHdP(w) € X%, (11)
Q

Note that if « = (1, 1,..., 1), the moment defined by (11) is actually associated to
£ and not to the pair (f,%), so that from now on it will be denoted by .Z*(f).
Similarly, o = (0,0, ...,0) leads to .#*(h).

The problem we address next is the existence of the £-th order moment of u. To
state the result we use the notations H'(D'):= &% HY(D), H(v \(DF) =
®k 1H< )( ) for a multi-index v € (R;)* and s := (s,s,...,s) € (R,)" for s € R,.

Theorem 3.1. Under the regularity assumption (6), the k-th order moment of u,
solution to (1) exists and is an element of H'(D¥).

Proof. (1) means that, P-a.e. on Q, u(w) solves a deterministic mixed boundary
value problem in D, if we view u € H/y (D) @ L*(Q) as a measurable, H, (D)-
valued, square norm integrable function on Q. More precisely, from (8) in
Theorem 2.1 we deduce

(AVu(w), vW>L2(D) = (f(®), w) - '(D).Hy (D) + (h(w)7Tr1W>H*‘/2(F1),H‘/2(F1)7
P-ae.weQandforallwe H %0) (D). From the well-posedness of the deterministic
problem in D it follows that

@l o) < € (7@ gsp) + (@) ) Pacw e (12)

where the constant C depends only on the coefficient 4.

Takmg into account the measurability of u: Q — H}, (D), which follows from
u € #(y)(D), (12) implies, in view of (6) and the deﬁnition of L* spaces, the
assertion. O

To derive a deterministic equation for .#*(u), we introduce the following oper-
ators:

( k d
A%k — /QE]A < '@(®§:1L2(D> )

vk V € #(H" (D), &% L*(D)")

Il
T

J

W= @ (addip) + (- o)) € BEH' (DY), X)),

Il
T@»

where we denote by #(X,Y) the space of bounded linear operators between the
Hilbert spaces X and Y, with #(X) := (X, X).



48 Ch. Schwab and R. A. Todor

Theorem 3.2. .#/*(u) is the unique solution in H(IO) (D¥) of the variational problem

(AN ), VMY o e =Y MO (f1), 97 M ) o s
2e{0,1}* (13)
V.4l € Hy (D).

Proof. The existence and uniqueness of a solution to (13) are easily proved using
the Lax-Milgram Lemma in appropriate spaces, as soon as we note that tensor
products of bounded positive homeomorphisms between Hilbert spaces induce
corresponding homeomorphisms between tensor products of these spaces.

Now, since f € LY(Q H™(D)),h € L*(Q,H~'/?(T'y)), there exist sequences
(i) pens (h”)neN of H-valued step functions on Q satisfying (3) with H# := H~!'(D)
and H:=H '*(T'}), respectively. Let us write f, = > e, fillg,, and
h, = qu g, IQ“, where 1q , stands for the indicator function of the measurable
set Q,,, f4 € H (D), hl € H- '/2(I'1), Yg, n, and for each n, the family (Q),c;, is
a partition of Q. The above mentioned properties of (fy),en» (An),en are also
sufficient to ensure, via the Holder inequality, dominated convergence and (95),

lim % (fy, hy) = M*(f,h) in XO%. (14)

n—oo

To the deterministic data (f7,49) we associate the solution ud € H(‘0> (D) of the
corresponding mixed BVP,

(AVuf, VU>L2(D)‘1 = U>H*‘(D),H('0)(D) + <h3aVIU>H71/2(FI),H1/2(F1) (15)

Yo € H(l )(D) and set u, := ) ., uilg,,. The continuous dependence (12) of the
solution of a mixed BVP on the data and (3) for /" and A imply

lim u, »u P-ae.onQ, lim || (@) — up(w )HHl ydP(w) = 0. (16)

n—oo n—oo

Recalling definition (11) of the k-th order moment, we deduce from (16) and (5) that

lim .#/*(u,) = 4*(u) in H'(D"). (17)
Choosing in (15) k different deterministic test functions vy, vy, ..., v, taking the

product of the resulting & equalities and summing over ¢ with weights P(Q, ), we
obtain that .#*(u,) solves the deterministic problem

<A®’kv®’k%k<”n)»V®7k<ﬂ>L2(D)"": Z <=ﬂx(ﬁr»hn)ay?#f/%>x9&xﬂ’
xe{0,1}*

V.l € H (DY) (18)
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(use here that tensor products of total sets in Hilbert spaces are total in product
spaces).

The desired equation for .#*(u) follows then from (14) and (17) if we let n — oo in
(18). O

The regularity of .#*(u) follows naturally from that of the data .Z*(f,h),
Va € {0, l}k and the result, as well as its proof, is analogous to the one in [9] for
k = 2. We only state it, as follows. Recall first that the mean field problem (2) is
said to satisfy the shift theorem at order s >0 if E, € H '*(D) implies
E, € H'*5(D).

Theorem 3.3. Suppose that the deterministic boundary value problem on D with the
diffusion coefficient A satisfies the shift theorem at order s. Then also for (13) holds a
shift theorem at order s, in the sense that if J*(f,h) € X>* Vo€ {0,1}, then
M) € X7 = @ HT(D).

Remark 3.4. In the case of a polygon or polyhedron D, a shift theorem at order
s > 0 holds in weighted spaces H,;+S’2 (D) (see [1]). The proof of Theorem 3.3 can be
correspondingly adapted to deduce then a shift theorem for the correlation equation
(13) in an anisotropic weighted Sobolev scale in DF.

4 FE Discretization

We shall now investigate the numerical approximation of .#*(u), using the Finite
Element Method for the deterministic elliptic equation (13). We assume, for
simplicity, I'y =0 and we start by defining hierarchical FE spaces in D. Let
VoCViC...CV,C...CH}(D) be a dense hierarchical sequence of finite
dimensional subspaces ofH(IO) (D), with Ny, := dim(7) < oo for all L. Suppose that
the following approximation property holds:

weipy, Vu € HYY(DYNH (D), (19)

min u = vl 55p) < (V2. 9)]u

where ®(N,s) — 0 for s >0 as N — oo is the convergence rate. For regular
solutions the usual FE spaces based on quasiuniform, shape regular meshes are
suitable.

Example 4.1. If {7 L}LeN is a nested sequence of regular triangulations of D
of meshwidth hy = h;_1/2, we choose Vi to be the space of all continuous
piecewise polynomials of degree p on T vanishing on OD. Then N; = O(2%%)
and the functional ® on the r.hs. of (19) reads ®(N,s)= O(N~°), with
0 := min{p,s}/d.

Since the k-th order moment . (u) of u solves the elliptic problem (13) on D¥, we
shall construct FE spaces in D, starting from the hierarchical FE spaces {V;} 150
in D. Full tensor product spaces present themselves as natural candidates.
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However, due to efficiency reasons, we shall use the sparse tensor product spaces
that are defined by (see [12], [2])

k
V. := Span {@V,-i|0§i1+i2+“'+ik§L}-

=1

Since this description of the sparse tensor space does not help identifying bases,
we introduce next at each level L > 0 a hierarchic excess W of the scale {1}, to
be an arbitrary algebraic summand of ¥,y in ¥V (here we set V_; := {0}). AsV;
can be obviously decomposed as a direct sum V; = (), << Wi, one can easily
check that ¥, admits the direct (not necessarily orthogonal!) decomposition

k

= @ @W,/C D @W,, @VL. (20)

0<ij+ir+..+ik <L j= 0<iy ig,esik <L j=
The discretized version of (13) using the FE space ¥, then reads

(IR (), VR L) o e = (S, ML) xoa 01, (21)

V. € V;, where we denoted by ﬂﬁ(u) € ¥, the discrete solution of (13). The
approximation property (19) allows us to estimate the discretization error in terms
of the functional @, as follows.

Proposition 4.2. If ,ﬂf(u) is the solution to (21), L > k — 1, and the approximation
property (19) holds, then

k
- 2* () — () 1) < € Z ) D AWy (22)
where e; € {0,1Y,e,(j) = 1 iff j € J and

j—1

c(j,®) =" > (DNy,5) - D(Ny,5) -+ BN, ,5) - D(No,5))°
m=11l;+-+l,=L—m+1
+ > BN, BNy, BN, 5) (23)
h++1l=L—j+1

Note that the constant C depends only on the coefficient A.

Proof. As in [9], the result follows using the quasioptimality of the FE solution,
the approximation property (19) and the description (20) of the sparse tensor
space with W, defined as the orthogonal complement of ¥;_; in V; w.r.t the usual
scalar product (-,-) in H}(D). Namely, we employ the following orthogonal
decomposition in H0 (Dk) equipped with the Hilbert structure induced by the
tensor product ®1 1+, +). For the rest of the proof, orthogonality in Hj (D*) is to
be understood w.r.t. thls natural Hilbert structure.
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k
M) = P (W) = > QP A ) @4)
oy bty L1 =1
%;>0,1<i<k

where P! denotes the orthogonal projection on W, w.r.t. (-,-), acting in the i-th
dimension of D. As the notation suggests, Py, denotes the Hj(D*)-orthogonal
projection on ¥, while in the following we shall use also Q', the projection
on V, acting in the i-th direction of D*. We note that the sum in the r.h.s.
of (24) is H}(D")-orthogonal, since the excesses W,,a € N are pairwise
H{}(D)-orthogonal. We rewrite the r.h.s. of (24), pointing out those directions
Jj€{1,2,...,k} for which o; = 0 (coarsest approximation). This decomposition
does not coincide with the one in [2], but leads to the same qualitative result.

> (@A) = > Z (®c/P) @y B4 ) (25)

DI R S
%20 ! >l
and we cast the first inner sum of projections above for J = {ji, j2,...,/,} in the
form

5 QDW@P) (14— 0) (1 - B) D

S e =1 J&J n>2 Vi
oap>1
+) PR - 0p m)@(ld P’”)(?JP’
<L J

a1

+ Z ®PJ" Id - Q£3*%1*12)®n24 (Id - P(;n) ®Pé

) +ay <L N= JjEJ
2y .0>1
+ ¥ @m (10-0f s, ) @R (26)
Z mer Liz”zl “/ gt
n=1""

We note that the /-th sum in the r.h.s of (26) consists of those terms in the Lh.s.
corresponding to indices oy, %, . .. 0, > 1 with Y7 o, > L+ 1 for which / < p s
the smallest integer with the property E 10 > L + 1. Using (26) in (25) and the
trivial estimate ||Pi|| < ||Id — @', || (operdtor norm in H}(D¥)) we easily get, via
(19), the desired inequality (22). O

We specialize Proposition (4.2) by choosing the FE spaces as in Example (4.1), to
obtain

Corollary 4.3. For the sparse tensor product based on the FE spaces in Example 4.1
the following asymptotic estimates hold as L — oo,
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45 () = 5 ()| g1y < € - (logNL) N2 Lt ()| s
= O((log N)* V12N, (27)
and
dim 7, = O((logN,)*"'Ny), (28)

where s = (s,s,...,s) and 6 = min{p, s}/d.

The full tensor space would require O(NF) degrees of freedom for a relative
tolerance O(N, ).

Remark 4.4. The factor (logNL)“‘_l)/2 in (27) can not be removed. This would
be possible, as shown in [2], if we were interested in a H'(DF) (instead of
HY(DY)) approximation of the solution. However, since H'(D) is the energy
space for the k-point correlation problem, an H'(DF)-approximation is in this
case irrelevant.

Remark 4.5. The proof of the approximation property of the sparse tensor space, on
which Proposition 4.2 is based, carries over to a heterogeneous sparse tensor
product, in which the factor spaces are possibly different and satisfy each an
approximation property of type (19) (see [10]).

5 Iterative Solution and Complexity

We have seen that sparse FE spaces allow to reduce the number of degrees of
freedom needed to compute a discrete solution approximating the exact solution
up to a prescribed accuracy. To study the complexity of the discrete problem, we
recall that (21) amounts to solving a linear system

St Ml (u) = M (f), (29)

where S* denotes the stiffness matrix of (13) with respect to some basis of
the sparse tensor product space V, C H(0 (D¥). To solve (29) efficiently, we use
the conjugate gradient (CG) method, which is suitable once the matrix S* is
well-conditioned and sparse. The first property will be ensured by a wavelet
preconditioning procedure, while the second, (which does not hold, actually!)
can be replaced by a proper use of the anistropic structure of the problem.
Here and in what follows, % denotes a family of double indices running in
N x N9,

Assumption 5.1. There exist a family (;;); ye7 C H{ (D) and constants Cy,C, > 0
such that each u € H}(D) can be expanded as a convergent series in H} (D),
U= E(,-_,,-)ey ;i ;; and the following ‘stability condition’ is fulfilled
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Gt Y el <Y bl <€ Y lenul (30)

(ji)eF (ji)eF (.i)eF

We present some examples of families satisfying Assumption 5.1 for D = (0, 1) or
D= (0, l)d, but mention that such constructions are available also for polygonal
domains (see [6]).

Example 5.2. For D = (0,1), let us consider ¢ the hat function on R, piecewise
linear, taking values 0,1,0 at 0,1/2,0 and vanishing outside (0,1). We set
F ={(,)0<j,1 <i<2} and ;,(x):=272¢(2x —i+1),x € (0,1). The
family (;;)(;yer Satisfies then Assumption 5.1.

Example 5.3. With D, & and ¢ as above, we define on R the function r, piecewise
linear, taking values (1,—6,10,—6,1) at (1/2, 1,3/2,2,5/2) and vanishing outside
(0,3). Similarly, ' take (9,—6,1) at (1/2,1,3/2) and " assumes values (1,—6,9)
t (1/2,1,3/2). Further, we define Wy = ¢ (scaling function) and ;,(x) :=
29N x), W =272 (P =Y+ 1), x € (0,1), for j>1 (bounda;y wave-
lets). Analogously, Yii(x) =2 TP (Vx —i+2),x € (0,1) for 2<i< 2 —1 and
j > 2 (interior wavelels). The family (‘p/,z)(f,z)e,/ constructed in this way satisfies
Assumption 5.1.

For further examples see [4] and references therein.

Example 5.4. If D = (0,1)¢, we choose 7 = {(j,i) € N x N?|0 < j, 1 <i <2/}
(inequalities involving multi-indices should be understood componentwise). Then,
starting from the family in Example 5.3, we put ; (x ):ngl Y iaita) Xa)
Vx = (Xq)1<4<a € D to obtain (after rescaling) a family (Y;;);e7 which still sat-
isfies Assumptlon 5.1 (see [8]).

eF

Formally, an increasing FE space sequence in D C R can be defined in terms of
the family (y;;) ;e In Assumption 5.1 by

Vi :=Span{y,;,|0 < |jl, < L} (1)

( may be a vector, as in the example above, and |j|, := maxi<4<q4j,). We define
further an algebraic complement W, of V;,_| in V; by

Wy := Span{y;[|jl. = L}- (32)

We then obtain, via (20), the following explicit description of the sparse tensor
space ¥, through a basis,

V= Span{‘//j,i = @i

Z } (33)

where j(v) is the v-th line of the k& X d matrix j and similarly for i.
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The algebraic excess W, of the sparse tensor scale (¥) 1>0 18 then given by

k
w| D litv )Ioc=L}, (34)

v=1

L—Span{ = @x//

and can be further decomposed as

W= W, with Wi = Span{y;;li(v)l, = 1}, (35)

ek
=L

where
=L +L+---+1, VIeNk

For further reference, let us collect, for L > 0, in a vector denoted ¥,, the basis
functions in the definition (32) of W;. Similarly, for [ € N let ¥, be the vector
containing the basis functions of W, as defined in (35).

Concerning the properties of the stiffness matrix S’ that are of interest for solving
(29), namely well-conditioning and sparsity, it holds

Proposition 5.5. i) The matrix St has uniformly bounded condition number, as
L — oo.

ii) For examples above as well as for similar wavelet constructions, the matrix S* is
not sparse, in the sense that nnz(S*) > O(N?) (compare (28)).

Proof. 1) (30) can be rephrased by saying that the basis (¥

Diines
Jil (i)eF
homeomorphism of Hilbert spaces between ¢> and H{ (D), or that

u= " —lulh = > leul’ (36)

(ji)eF (j.i)eF

gives a

defines an equivalent norm on H{ (D). The same holds then for the basis Vi
introduced in (33). It follows thatA for M = (/%Jl)“ € RV with N, := dimV,
M =D 5 M is an element of Y, and

(S"tll, M), = (ANl M)
2 2 2
~ A oy ~ Dol = || 3, -
ji

As for ii), one can easily see that the entries of 8" corresponding to the indices i, J»
i, j with j(1) =j(2) = (L,L,...,L) are in general nonzero, implying the desired
lower bound. Il
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The nonsparsity makes the storage and use of S* rather costly. However, the
alternative, that is a full tensor product FE space in DF, proves already
inefficient, for £ > 3, due to its huge dimension N]f . A further improvement in
the efficiency of solving (29) on a sparse tensor FE space can be achieved
(see [9] for the case k£ = 2) by taking into account the special structure of the
discrete operator (or, equivalently, of S*), which inherits the tensor product
structure of the continuous operator (see (13)). More precisely, we shall see
that one should store only the matrix S* corresponding to the case k = 1 and
relate $* to St to perform one step of the CG-algorithm. Of course, storage of
the load vector is necessary too, but, due to (28), this requires only a log-linear
(in Ny) amount of memory. The Algorithm 6.13 in [9] will be then shown
to be applicable to this higher order case to achieve the log-linear complex-
ity of the matrix-vector multiplication needed to perform one step of the
CG-algorithm.

We shall derive next the relation between S* and S* that will help us formulate
the matrix-vector multiplication algorithm. To this end, let us denote by (-, -),, the
scalar product associated with the norm (36). (-, -),, is obviously equivalent to the
usual scalar product in H} (D) and (1) (e becomes an orthonormal basis of
H{ (D) equipped with (-,-),. Let us denote by P, and Q, the orthogonal projec-
tions in H} (D) w.r.t. (-,-),, on ¥V and W respectively, as they were defined in
(31), (32), so that

Qorrespondingly, we denote by P, and QL the orthogonal projections on ¥, and
Wy, (see (33), (34)) w.r.t. the scalar product on H} (D) obtained by tensorizing
(-,-),, by itself.

On account of (33), (34), we have the multilevel decomposition

L
£=%0, (37)
=0
as well as
0, =Y 0 with 0, :=®)_,0, (38)

1enk
I1=L

the projection on the space W, introduced in (35).

Let us further denote by 2* the k-fold tensor product bilinear form of the moment
problem (13),

2=292®---®2, with 2(u,v) = (AVu, V), (39)
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Yu,v € H} (D). Then the discrete problem in ¥ is given by the bilinear form
2% (u,v) := 2" (PLu, Pv) Vu,v €V, C Hy(D") (40)

or, inserting (37) and (38) in (40), by

2% (u, v) Z > 2Y(Qu, Qrv) Vu,v e V. (41)

LI'=0 1renk
\l\ Le=r

Recalling that ‘¥, is the vector containing the basis functions of W; given in (35),
we can write

Qlu - ul lPla (42)

with real vector coefficients u; and similarly for o.
Using (42) in (41), we obtain

L

2oy =" > u -8, vp, (43)
LI'=0 1renk
=11 \=t"

where the matrix S’f 18 given by evaluating the bilinear form on the basis func-
tions, o

Spyp =25, ).

But, in view of (39) and (34), we have

k
Sfl =28V, ¥)) =X 2Y,,¥) @S, e (44)

v=I

where S, := 2(¥;,¥r),v¥0 < [,I' < L are the blocks of the stiffness matrix S*
corresponding to the mean field problem (2) in D (or, equivalently, to the simple
case k = 1).

The representation formulas (43) and (44) show that

LI'=0 11/enk
\1\ L=t

k
Qk (u,v) Z Z “1 . <®SILV,I(,> vy, (45)
v=1

that is the stiffness matrix 8% of the k-th moment problem computed w.r.t. the
basis (33) of the FE space ¥, has a block structure



Sparse Finite Elements for Stochastic Elliptic Problems 57

oL oL
S — (Sl,l’) [-£€Nk )
T l=isL
||=r'<L

and each block is a tensor product of certain blocks of the stiffness matrix of the
mean field problem, that is, £k = 1.

Moreover, S* is almost sparse, once for the basis (y; i) (i) the following ‘local
support’ assumption holds true. We remark that the above-mentioned examples

as well as similar wavelet-type constructions are in this category.

Assumption 5.6. There exists p € N* such that for all 1 <i <2/ € N? and j € N,
the set supp(x// )N supp(tpj,ﬁi,) has nonempty interior for at most p‘ - HZ:I
max (1,24 /) values of I'.

Remark 5.7. From Assumption 5.6 it follows by a simple counting argument that
nnz(St,) < p? - (min(Z, 1) + 1)1 24m Y w0 < 77 < L. (46)

To formulate the matrlx vector multiplication algorithm, we shall also need, for
each pair [ = (1,)*_,, /' = (l’) a reordering o,y of {1,2,...,k} such that

v=17=— v=1>

k k
y L+ Y Ly <maxd 0,3 1 Vi<qg<k (47)
=1 =1

=1 v=q+1

The existence of such a permutation ¢ is easy to prove, by choosing x, = [,,
»w=1,V1<v<kin the following Lemma.

Lemma 5.8. If (x,),.,«; and (W), <,<; are two families of positive real numbers, then

there exists a permutation o of the set {1,2,... k} such that
me + Zyﬂ <mc1x{2xv Zy‘} vVl < g <k (48)
v=q+1

Proof. We use induction on k. Since for £ = 1 the claim is trivial, assume that it
holds also for some k > 1. Consider (x,);.,«;,; and ()<, two families of
positive real numbers and define z, :=x, for 1 <v <k — 1 and z; := x; + x441, as
well as ¢, :=y, for | <v<k—1 and # := y; + yx41- The induction assumption
ensures the ex1stence of a permutation t of {l1,2,...,k} such that
S Ze) ki1 by Smax S xS w b, V1 < g < k. We define then
a(v) _r()fora11v<r Y(k) and o(v) == (v — )forallv>r (k) + 1. Now, if
Yk +Xpe1 < xp 4+ kg1 holds true, we set o(t7'(k)) ==k, o(z7 (k) + 1) =k +1,
otherwise, that is if y +xi1 > x; +me1, we define o(t7'(k)) =k +1
and o(t~! (k) + 1) := k. With this choice for ¢ one can easily check the inequalities
(48). O
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To simplify the exposition of the algorithm, let us introduce, for an arbitrary pair
(1,1') of indices, 1 < ¢ < k, and a permutation ¢ = o, associated to it in the sense
explained above, the following tensor product matrices

= é@ Uy, (49)
v=1

where
Id,, 4., ve{a(l),a(2),...,a(qg—1)}

L

U, = Sz(,(q),l'ﬂ(q)a v=o0(q), (50)

Id; , vel{alg+1),0(g+2),...,0(k)}

and Id;; denotes for / > 0 the identity matrix of size dim/#;. With these notations,
each block in (45) can be expressed as a product of simpler matrices, of the type
introduced in (49),

k
L _ 7L L L
®Sl\,,l(, - TLﬁ,k ’ T[,Lk—l T T[,Ll' (51)
v=1

For later use, let us remark that (46) entails the following estimate concerning the
sparsity of the matrices 7}, .

Remark 5.9.
q—l

nnz(T, !,_’ ~(min(ly(g), I,) + 14!
\:1

k
X H (la(v) + 1)
=g+

v=q+1

o (St 1 ) sy,
Proof. This follows immediately from the obvious equality

nnz( Hdlle -nnz Sz ’ Hldlme
u+

the asymptotic estimate dimW; ~ (L + 1)d - 241 and (46). O

Based on the factorization formula (51), we can develop now the multiplication
algorithm of the matrix S by a vector x.

Algorithm 5.10.

L
store (Sl‘l’)OSIJ’SL (Sparse)s (xl)l1+lz+---lASL
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k
for / satisfying Z l, <L
v=1

initialize (S%x), := 0
k
for /' satisfying Z I <L
v=1
compute vy := Ty Typpr - T 3t
update ($%x) 1= 29) [t
end % for
end % for

Remark 5.11. The order in the multiplication giving y, is essential for the efficiency
of the algorithm. To implement the multiplication ole g by a vector, one should not
build TF 14> but, due to (49), (50), split the vector into blocks and multiply each of
them by . S, Wl

The estimate of the complexity of Algorithm 5.10 can be carried out as in [9]. The
result reads:

Theorem 5.12. The algorithm (5.10) performs the matrix-vector multiplication
x — Sx using at most O((log ;) "**2N,) floating point operations. Besides, it
requires only storage of the stiffness matrix S* of the mean field problem and of x.

Proof. Due to (45), (51) we can write

aL L
($™x 1—§:®S1 a x;/—E Tzz/ : ll’kl Ty X

rov=
|7|<L \1’\</

The multiplication under the summation above can be then performed using at
most

k
H#ip =y nnz(T}, ) (53)
gq=1
floating point operations. From (52) we obtain that

k
#10 <Y (o co (oggeny + DY - (min(lygg), 1)) + DT
q=1

q—
ey + D (L + 1y 2O e tmandloa g D )

[
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From this estimate and the defining property (47) of ¢ = o, y, we deduce that for
L>1,

#10 < (max{ 1], |1]}) " pdma{ I}

Then the computation of the block (S%x), can be done using » _, #;r operations.
Finally, the number of operations needed to perform x — SEx (collect all blocks
(Stx), for all /) admits the asymptotic upper bound, as L — oo,

S5 (max{g], 2]y % adma (0L},

st <t

. . . I+k—1
Since for a given / > 0 the equation |/| =/ has exactly ( + ) = o

(as | — oo) solutions / € N¥, we conclude k-1
R L
#flops(x — $'x) < Z [dkA2k=2 ndl _ 0<<10gNL)kd+2k72NL). 0
=0

Due to Proposition 5.5, the number of steps required by the CG algorithm to
compute the discrete solution up to a prescribed accuracy is bounded once we use
the solution at level L — 1 as initial guess of the solution at level L. Thus it holds.

Theorem 5.13. The deterministic problem (13) for the k-point correlation function

A*(u) € HSY(DY) N HE(DF) of the random solution u to (1) is numerically solvable
at a cost of

O((log N )" 72Ny (54)
[floating point operations, with a
O((logNL)"* ™ 'Ny) (55)
needed amount of memory, for a relative accuracy of
O((log Np)*~V2N,2), (56)

where 6 = min{p,s}/d.

Up to the logarithmic terms, the estimates (54), (55), (56) are similar to the ones of
the mean field problem (2).

6 Numerical Examples

We present here some elementary one-dimensional examples concerning the
2-point correlation (D = (—1, 1) and k£ = 2 throughout this section) and numerical
experiments we have performed in order to validate our main theoretical result,
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Theorem 5.13. We mention that for the following computations we have used the
Riesz basis in Example 5.2 (piecewise linear elements, p = 1).

Let us consider first (1) with g =0, I'} = () and a random field f(x, w) which is
completely uncorrelated, the so-called ‘white-noise’. This amounts formally to

MP(f) = S(x — y) (57)

where d(x — y) is the Dirac distribution supported on the diagonal in D x D,
(5(x — v), ) = /D(;’)(x,x)dx Vg € C(D x D).

One can see that the functional §(x — y) admits a unique extension to H'/4+¢(D?)
Ve > 0. It follows, via Theorem (3.3), that the 2-nd moment of u solution to (1)
has the following regularity on the anisotropic Sobolev scale:

AM*u) € H*(D*) nHL(D?). (58)

Taking the coefficient 4 constant, equal to 1, the assumption of Theorem 5.13
holds true with s = 3 /4. The expected convergence rate (expressed in terms of the
number of dofs N) of the discrete solution is therefore O((logN)>*N—3/4)

(compare (55), (56) and note that N = (log N, )N.). The observed rate matches the
predicted one in Figure 1.

Clxy) =8(x y), AR =1,V (xy) e ] 117

Errorin H""'-norm

i i i
10° 10’ 10° 10° 10 10°
Number of degrees of freedom (sparse grid)

Fig. 1. Convergence in the 1D white-noise case with constant coefficient (solid) and the predicted rate
(dashed)
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C ) =01 A1 yiexpxy), A = (2 +sin(mx), ¥ (xy) € 1 1,17
10 : : : :

Errorin H""=norm

10 i i i i
10’ 10° 10° 10 10
Number of degrees of freedom (sparse grid)

Fig. 2. Convergence in the case of a non-constant coefficient 4 (solid) and the predicted rate (dashed)

Computational effort
10 T T

Number of floating point operations

10 i i i i
10' 10° 10° 10* 10°
Number of degrees of freedom (sparse grid)

Fig. 3. Comparison between the effort required by the standard CG method based on Algorithm 5.10
(solid) and its theoretical estimate (dashed)

We consider a second example on which we test our complexity estimate (54). Let
the coefficient 4 be given by A4(x) = 2 + sin(nx), x € (—1,1), and the solution to
the two-point correlation problem be
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M) (x,) = (1 =x*)(1 = y*)e” € C*(R?), (59)

A and .4 (u) being smooth, the assumptions of Theorem 5.13 are satisfied Vs > 0.
As a consequence, the expected convergence rate of the discrete solution (again
expressed in terms of number of dofs N) is 0((10gN)3/2N’1). The expected
asymptotic behaviour of the computational effort (flops) is O((log N)’Ny) for a
direct computation of the solution at each level. The observed rates confirm these
estimates in Figure 2 and Figure 3.
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