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Abstract

We define the higher order moments associated to the stochastic solution of an elliptic BVP in D � R
d

with stochastic input data. We prove that the k-th moment solves a deterministic problem in Dk � R
dk ,

for which we discuss well-posedness and regularity. We discretize the deterministic k-th moment
problem using sparse grids and, exploiting a spline wavelet basis, we propose an efficient algorithm, of
logarithmic-linear complexity, for solving the resulting system.

AMS Subject Classification: 65N30.

Keywords: Stochastic pde, sparse grids, finite elements, wavelets.

1 Introduction

We consider an elliptic boundary value problem with stochastic input data in a

domain D. Namely, let ðX;R; P Þ be a r-finite probability space and D � R
d a

bounded open set with Lipschitz boundary @D. Consider also a deterministic and

uniformly positive onD diffusion coefficient A 2 L1ðD;Rd�d
sym Þ. We define a random

field on a submanifoldM ofRd (it will always be D or some part of its boundary) as

a jointly measurable function from M � X to R. Suppose @D ¼ C0 [ C1 (disjoint

union), where C0 has positive surface measure, and let f , g and h be random fields

on D;C0 and C1 respectively. We consider the following model problem

Lð@xÞu
c0ðuÞ
cnðuÞ

9

=

;

¼
�divðAðxÞruðx;xÞÞ

uðx;xÞ jC0

n>AðxÞruðx;xÞ jC1

8

<

:

9

=

;

¼
f ðx;xÞ in D

gðx;xÞ on C0

hðx;xÞ on C1

8

<

:

; ð1Þ

where the operators involved in the boundary conditions should be thought of as

stochastic counterparts of the classical trace on C0, C1 and distributional

conormal derivative operators, c0, c1 and cn respectively. Note that if X reduces to
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only one point of mass one, the dependence of (1) on x can be dropped, the

stochastic character dissapears, and we are left with a classical mixed BVP, which

will be refered to in the following as ‘deterministic case’. Since for a stochastic

problem the data is uncertain and, moreover, knowing all joint probability den-

sities is in practice hardly the case, reasonable assumptions can be made only on

some ‘statistics’ associated to the data. Here we assume that the k-th order

moment, sometimes called k-point correlation of the random data f ðx;xÞ in (1)

and given by

M
kðf Þðx1; . . . ; xkÞ :¼

Z

X

f ðx1;xÞ � f ðx2;xÞ � . . . � f ðxk;xÞdP ðxÞ;

xj 2 D; j ¼ 1; 2; . . . ; k, whenever such an integral exists, is available. Corre-

spondingly one is often interested in the higher moments of the stochastic solu-

tion. We devoted [9] to the theoretical and numerical study of the expectation

(that is, the mean field or first order moment) and two-point correlation of the

solution. Both these ‘statistics’ have been shown to satisfy deterministic elliptic

problems which are numerically solvable at essentially the same cost (number of

operations, memory requirements for a prescribed relative accuracy) as the

deterministic mean field problem,

Lð@xÞEu

c0ðEuÞ

cnðEuÞ

9

>

=

>

;

¼

�divðAðxÞrEuðxÞÞ

EuðxÞ jC0

n>AðxÞrEuðxÞ jC1

8

>

<

>

:

9

>

=

>

;

¼

Ef ðxÞ in D

EgðxÞ on C0

EhðxÞ on C1

8

>

<

>

:

: ð2Þ

Here the mean field, or expectation, Eu associated to u, solution of (1), is given by

EuðxÞ :¼ M
1ðuÞðxÞ ¼

Z

X

uðx;xÞdPðxÞ; x 2 D:

We shall study in the present paper existence, regularity, discretization and

complexity issues for the k-point correlation of u, the stochastic solution to (1).

Our main goal will be to derive and analyze an algorithm that makes these high

order statistics available at a computational cost which exhibits only a mild

dependence on k.

2 Problem Formulation

Let k � 1 be an integer, ðX;R; P Þ a r-finite probability space and H a separable

Hilbert space. We define the Banach space of Lk, H -valued functions on X (see

[11]) by

LkðX;HÞ :¼ f : X ! H j fmeasurable,

Z

X

kf ðxÞkkHdPðxÞ < 1

� �

= �

kf kkLkðX;HÞ :¼

Z

X

kf ðxÞkkHdPðxÞ;
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where we use the same notation for a P -a.e. equivalence (denoted by �) class and

one of its members. Bochner’s Theorem (see [11]) asserts that f 2 LkðX;HÞ if and
only if there exists a sequence of H -valued step functions ðfjÞj2N such that

fj ! f P -a.e. on X and

Z

X

kfj � f kkH ! 0; as j ! 1: ð3Þ

For each f 2 L1ðX;HÞ one can then define the vector-valued integral

Z

X

f ðxÞdPðxÞ 2 H ð4Þ

by means of a sequence of H -valued step functions ðfjÞj2N satisfying (3) for k ¼ 1.

Namely,

Z

X

f ðxÞdPðxÞ :¼ lim
j!1

Z

X

fjðxÞdP ðxÞ; in H : ð5Þ

We shall consider data for (1) satisfying the regularity assumption with k � 2,

f 2 LkðX;H�1ðDÞÞ � L2ðX;H�1ðDÞÞ ’ H�1ðDÞ � L2ðXÞ;

g 2 LkðX;H1=2ðC0ÞÞ � L2ðX;H1=2ðC0ÞÞ ’ H1=2ðC0Þ � L2ðXÞ; ð6Þ

h 2 LkðX;H�1=2ðC1ÞÞ � L2ðX;H�1=2ðC1ÞÞ ’ H�1=2ðC1Þ � L2ðXÞ:

For any Sobolev space H we denote by H its stochastic counterpart, that is, the

Hilbert space H � L2ðXÞ (we refer the reader again to [11] for tensor products of

Hilbert spaces). We shall use for instance L
2ðDÞ :¼ L2ðDÞ � L2ðXÞ; H1

ð0ÞðDÞ :¼
H 1

ð0ÞðDÞ � L2ðXÞ H
1=2ðC1Þ :¼ H 1=2ðC1Þ � L2ðXÞ, etc. We consider also a deter-

ministic diffusion coefficient A 2 L1ðD;Rd�d
sym Þ, uniformly positive on D, i.e.

9a; b > 0 s.t. aknk2 � n>AðxÞn � bknk2 8n 2 R
d and a.e. x 2 D: ð7Þ

With this setup one can prove (see [9]) that (1) has a rigorous variational for-

mulation and a unique random solution, as follows. Note that Id stands for the

identity operator in L2ðXÞ.

Theorem 2.1. Assume that f ; g; h satisfy (6). Then there exists a unique random

solution u 2 H
1ðDÞ such that ðc0 � IdÞu ¼ g and

hðA� IdÞðr � IdÞu; ðr � IdÞvi
L

2ðDÞd ¼ hf ; vi
H

�1ðDÞ;H1
ð0ÞðDÞ

þ hh; ðc1 � IdÞvi
H

�1=2ðC1Þ;H
1=2ðC1Þ

ð8Þ

for all v 2 H
1
ð0ÞðDÞ.
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Proof. Since H1ðDÞ=H 1
ð0ÞðDÞ ’ H1=2ðC0Þ as topological spaces, there exists

u1 2 H
1ðDÞ such that ðc0 � IdÞðu1Þ ¼ g, so that the problem reduces to the

existence and uniqueness of u0 2 H
1
ð0ÞðDÞ satisfying

Aðu0; vÞ :¼ hðA� IdÞðr � IdÞu0; ðr � IdÞvi
L

2ðDÞd

¼ �hðA� IdÞðr � IdÞu1; ðr � IdÞvi
L

2ðDÞd þ hf ; vi
H

�1ðDÞ;H1
ð0Þ
ðDÞ

þ hh; ðc1 � IdÞvi
H

�1=2ðC1Þ;H
1=2ðC1Þ

ð9Þ

for all v 2 H
1
ð0ÞðDÞ. And this is a simple consequence of Lax-Milgram Lemma in

H
1
ð0ÞðDÞ, as soon as we note that, on account of (7), the bilinear form A defined

by the l.h.s. of (9) is bounded and coercive on H
1
ð0ÞðDÞ (kðr � IdÞ � k

L
2ðDÞd defines

a norm on H
1
ð0ÞðDÞ, equivalent to the usual one), while the r.h.s. is a continuous

linear functional on the same space. (

Remark 2.2. Let ðeÞi�1 be an ONB in L2ðXÞ and expand f ¼
P

i fi � ei with
P

i kfik
2
L2ðDÞ � 1, (similarly for g and h). Then the solution (in the sense given by

Theorem 2.1) u to (8) is given by u ¼
P

i ui � ei where the series converges abso-

lutely in H
1ðDÞ and the coefficient function ui solves the deterministic mixed BVP

Lð@xÞui

c0ðuiÞ

cnðuiÞ

9

>

=

>

;

¼

fi in D

gi on C0

hi on C1

8

>

<

>

:

:

This can be seen by choosing the test function in (8) of the form v ¼ w� ei, with

w 2 H 1
ð0ÞðDÞ. Note that the deterministic character of A is essential for this

decomposition of (1).

Well-posedness of (1) (in the sense given by (8)) being established, we now

investigate the existence and the deterministic computation of the k-th order

moment of u solution to (1), for k � 2.

3 Existence and Regularity of Higher Order Moments M k(u)

We use here the setup and notations of the previous section and assume for

simplicity g ¼ 0. We deduce next the existence of the higher order moments

associated to the pair ðf ; hÞ. For a ¼ ðajÞ1�j�k 2 f0; 1gk and s > 0, we define first

the deterministic Hilbert spaces X
s;a
	 :¼ �k

j¼1X
s;aj
	 , where X

s;1
	 :¼ H s	1ðDÞ;X s;0

	 :¼
H s	1=2ðC1Þ. Consider also the mapping

FH : X ! X 0;a
� ; FHðxÞ :¼b

k

j¼1

ðajf þ ð1� ajÞhÞðxÞ: ð10Þ

The strong measurability of FH can be deduced by tensorizing sequences of step

functions approximating f and h, while the norm integrability is a consequence of
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(6) and the Hölder inequality for the pair of functions kf ð�Þk
jaj
H�1ðDÞ

2 Lk=jajðXÞ,
khð�Þk

k�jaj

H�1=2ðC1Þ
2 Lk=ðk�jajÞðXÞ. This means, in view of (3), FH 2 L1ðX;X 0;a

� Þ.
Consequently, Maðf ; hÞ, the a-moment of the pair ðf ; hÞ can be defined according

to (4), by

M
aðf ; hÞ :¼

Z

X

FHdP ðxÞ 2 X 0;a
� : ð11Þ

Note that if a ¼ ð1; 1; . . . ; 1Þ, the moment defined by (11) is actually associated to

f and not to the pair ðf ; hÞ, so that from now on it will be denoted by M
kðf Þ.

Similarly, a ¼ ð0; 0; . . . ; 0Þ leads to M
kðhÞ.

The problem we address next is the existence of the k-th order moment of u. To

state the result we use the notations H vðDkÞ :¼ �k
j¼1H

vjðDÞ, H v
ð0ÞðD

kÞ :¼
�k

j¼1H
vj
ð0ÞðDÞ for a multi-index v 2 ðRþÞ

k
and s :¼ ðs; s; . . . ; sÞ 2 ðRþÞ

k
for s 2 Rþ.

Theorem 3.1. Under the regularity assumption (6), the k-th order moment of u,

solution to (1) exists and is an element of H 1ðDkÞ.

Proof. (1) means that, P -a.e. on X, uðxÞ solves a deterministic mixed boundary

value problem in D, if we view u 2 H 1
ð0ÞðDÞ � L2ðXÞ as a measurable, H 1

ð0ÞðDÞ-
valued, square norm integrable function on X. More precisely, from (8) in

Theorem 2.1 we deduce

hAruðxÞ;rwiL2ðDÞ ¼ hf ðxÞ;wiH�1ðDÞ;H 1
ð0Þ
ðDÞ þ hhðxÞ;Tr1wiH�1=2ðC1Þ;H1=2ðC1Þ

;

P -a.e. x 2 X and for all w 2 H1
ð0ÞðDÞ. From the well-posedness of the deterministic

problem in D it follows that

kuðxÞkH1ðDÞ � C � kf ðxÞkH�1ðDÞ þ khðxÞkH�1=2ðC1Þ

� �

P -a.e.x 2 X; ð12Þ

where the constant C depends only on the coefficient A.

Taking into account the measurability of u : X ! H 1
ð0ÞðDÞ, which follows from

u 2 H
1
ð0ÞðDÞ, (12) implies, in view of (6) and the definition of Lk spaces, the

assertion. (

To derive a deterministic equation for M
kðuÞ, we introduce the following oper-

ators:

A�;k :¼ �
k

j¼1
A 2 Bð�k

j¼1L
2ðDÞdÞ

r�;k :¼ �
k

j¼1
r 2 BðH1ðDkÞ;�k

j¼1L
2ðDÞdÞ

c
�;a
1 :¼ �

k

j¼1
ðajIdH1ðDÞ þ ð1� ajÞc1Þ 2 BðH1ðDkÞ;X 0;a

þ Þ;

where we denote by BðX ; Y Þ the space of bounded linear operators between the

Hilbert spaces X and Y , with BðX Þ :¼ BðX ;X Þ.
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Theorem 3.2. M
kðuÞ is the unique solution in H 1

ð0ÞðD
kÞ of the variational problem

hA�;kr�;k
M

kðuÞ;r�;k
Mi

L2ðDÞdk ¼
X

a2f0;1gk

hMaðf ; hÞ; c�;a
1 Mi

X 0;a
� ;X 0;a

þ
;

8M 2 H1
ð0ÞðD

kÞ:

ð13Þ

Proof. The existence and uniqueness of a solution to (13) are easily proved using

the Lax-Milgram Lemma in appropriate spaces, as soon as we note that tensor

products of bounded positive homeomorphisms between Hilbert spaces induce

corresponding homeomorphisms between tensor products of these spaces.

Now, since f 2 LkðX;H�1ðDÞÞ; h 2 LkðX;H�1=2ðC1ÞÞ, there exist sequences

ðfnÞn2N; ðhnÞn2N of H -valued step functions on X satisfying (3) with H :¼ H�1ðDÞ
and H :¼ H�1=2ðC1Þ, respectively. Let us write fn ¼

P

q2Jn
f q
n 1Xq;n

and

hn ¼
P

q2Jn
hqn1Xq;n

, where 1Xq;n
stands for the indicator function of the measurable

set Xq;n, f
q
n 2 H�1ðDÞ, hqn 2 H�1=2ðC1Þ; 8q; n, and for each n, the family ðXq;nÞq2Jn is

a partition of X. The above mentioned properties of ðfnÞn2N; ðhnÞn2N are also

sufficient to ensure, via the Hölder inequality, dominated convergence and (5),

lim
n!1

M
aðfn; hnÞ ¼ M

aðf ; hÞ in X 0;a
� : ð14Þ

To the deterministic data ðf q
n ; h

q
nÞ we associate the solution uqn 2 H1

ð0ÞðDÞ of the

corresponding mixed BVP,

hAruqn;rvi
L2ðDÞd ¼ hf q

n ; viH�1ðDÞ;H 1
ð0Þ
ðDÞ þ hhqn; c1viH�1=2ðC1Þ;H1=2ðC1Þ

ð15Þ

8v 2 H 1
ð0ÞðDÞ, and set un :¼

P

q2Jn
uqn1Xq;n

. The continuous dependence (12) of the

solution of a mixed BVP on the data and (3) for f and h imply

lim
n!1

un ! u P -a.e. on X; lim
n!1

Z

X

kuðxÞ � unðxÞk
k
H 1

ð0Þ
ðDÞdPðxÞ ¼ 0: ð16Þ

Recalling definition (11) of the k-th order moment, we deduce from (16) and (5) that

lim
n!1

M
kðunÞ ¼ M

kðuÞ in H 1ðDkÞ: ð17Þ

Choosing in (15) k different deterministic test functions v1; v2; . . . ; vk, taking the

product of the resulting k equalities and summing over q with weights P ðXq;nÞ, we
obtain that MkðunÞ solves the deterministic problem

hA�;kr�;k
M

kðunÞ;r
�;k

Mi
L2ðDÞdk ¼

X

a2f0;1gk

hMaðfn; hnÞ; c
�;a
1 Mi

X 0;a
� ;X 0;a

þ

8M 2 H 1
ð0ÞðD

kÞ ð18Þ
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(use here that tensor products of total sets in Hilbert spaces are total in product

spaces).

The desired equation forMkðuÞ follows then from (14) and (17) if we let n ! 1 in

(18). (

The regularity of M
kðuÞ follows naturally from that of the data M

aðf ; hÞ,
8a 2 f0; 1gk and the result, as well as its proof, is analogous to the one in [9] for

k ¼ 2. We only state it, as follows. Recall first that the mean field problem (2) is

said to satisfy the shift theorem at order s > 0 if Ef 2 H�1þsðDÞ implies

Eu 2 H1þsðDÞ.

Theorem 3.3. Suppose that the deterministic boundary value problem on D with the

diffusion coefficient A satisfies the shift theorem at order s. Then also for (13) holds a

shift theorem at order s, in the sense that if M
aðf ; hÞ 2 X s;a

� ; 8a 2 f0; 1gk, then
M

kðuÞ 2 X
s;1
þ ¼ �k

j¼1H
sþ1ðDÞ.

Remark 3.4. In the case of a polygon or polyhedron D, a shift theorem at order

s � 0 holds in weighted spaces H
1þs;2
b ðDÞ (see [1]). The proof of Theorem 3.3 can be

correspondingly adapted to deduce then a shift theorem for the correlation equation

(13) in an anisotropic weighted Sobolev scale in Dk.

4 FE Discretization

We shall now investigate the numerical approximation of MkðuÞ, using the Finite

Element Method for the deterministic elliptic equation (13). We assume, for

simplicity, C1 ¼ ; and we start by defining hierarchical FE spaces in D. Let

V 0 � V 1 � . . . � V L � . . . � H1
0 ðDÞ be a dense hierarchical sequence of finite

dimensional subspaces of H 1
ð0ÞðDÞ, with NL :¼ dimðVLÞ < 1 for all L. Suppose that

the following approximation property holds:

min
v2VL

ku� vkH1
0
ðDÞ � UðNL; sÞkukH sþ1ðDÞ; 8u 2 H sþ1ðDÞ \ H1

ð0ÞðDÞ; ð19Þ

where UðN ; sÞ ! 0 for s > 0 as N ! 1 is the convergence rate. For regular

solutions the usual FE spaces based on quasiuniform, shape regular meshes are

suitable.

Example 4.1. If fTLgL2N is a nested sequence of regular triangulations of D

of meshwidth hL ¼ hL�1=2, we choose VL to be the space of all continuous

piecewise polynomials of degree p on T
L vanishing on @D. Then NL ¼ Oð2d�LÞ

and the functional U on the r.h.s. of (19) reads UðN ; sÞ ¼ OðN�dÞ, with

d :¼ minfp; sg=d.

Since the k-th order moment MkðuÞ of u solves the elliptic problem (13) on Dk, we

shall construct FE spaces in Dk, starting from the hierarchical FE spaces fVLgL�0

in D. Full tensor product spaces present themselves as natural candidates.
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However, due to efficiency reasons, we shall use the sparse tensor product spaces

that are defined by (see [12], [2])

V̂VL :¼ Span b
k

j¼1

V ij j 0 � i1 þ i2 þ � � � þ ik � L

( )

:

Since this description of the sparse tensor space does not help identifying bases,

we introduce next at each level L � 0 a hierarchic excess W L of the scale fVLgL�0 to

be an arbitrary algebraic summand of V L�1 in V L (here we set V �1 :¼ f0g). As V L

can be obviously decomposed as a direct sum V L ¼a0�i�L
W i, one can easily

check that V̂VL admits the direct (not necessarily orthogonal!) decomposition

V̂VL :¼ a
0�i1þi2þ...þik�L

b
k

j¼1

W ij � a
0�i1;i2;...;ik�L

b
k

j¼1

W ij ¼b
k

j¼1

V L: ð20Þ

The discretized version of (13) using the FE space V̂VL then reads

hA�;kr�;k
M

k
LðuÞ;r

�;k
MLiL2ðDÞdk ¼ hMkðf Þ;MLiX 0;1

� ;X 0;1
þ
; ð21Þ

8ML 2 V̂VL, where we denoted by M
k
LðuÞ 2 V̂VL the discrete solution of (13). The

approximation property (19) allows us to estimate the discretization error in terms

of the functional U, as follows.

Proposition 4.2. If Mk
LðuÞ is the solution to (21), L � k � 1, and the approximation

property (19) holds, then

kMkðuÞ �M
k
LðuÞk

2
H1ðDkÞ � C �

X

k

j¼1

cðj;UÞ �
X

J�f1;...;kg
CardðJÞ¼j

kMkðuÞk2H s�eJþ1ðDkÞ ð22Þ

where eJ 2 f0; 1gk; eJ ðjÞ ¼ 1 iff j 2 J and

cðj;UÞ ¼
X

j�1

m¼1

X

l1þ���þlm¼L�mþ1

ðUðNl1 ; sÞ � UðNl2 ; sÞ � � �UðNlm ; sÞ � UðN0; sÞÞ
2

þ
X

l1þ���þlj¼L�jþ1

UðNl1 ; sÞ
2 � UðNl2 ; sÞ

2 � � �UðNlj ; sÞ
2 ð23Þ

Note that the constant C depends only on the coefficient A.

Proof. As in [9], the result follows using the quasioptimality of the FE solution,

the approximation property (19) and the description (20) of the sparse tensor

space with W L defined as the orthogonal complement of V L�1 in V L w.r.t the usual

scalar product h�; �i in H 1
0 ðDÞ. Namely, we employ the following orthogonal

decomposition in H1
0 ðD

kÞ equipped with the Hilbert structure induced by the

tensor productbk

i¼1
h�; �i. For the rest of the proof, orthogonality in H 1

0 ðD
kÞ is to

be understood w.r.t. this natural Hilbert structure.
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M
kðuÞ � P

ŜSL
ðMkðuÞÞ ¼

X

a1þa2þ���þak�Lþ1

ai�0;1�i�k

b
k

i¼1

P i
ai
M

kðuÞ ð24Þ

where P i
a denotes the orthogonal projection on Wa w.r.t. h�; �i, acting in the i-th

dimension of Dk. As the notation suggests, PV̂VL denotes the H 1
0 ðD

kÞ-orthogonal
projection on V̂VL, while in the following we shall use also Qi

a, the projection

on V a acting in the i-th direction of Dk. We note that the sum in the r.h.s.

of (24) is H 1
0 ðD

kÞ-orthogonal, since the excesses W a; a 2 N are pairwise

H 1
0 ðDÞ-orthogonal. We rewrite the r.h.s. of (24), pointing out those directions

j 2 f1; 2; . . . ; kg for which aj ¼ 0 (coarsest approximation). This decomposition

does not coincide with the one in [2], but leads to the same qualitative result.

X

Pk

i¼1
ai�Lþ1

ai�0

bk

i¼1
P i
ai

� �

M
kðuÞ ¼

X

k

p¼1

X

J�f1;2;...;kg
CardJ¼p

X

P

j2J
aj�Lþ1

aj�1

b
j2JP

j
aj
b

j=2JP
j
0

� �

M
kðuÞ ð25Þ

and we cast the first inner sum of projections above for J ¼ fj1; j2; . . . ; jpg in the

form

X

Pp

n¼1
an�Lþ1

an�1

b
p

n¼1

P jn
an
b
j=2J

P
j
0

 !

¼ ðId� Q
j1
L Þb

n�2

Id� P
jn
0

� �

b
j=2J

P
j
0

þ
X

a1�L

a1�1

P j1
a1
bðId� Q

j2
L�a1

Þb
n�3

Id� P
jn
0

� �

b
j=2J

P
j
0

þ
X

a1þa2�L

a1 ;a2�1

b
2

n¼1

P jn
an
bðId� Q

j3
L�a1�a2

Þb
n�4

Id� P
jn
0

� �

b
j=2J

P
j
0

þ � � � þ
X

Pp�1

n¼1
an�L

an�1

b
p�1

n¼1

P jn
an
b Id� Q

jp

L�
Pp�1

n¼1
an

� �

b
j=2J

P
j
0: ð26Þ

We note that the l-th sum in the r.h.s of (26) consists of those terms in the l.h.s.

corresponding to indices a1; a2; . . . ap � 1 with
Pp

n¼1 an � Lþ 1 for which l � p is

the smallest integer with the property
Pl

n¼1 an � Lþ 1. Using (26) in (25) and the

trivial estimate kP i
ak � kId� Qi

a�1k (operator norm in H 1
0 ðD

kÞ) we easily get, via

(19), the desired inequality (22). (

We specialize Proposition (4.2) by choosing the FE spaces as in Example (4.1), to

obtain

Corollary 4.3. For the sparse tensor product based on the FE spaces in Example 4.1

the following asymptotic estimates hold as L ! 1,
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kMkðuÞ �M
k
LðuÞkH 1ðDkÞ � C � ðlogNLÞ

ðk�1Þ=2
N�d
L � kMkðuÞkH sþ1ðDkÞ

¼ OððlogNLÞ
ðk�1Þ=2

N�d
L Þ; ð27Þ

and

dim V̂VL ¼ OððlogNLÞ
k�1

NLÞ; ð28Þ

where s ¼ ðs; s; . . . ; sÞ and d ¼ minfp; sg=d.

The full tensor space would require OðN k
LÞ degrees of freedom for a relative

tolerance OðN�d
L Þ.

Remark 4.4. The factor ðlogNLÞ
ðk�1Þ=2

in (27) can not be removed. This would

be possible, as shown in [2], if we were interested in a H1ðDkÞ (instead of

H1ðDkÞ) approximation of the solution. However, since H 1ðDkÞ is the energy

space for the k-point correlation problem, an H1ðDkÞ-approximation is in this

case irrelevant.

Remark 4.5. The proof of the approximation property of the sparse tensor space, on

which Proposition 4.2 is based, carries over to a heterogeneous sparse tensor

product, in which the factor spaces are possibly different and satisfy each an

approximation property of type (19) (see [10]).

5 Iterative Solution and Complexity

We have seen that sparse FE spaces allow to reduce the number of degrees of

freedom needed to compute a discrete solution approximating the exact solution

up to a prescribed accuracy. To study the complexity of the discrete problem, we

recall that (21) amounts to solving a linear system

ŜSLMkðuÞ ¼ M
kðf Þ; ð29Þ

where ŜSL denotes the stiffness matrix of (13) with respect to some basis of

the sparse tensor product space V̂VL � H 1
ð0ÞðD

kÞ. To solve (29) efficiently, we use

the conjugate gradient (CG) method, which is suitable once the matrix ŜSL is

well-conditioned and sparse. The first property will be ensured by a wavelet

preconditioning procedure, while the second, (which does not hold, actually!)

can be replaced by a proper use of the anistropic structure of the problem.

Here and in what follows, F denotes a family of double indices running in

N
d �N

d .

Assumption 5.1. There exist a family ðwj;iÞðj;iÞ2F � H1
0 ðDÞ and constants C1;C2 > 0

such that each u 2 H1
0 ðDÞ can be expanded as a convergent series in H 1

0 ðDÞ,
u ¼

P

ðj;iÞ2F cj;iwj;i and the following ‘stability condition’ is fulfilled
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C1

X

ðj;iÞ2F

jcj;ij
2 � k

X

ðj;iÞ2F

cj;iwj;ik
2
H1

0
ðDÞ � C2

X

ðj;iÞ2F

jcj;ij
2: ð30Þ

We present some examples of families satisfying Assumption 5.1 for D ¼ ð0; 1Þ or
D ¼ ð0; 1Þd , but mention that such constructions are available also for polygonal

domains (see [6]).

Example 5.2. For D ¼ ð0; 1Þ, let us consider / the hat function on R, piecewise

linear, taking values 0; 1; 0 at 0; 1=2; 0 and vanishing outside ð0; 1Þ. We set

F :¼ fðj; iÞj0 � j; 1 � i � 2jg and wj;iðxÞ :¼ 2�j=2/ð2jx� iþ 1Þ; x 2 ð0; 1Þ. The

family ðwj;iÞðj;iÞ2F satisfies then Assumption 5.1.

Example 5.3. With D, F and / as above, we define on R the function w, piecewise

linear, taking values ð1;�6; 10;�6; 1Þ at ð1=2; 1; 3=2; 2; 5=2Þ and vanishing outside

ð0; 3Þ. Similarly, wl take ð9;�6; 1Þ at ð1=2; 1; 3=2Þ and wr assumes values ð1;�6; 9Þ
at ð1=2; 1; 3=2Þ. Further, we define w0;1 :¼ / (scaling function) and wj;1ðxÞ :¼
2�j=2wlð2jxÞ, wj;2j :¼ 2�j=2wrð2jx� 2j þ 1Þ, x 2 ð0; 1Þ, for j � 1 (boundary wave-

lets). Analogously, wj;iðxÞ :¼ 2�j=2wð2jx� iþ 2Þ; x 2 ð0; 1Þ for 2 � i � 2j � 1 and

j � 2 (interior wavelets). The family ðwj;iÞðj;iÞ2F constructed in this way satisfies

Assumption 5.1.

For further examples see [4] and references therein.

Example 5.4. If D ¼ ð0; 1Þd , we choose F :¼ fðj; iÞ 2 N
d �N

d j0 � j; 1 � i � 2jg
(inequalities involving multi-indices should be understood componentwise). Then,

starting from the family in Example 5.3, we put wj;iðxÞ ¼
Qd

q¼1 wðjðqÞ;iðqÞÞðxqÞ
8x ¼ ðxqÞ1�q�d 2 D to obtain (after rescaling) a family ðwj;iÞðj;iÞ2F which still sat-

isfies Assumption 5.1 (see [8]).

Formally, an increasing FE space sequence in D � R
d can be defined in terms of

the family ðwj;iÞðj;iÞ2F in Assumption 5.1 by

V L :¼ Spanfwj;ij0 � jjj1 � Lg ð31Þ

(j may be a vector, as in the example above, and jjj1 :¼ max1�q�d jq). We define

further an algebraic complement W L of V L�1 in V L by

WL :¼ Spanfwj;ijjjj1 ¼ Lg: ð32Þ

We then obtain, via (20), the following explicit description of the sparse tensor

space V̂VL through a basis,

V̂VL ¼ Span wj;i :¼b
k

m¼1
wjðmÞ;iðmÞ

	

	

	

	

X

k

m¼1

jjðmÞj1 � L

( )

; ð33Þ

where jðmÞ is the m-th line of the k � d matrix j and similarly for i.
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The algebraic excess ŴWL of the sparse tensor scale ðV̂VLÞL�0 is then given by

ŴWL ¼ Span wj;i :¼b
k

m¼1

wjðmÞ;iðmÞ

	

	

	

	

X

k

m¼1

jjðmÞj1 ¼ L

( )

; ð34Þ

and can be further decomposed as

ŴWL ¼a
l2Nk

jlj¼L

W l with Wl ¼ Spanfwj;ijjjðmÞj1 ¼ lmg; ð35Þ

where

jlj :¼ l1 þ l2 þ � � � þ lk; 8l 2 N
k:

For further reference, let us collect, for L � 0, in a vector denoted WL, the basis

functions in the definition (32) of W L. Similarly, for l 2 N
k let Wl be the vector

containing the basis functions of W l, as defined in (35).

Concerning the properties of the stiffness matrix ŜSL that are of interest for solving

(29), namely well-conditioning and sparsity, it holds

Proposition 5.5. i) The matrix ŜSL has uniformly bounded condition number, as

L ! 1.

ii) For examples above as well as for similar wavelet constructions, the matrix ŜSL is

not sparse, in the sense that nnzðŜSLÞ � OðN2
LÞ (compare (28)).

Proof. i) (30) can be rephrased by saying that the basis ðwj;iÞðj;iÞ2F gives a

homeomorphism of Hilbert spaces between ‘2 and H 1
0 ðDÞ, or that

u ¼
X

ðj;iÞ2F

cj;iwj;i�!juj2w :¼
X

ðj;iÞ2F

jcj;ij
2 ð36Þ

defines an equivalent norm on H1
0 ðDÞ. The same holds then for the basis wj;i

introduced in (33). It follows that for M :¼ ðMj;iÞj;i 2 R
N̂NL with N̂NL :¼ dimV̂VL,

M :¼
P

j;i Mj;iwj;i is an element of V̂VL and

hŜSLM;Mi
R

N̂NL
¼ hA�;kr�;k

M;r�;k
Mi

L2ðDÞdk

� kMk2H1
0
ðDkÞ �

X

j;i

jMj;ij
2 ¼ kMk2

R
N̂NL
:

As for ii), one can easily see that the entries of ŜSL corresponding to the indices i, j,

i0, j0 with jð1Þ ¼ j0ð2Þ ¼ ðL; L; . . . ; LÞ are in general nonzero, implying the desired

lower bound. (
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The nonsparsity makes the storage and use of ŜSL rather costly. However, the

alternative, that is a full tensor product FE space in Dk, proves already

inefficient, for k � 3, due to its huge dimension N k
L . A further improvement in

the efficiency of solving (29) on a sparse tensor FE space can be achieved

(see [9] for the case k ¼ 2) by taking into account the special structure of the

discrete operator (or, equivalently, of ŜSL), which inherits the tensor product

structure of the continuous operator (see (13)). More precisely, we shall see

that one should store only the matrix SL corresponding to the case k ¼ 1 and

relate ŜSL to SL to perform one step of the CG-algorithm. Of course, storage of

the load vector is necessary too, but, due to (28), this requires only a log-linear

(in NL) amount of memory. The Algorithm 6.13 in [9] will be then shown

to be applicable to this higher order case to achieve the log-linear complex-

ity of the matrix-vector multiplication needed to perform one step of the

CG-algorithm.

We shall derive next the relation between ŜSL and SL that will help us formulate

the matrix-vector multiplication algorithm. To this end, let us denote by h�; �iw the

scalar product associated with the norm (36). h�; �iw is obviously equivalent to the

usual scalar product in H1
0 ðDÞ and ðwj;iÞðj;iÞ2F becomes an orthonormal basis of

H 1
0 ðDÞ equipped with h�; �iw. Let us denote by PL and QL the orthogonal projec-

tions in H1
0 ðDÞ w.r.t. h�; �iw, on V L and W L respectively, as they were defined in

(31), (32), so that

P L ¼
X

L

l¼0

Ql:

Correspondingly, we denote by P̂PL and Q̂QL the orthogonal projections on V̂VL and

ŴWL (see (33), (34)) w.r.t. the scalar product on H 1
0 ðD

kÞ obtained by tensorizing

h�; �iw by itself.

On account of (33), (34), we have the multilevel decomposition

P̂PL ¼
X

L

l¼0

Q̂Ql; ð37Þ

as well as

Q̂QL ¼
X

l2Nk

jlj¼L

Ql with Ql :¼b
k

m¼1
Qlm ð38Þ

the projection on the space W l introduced in (35).

Let us further denote by Q
k the k-fold tensor product bilinear form of the moment

problem (13),

Q
k :¼ Q� Q� � � � � Q; with Qðu; vÞ :¼ hAru;rviL2ðDÞ; ð39Þ
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8u; v 2 H 1
0 ðDÞ. Then the discrete problem in V̂VL is given by the bilinear form

Q
k
Lðu; vÞ :¼ Q

kðP̂PLu; P̂PLvÞ 8u; v 2 V̂VL � H1
0 ðD

kÞ ð40Þ

or, inserting (37) and (38) in (40), by

Q
k
Lðu; vÞ ¼

X

L

l;l0¼0

X

l;l02Nk

jlj¼l;jl0 j¼l0

Q
k Qlu;Ql0v
� �

8u; v 2 V̂VL: ð41Þ

Recalling that Wl is the vector containing the basis functions of W l given in (35),

we can write

Qlu ¼ u>l �Wl; ð42Þ

with real vector coefficients ul and similarly for v.

Using (42) in (41), we obtain

Q
k
Lðu; vÞ ¼

X

L

l;l0¼0

X

l;l02Nk

jlj¼l;jl0 j¼l0

u>l � ŜSLl;l0 � vl0 ; ð43Þ

where the matrix ŜSLl;l0 is given by evaluating the bilinear form on the basis func-

tions,

ŜSLl;l0 :¼ Q
kðWl;Wl0Þ:

But, in view of (39) and (34), we have

ŜSLl;l0 ¼ Q
kðWl;Wl0Þ ¼b

k

m¼1

QðWlm ;Wl0m
Þ ¼b

k

m¼1

SLlm;l0m
; ð44Þ

where SLl;l0 :¼ QðWl;Wl0Þ; 80 � l; l0 � L are the blocks of the stiffness matrix SL

corresponding to the mean field problem (2) in D (or, equivalently, to the simple

case k ¼ 1).

The representation formulas (43) and (44) show that

Q
k
Lðu; vÞ ¼

X

L

l;l0¼0

X

l;l02Nk

jlj¼l;jl0 j¼l0

u>l � b
k

m¼1

SLlm;l0m

 !

� vl0 ; ð45Þ

that is the stiffness matrix ŜSL of the k-th moment problem computed w.r.t. the

basis (33) of the FE space V̂VL has a block structure
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ŜSL ¼ ðŜSLl;l0Þ l;l02Nk

jlj¼l�L

jl0 j¼l0�L

;

and each block is a tensor product of certain blocks of the stiffness matrix of the

mean field problem, that is, k ¼ 1.

Moreover, SL is almost sparse, once for the basis ðwj;iÞðj;iÞ2F the following ‘local

support’ assumption holds true. We remark that the above-mentioned examples

as well as similar wavelet-type constructions are in this category.

Assumption 5.6. There exists p 2 N

 such that for all 1 � i � 2j 2 N

d and j0 2 N
d ,

the set suppðwj;iÞ \ suppðwj0;i0Þ has nonempty interior for at most pd �
Qd

q¼1

maxð1; 2j
0
q�jqÞ values of i0.

Remark 5.7. From Assumption 5.6 it follows by a simple counting argument that

nnzðSLl;l0Þ � pd � ðminðl; l0Þ þ 1Þd�1 � 2d�maxfl;l0g 80 � l; l0 � L: ð46Þ

To formulate the matrix-vector multiplication algorithm, we shall also need, for

each pair l ¼ ðlmÞ
k
m¼1; l

0 ¼ ðl0mÞ
k
m¼1, a reordering rl;l0 of f1; 2; . . . ; kg such that

X

q

m¼1

lrðmÞ þ
X

k

m¼qþ1

l0rðmÞ � max
X

k

m¼1

lm;
X

k

m¼1

l0m

( )

81 � q � k: ð47Þ

The existence of such a permutation r is easy to prove, by choosing xm ¼ lm,

ym ¼ l0m, 81 � m � k in the following Lemma.

Lemma 5.8. If ðxmÞ1�m�k and ðymÞ1�m�k are two families of positive real numbers, then

there exists a permutation r of the set f1; 2; . . . ; kg such that

X

q

m¼1

xrðmÞ þ
X

k

m¼qþ1

yrðmÞ � max
X

k

m¼1

xm;
X

k

m¼1

ym

( )

81 � q � k: ð48Þ

Proof. We use induction on k. Since for k ¼ 1 the claim is trivial, assume that it

holds also for some k � 1. Consider ðxmÞ1�m�kþ1 and ðymÞ1�m�kþ1 two families of

positive real numbers and define zm :¼ xm for 1 � m � k � 1 and zk :¼ xk þ xkþ1, as

well as tm :¼ ym for 1 � m � k � 1 and tk :¼ yk þ ykþ1. The induction assumption

ensures the existence of a permutation s of f1; 2; . . . ; kg such that
Pq

m¼1 zsðmÞ þ
Pk

m¼qþ1 tsðmÞ � max
Pk

m¼1 xm;
Pk

m¼1 ym

n o

; 81 � q � k. We define then

rðmÞ :¼ sðmÞ for all m < s�1ðkÞ and rðmÞ :¼ sðm� 1Þ for all m > s�1ðkÞ þ 1. Now, if

yk þ xkþ1 � xk þ ykþ1 holds true, we set rðs�1ðkÞÞ :¼ k, rðs�1ðkÞ þ 1Þ :¼ k þ 1,

otherwise, that is if yk þ xkþ1 > xk þ ykþ1, we define rðs�1ðkÞÞ :¼ k þ 1

and rðs�1ðkÞ þ 1Þ :¼ k. With this choice for r one can easily check the inequalities

(48). (
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To simplify the exposition of the algorithm, let us introduce, for an arbitrary pair

ðl; l0Þ of indices, 1 � q � k, and a permutation r ¼ rl;l0 associated to it in the sense

explained above, the following tensor product matrices

T L
l;l0;q :¼b

k

m¼1

Um; ð49Þ

where

Um :¼

Idlm;lm ; m 2 frð1Þ; rð2Þ; . . . ; rðq� 1Þg

SLlrðqÞ;l0rðqÞ
; m ¼ rðqÞ;

Idl0m;l0m ; m 2 frðqþ 1Þ; rðqþ 2Þ; . . . ; rðkÞg

8

>

>

<

>

>

:

ð50Þ

and Idl;l denotes for l � 0 the identity matrix of size dimW l. With these notations,

each block in (45) can be expressed as a product of simpler matrices, of the type

introduced in (49),

b
k

m¼1

SLlm;l0m
¼ T L

l;l0;k � T
L
l;l0;k�1 � � � T

L
l;l0;1: ð51Þ

For later use, let us remark that (46) entails the following estimate concerning the

sparsity of the matrices T L
l;l0;q.

Remark 5.9.

nnzðT L
l;l0;qÞK

Y

q�1

m¼1

ðlrðmÞ þ 1Þd � ðminðlrðqÞ; l
0
rðqÞÞ þ 1Þd�1

�
Y

k

m¼qþ1

ðlrðmÞ þ 1Þd � 2
d�
Pq�1

m¼1
lrðmÞþmaxflrðqÞ;l

0
rðqÞ

gþ
Pk

m¼qþ1
l0
rðmÞ

� �

ð52Þ

Proof. This follows immediately from the obvious equality

nnzðT L
l;l0;lÞ ¼

Y

l�1

q¼1

dimW lrðqÞ � nnzðS
L
lrðlÞ;l

0
rðlÞ

Þ �
Y

k

q¼lþ1

dimW l0
rðqÞ

;

the asymptotic estimate dimWl ’ ðLþ 1Þd � 2dL and (46). (

Based on the factorization formula (51), we can develop now the multiplication

algorithm of the matrix ŜS
L
by a vector x.

Algorithm 5.10.

store ðSLl;l0Þ0�l;l0�L (sparse), ðxlÞl1þl2þ���lk�L
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for l satisfying
X

k

m¼1

lm � L

initialize ðŜSLxÞl :¼ 0

for l0 satisfying
X

k

m¼1

l0m � L

compute yl :¼ T L
l;l0;k � T

L
l;l0;k�1 � � � T

L
l;l0;1 � xl0

update ðŜSLxÞl :¼ ðŜSLxÞl þ yl

end % for

end % for

Remark 5.11. The order in the multiplication giving yl is essential for the efficiency

of the algorithm. To implement the multiplication of T L
l;l0;q by a vector, one should not

build T L
l;l0;q, but, due to (49), (50), split the vector into blocks and multiply each of

them by SLlrðqÞ;l0rðqÞ
.

The estimate of the complexity of Algorithm 5.10 can be carried out as in [9]. The

result reads:

Theorem 5.12. The algorithm (5.10) performs the matrix-vector multiplication

x ! ŜSLx using at most OððlogNLÞ
kdþ2k�2

NLÞ floating point operations. Besides, it

requires only storage of the stiffness matrix SL of the mean field problem and of x.

Proof. Due to (45), (51) we can write

ðŜSLxÞl ¼
X

l0

jl0 j�L

b
k

m¼1

SLlm;l0m
� xl0 ¼

X

l0

jl0 j�L

T L
l;l0;k � T

L
l;l0;k�1 � � � T

L
l;l0;1 � xl0 :

The multiplication under the summation above can be then performed using at

most

#l;l0 :¼
X

k

q¼1

nnzðT L
l;l0;qÞ ð53Þ

floating point operations. From (52) we obtain that

#l;l0K
X

k

q¼1

ðlrð1Þ þ 1Þd � � � ðlrðq�1Þ þ 1Þd � ðminðlrðqÞ; l
0
rðqÞÞ þ 1Þd�1

� ðl0rðqþ1Þ þ 1Þd � � � ðl0rðkÞ þ 1Þd � 2
d�ð
Pq�1

m¼1
lrðmÞþmaxflrðqÞ;l

0
rðqÞ

gþ
Pk

m¼qþ1
l0
rðmÞ

Þ
:
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From this estimate and the defining property (47) of r ¼ rl;l0 , we deduce that for

L � 1,

#l;l0K max jlj; jl0jf gð Þ
dk�1

�2d�max jlj;jl0jf g:

Then the computation of the block ðŜSLxÞl can be done using
P

l0 #l;l0 operations.

Finally, the number of operations needed to perform x ! ŜSLx (collect all blocks

ðŜSLxÞl for all l) admits the asymptotic upper bound, as L ! 1,

X

l

jlj�L

X

l0

jl0 j�L

max jlj; jl0jf gð Þ
dk�1

�2d�max jlj;jl0jf g:

Since for a given l � 0 the equation jlj ¼ l has exactly
lþ k � 1

k � 1

� �

¼ Oðlk�1Þ
(as l ! 1) solutions l 2 N

k, we conclude

#flopsðx ! ŜSLxÞK
X

L

l¼0

ldkþ2k�2 � 2dl ¼ OððlogNLÞ
kdþ2k�2

NLÞ: (

Due to Proposition 5.5, the number of steps required by the CG algorithm to

compute the discrete solution up to a prescribed accuracy is bounded once we use

the solution at level L� 1 as initial guess of the solution at level L. Thus it holds.

Theorem 5.13. The deterministic problem (13) for the k-point correlation function

M
kðuÞ 2 H sþ1ðDkÞ \ H1

0 ðD
kÞ of the random solution u to (1) is numerically solvable

at a cost of

OððlogNLÞ
kdþ2k�2

NLÞ ð54Þ

floating point operations, with a

OððlogNLÞ
k�1

NLÞ ð55Þ

needed amount of memory, for a relative accuracy of

OððlogNLÞ
ðk�1Þ=2

N�d
L Þ; ð56Þ

where d ¼ minfp; sg=d.

Up to the logarithmic terms, the estimates (54), (55), (56) are similar to the ones of

the mean field problem (2).

6 Numerical Examples

We present here some elementary one-dimensional examples concerning the

2-point correlation (D ¼ ð�1; 1Þ and k ¼ 2 throughout this section) and numerical

experiments we have performed in order to validate our main theoretical result,
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Theorem 5.13. We mention that for the following computations we have used the

Riesz basis in Example 5.2 (piecewise linear elements, p ¼ 1).

Let us consider first (1) with g ¼ 0, C1 ¼ ; and a random field f ðx;xÞ which is

completely uncorrelated, the so-called ‘white-noise’. This amounts formally to

M
2ðf Þ ¼ dðx� yÞ ð57Þ

where dðx� yÞ is the Dirac distribution supported on the diagonal in D� D,

hdðx� yÞ;/i ¼

Z

D

/ðx; xÞdx 8/ 2 C1
0 ðD� DÞ:

One can see that the functional dðx� yÞ admits a unique extension to H 1=4þeðD2Þ
8e > 0. It follows, via Theorem (3.3), that the 2-nd moment of u solution to (1)

has the following regularity on the anisotropic Sobolev scale:

M
2ðuÞ 2 H 7=4�eðD2Þ \ H 1

0 ðD
2Þ: ð58Þ

Taking the coefficient A constant, equal to 1, the assumption of Theorem 5.13

holds true with s ¼ 3=4. The expected convergence rate (expressed in terms of the

number of dofs N) of the discrete solution is therefore OððlogNÞ5=4N�3=4Þ
(compare (55), (56) and note that N ¼ ðlogNLÞNL). The observed rate matches the

predicted one in Figure 1.
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Fig. 1. Convergence in the 1D white-noise case with constant coefficient (solid) and the predicted rate
(dashed)

Sparse Finite Elements for Stochastic Elliptic Problems 61



We consider a second example on which we test our complexity estimate (54). Let

the coefficient A be given by AðxÞ ¼ 2þ sinðpxÞ; x 2 ð�1; 1Þ, and the solution to

the two-point correlation problem be
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Fig. 2. Convergence in the case of a non-constant coefficient A (solid) and the predicted rate (dashed)
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Fig. 3. Comparison between the effort required by the standard CG method based on Algorithm 5.10
(solid) and its theoretical estimate (dashed)
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M
2ðuÞðx; yÞ ¼ ð1� x2Þð1� y2Þexy 2 C1ðR2Þ: ð59Þ

A and M
2ðuÞ being smooth, the assumptions of Theorem 5.13 are satisfied 8s > 0.

As a consequence, the expected convergence rate of the discrete solution (again

expressed in terms of number of dofs N ) is OððlogNÞ3=2N�1Þ. The expected

asymptotic behaviour of the computational effort (flops) is OððlogNLÞ
5
NLÞ for a

direct computation of the solution at each level. The observed rates confirm these

estimates in Figure 2 and Figure 3.
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