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Abstract

Despite recent advances, the extraction of optical flow

with large displacements is still challenging for state-of-

the-art methods. The approaches that are the most suc-

cessful at handling large displacements blend sparse corre-

spondences from a matching algorithm with an optimization

that refines the optical flow. We follow the scheme of Deep-

Flow [33]. We first extract sparse pixel correspondences by

means of a matching procedure and then apply a variational

approach to obtain a refined optical flow. In our approach,

coined ‘SparseFlow’, the novelty lies in the matching. This

uses an efficient sparse decomposition of a pixel’s surround-

ing patch as a linear sum of those found around candidate

corresponding pixels. As matching pixel the one dominat-

ing the decomposition is chosen. The pixel pairs matching

in both directions, i.e. in a forward-backward fashion, are

used as guiding points in the variational approach. Sparse-

Flow is competitive on standard optical flow benchmarks

with large displacements, while showing excellent perfor-

mance for small and medium displacements. Moreover, it is

fast in comparison to methods with a similar performance.

1. Introduction

There is an ever-increasing amount of video content that

computer vision algorithms ought to analyze. Optical flow

often is an important component thereof. A robust op-

tical flow algorithm should cope with a wide variety of

conditions. These include: discontinuities (outliers, oc-

clusions, motion discontinuities), appearance changes (il-

lumination, chromacity, deformations), and large displace-

ments. While we have efficient approaches for the first two

issues [6, 24], how to handle large displacements to a large

extent still is an open problem, despite the recent endeav-

ors [35, 27, 9, 37, 33, 7, 18].

The seminal work of Brox and Malik [9] shows that a

variational approach can better handle large displacements

when a descriptor matching term is added. The idea is to

guide the variational optical flow estimation by providing

(sparse) correspondences from the descriptor matcher. The

advantage of descriptor matching is that it can overcome

arbitrarily large displacements, a strength thus incorporated

into the variational optical flow methods.

Most current matching approaches are based on descrip-

tors with a square support (e.g. HOGs [12]), that are in-

variant only to similarities. Yet, exactly under the condi-

tions where large displacements need to be bridged, this

level of invariance may be insufficient [9]. Weinzaepfel et

al. [33] improve the descriptor matching by not only in-

creasing the density of matched points, but also by catering

for deformable matching. Their ‘deep matching’ solution is

inspired by deep convolutional nets [17], has 6 layers, and

interleaves convolutions and max-pooling.

We propose a novel matching process that is inspired by

compressed sensing [13]. Thus, we work under a sparsity

assumption. The pixels are described by their surrounding

blocks of pixel intensities. A pixel can then be sparsely de-

composed over a pool of pixels from a target image. This

sparse decomposition formulation is able to cope with high

image corruptions and deformations as shown by Wright et

al. [36] for face recognition. The dominant pixel in the de-

composition is likely to be the correspondence in the target

image. We call this process of sparse coding and correspon-

dence selection sparse matching.

We make two main contributions:

1. robust correspondence matching: we introduce a de-

scriptor matching algorithm, namely sparse match-

ing, able to robustly cope with image deformations and

to provide highly accurate matches (precision ∼ 96%);

2. small to large displacement optical flow: our vari-

ational optical flow methods (SparseFlow, Sparse-

FlowFused) inherit the precision and robustness to

large displacements offered by sparse matching, pro-

viding top performance on MPI-Sintel dataset [11] and

KITTI dataset [14].

The remainder is organized as follows. First, we review

recent related work in Section 2. Then we introduce the

sparse matching algorithm in Section 3. Section 4 describes



our variational optical flow approach. We present experi-

mental results in Section 5, to conclude the paper in Sec-

tion 6.

2. Related work

Large displacement in optical flow estimation. The

state-of-the-art in optical flow is represented by the

variational methods. The seminal work of Horn and

Schunck [15] has been improved repeatedly over the

years [25, 6, 10, 24, 34, 28, 4, 32]. Brox et al. [8] combine

many of these improvements into a variational approach.

The problem is formulated as an energy minimization rep-

resented by Euler-Lagrange equations, finally reduced to

solving a sequence of large and structured linear systems.

Brox and Malik [9] propose to incorporate a descriptor

matching component into the variational approach. Unfor-

tunately, the local descriptors are locally rigid and reliable

only at salient locations, and the matching has a pixel level

precision. Adding the matching component to the varia-

tional formulation can harm the performance, especially in

places with small displacements and for wrongfully pro-

posed matches. In the context of scene correspondence, the

SIFT-flow [19] and PatchMatch [5] algorithms use descrip-

tors or small patches. Xu et al.[37] combines SIFT [21] and

PatchMatch [5] matching for refined flow level initializa-

tion with excellent performance at the expense of compu-

tation costs. Leordeanu et al. [18] extend coarse matching

to dense matching by enforcing affine constraints, followed

by variational flow refinement. Weinzaepfel et al. [33] pro-

pose dense correspondences matching by means of inter-

leaved convolutions and max-pooling layered operations,

followed, again, by variational refinement. We propose

‘sparse matching’ for reliable and accurate pixel correspon-

dences extraction under strong corruptions and deforma-

tions in combination with a variational flow refinement.

Descriptor matching. Extraction of local descriptors and

matching are the two steps usually employed in matching

images. While, initially, the descriptors of choice were ex-

tracted sparsely, invariant under scaling or affine transfor-

mations [23], the recent trend in optical flow estimation,

is to densely extract rigid (square) descriptors from local

frames [31, 9, 19]. The descriptor matching is usually re-

duced to a (reciprocal) nearest neighbor operation [21, 5, 9].

Important exceptions are the recent works of Leordeanu et

al. [18] (enforcing affine constraints) and Weinzaepfel et

al. [33] (non-rigid matching inspired by deep convolutional

nets). We show that (i) extraction of rigid descriptors (some-

how complementary to Weinzaepfel et al. [33]) and (ii)

quasi-dense ‘sparse matching’ yield robust performance,

with top results on MP-Sintel [11] and KITTI [14] datasets.

Sparse coding. Our proposed matching algorithm, called

sparse matching, is based on compressed sensing the-

ory [13]. In the context of visual vocabularies, it also shares

similarities to the soft assignment procedures based on

sparse coding [20]. While in the soft assignment one sample

is matched to multiple ‘correspondences’ with weights ob-

tained through sparse decomposition, in our case one pixel

is a assigned to a single correspondence as the dominant

pixel in the sparse decomposition over the target image pix-

els. Furthermore, we are the first to blend sparse coding into

the optical flow variational estimation framework.

3. Sparse Matching

In this section we introduce the sparse matching ap-

proach to correspondence search and discuss its main fea-

tures.

3.1. Insights into the approach

In compressed sensing [13] one key idea is that most of

the signals admit a sparse decomposition over a mix of sig-

nals from some pool. The sparsity principle reached popu-

larity in the vision community as sparse coding with visual

word vocabularies [20]. Also, in face recognition, sparse

representations had quite some impact [36]. In this case the

class label is transferred from the decomposing signals to

the decomposed one.

In the same vein, we see the 2D image as a collection

of local patches. In particular, the image is considered a

collection of textural segments, each represented by local

image patches. The textural segments define subspaces that

can be spanned by just a small group of their local image

patches. In order to find a match for a patch, the standard is

to take the closest patch disregarding the relation with the

other patches. We also use the other patches, as they help

at selecting the appropriate textural subspaces. The power

of each local patch is augmented by the other local patches

to better generalize, i.e. to predict new patches from the

same textural category. A new image patch is linearly de-

composed over the image pool of local patches. The spar-

sity guides the decomposition towards the relevant textural

subspaces. Having this decomposition, we can identify the

textural subspace it probably belongs to, and which patch

in the pool contributes most. It is the latter that we choose

as possible correspondence for the initial image patch. It is

identified as the patch in the decomposition with the high-

est coefficient magnitude. We refer to the above process of

correspondence selection as sparse matching.

Final correspondences are selected as patch pairs for

which the sparse matching works both ways, that is, each

patch is the sparse match of the other in a bijection.

The next section fixes the remaining open issues, like the

patch descriptors, the solvers to be used, etc.

3.2. Local image patches

We need pixel-to-pixel correspondences between two

subsequent images for the optical flow task at hand. To that



end, pixels are to be described by features that allow for

a linear decomposition as proposed earlier. In accordance

with the patch idea, we extract the features from a square

image neighbourhood centered around the pixel. This patch

of pixels is of fixed size. We decouple the raw RGB data

of the pixels into chromacity and luminance. The block

of pixel luminance values is vectorized and l2-normalized.

Such scaling adds robustness against noise but preserves the

linearity underlying the decomposition. As colour helps

solving ambiguities, its information is added as the mean

over the patch of the R, G, and B color channels. As feature

entries we use those 3 entries, multiplied by the number of

patch pixels N and by a factor β which sets the importance

of the average chromacity with respect to the luminance.

Especially in image regions with repetitive textures it is use-

ful to bias the patch matching towards patches with similar

positions. To that end, we include in the patch descriptor

vector also the 2D coordinates of the patch center. Those

coordinates are first mapped to [0,1], and again multiply by

N and by a factor γ allowing to set their importance in the

descriptor. Thus, the feature vector for a local image patch

of N pixels around the pixel p is as follows:

fp = [i1, i2, · · · , iN , βNr, βNg, βNb, γNx, γNy]; (1)

where ij are the N pixel intensities [0,255], (r, g, b) are the

mean pixel RGB color channels [0,255], (x, y) are the nor-

malized [0,1] image coordinates of p and β and γ are scalar

parameters.

Even the best of descriptors would find it difficult to

steer towards the right correspondence. Some patches,

e.g. those with homogeneous RGB-values withstand such

efforts. Therefore our approach only considers patches

around corners, as proposed many times before. We use

Harris corners. A side effect is an acceleration of the patch

matching part, which is now confined to a strongly limited

number of patches.

3.3. Formulations and solvers

In the next we review a number of known robust tech-

niques aiming at reducing the residue between an input sam-

ple and a sparse linear decomposition over a pool of sam-

ples. Based on the obtained sparse linear decomposition we

decide the ‘sparse match’ as the sample in the decompo-

sition with the highest importance (coefficient magnitude)

for the input. Therefore, our sparse matching procedure is

defined by the sparse decomposition technique employed.

Nearest Neighbor (NN) is the standard approach for de-

termining the match, xa, for a query y from a pool of M
samples X = [x1,x2, · · · ,xM ], where:

a = argmin
i

‖y − xi‖2. (2)

Besides NN, for our sparse matching procedure we consider

three other sparse linear decomposition methods.

Sparse Representation (SR) [36] enforces the sparsity in

the decomposition by l1-regularizing the least squares for-

mulation:

ŵ = argmin
w

‖y −Xw‖22 + λ‖w‖1, (3)

where y is the query (pixel feature in our case), X the pool,

w are the coefficients, λ is the regulatory parameter.

The Iterative Nearest Neighbors (INN) method [29, 30]

combines the power of SR with the computational simplic-

ity of NN by means of a constrained decomposition:

{ŝ}Ki=1 = argmin
{s}K

i=1

‖y −
K∑

i=1

λ

(1 + λ)i
si‖2 (4)

where λ is the regulatory parameter, ŝi are samples selected

from X, and the imposed weights λ
(1+λ)i sum up to 1 for

K → ∞. xj ∈ X may be selected multiple times in (4),

therefore its coefficient ŵj in the INN representation ŵ is

ŵj =

K∑

i=1

λ

(1 + λ)i
[xj = ŝi] (5)

where [· = ·] is 1 for equality and 0 otherwise. As shown

in [30], with a tolerance θ = 0.05 we recover the coef-

ficients up to 0.95 and need K NN iterations of the INN

algorithm, where

K = ⌈−
log(1− θ)

log(1 + λ)
⌉. (6)

Locally Linear Embedding (LLE) [26] encodes a sam-

ple y over its neighborhood NX(y) of size K in X, zi ∈
NX(y). The sparsity is directly imposed by restricting the

decomposition to the local neighborhood of samples.

ĉ = argmin
c

‖y−
K∑

i=1

cizi‖2 subject to:

K∑

j=1

cj = 1 (7)

In this case, ŵ represents the coefficients in the LLE repre-

sentation over X, where the nonzero coefficients are those

given by ĉ corresponding to the K nearest neighbors.

For all the decomposition methods above we normalize

w̃ = |ŵ|/‖ŵ‖1. The most important sample (the ‘match’),

xa, in the representation of y over X is the one with the

largest coefficient magnitude:

a = argmax
i

w̃i. (8)

When applied to two images, the pixels (features) of the

first image are decomposed over the pixels (features) from

the second image. The matches are selected in the second

image. Then, the process is repeated and matches are found

for the pixels from the second image in the first. The recip-

rocal matched pixels are correspondences we trust and the

result of our sparse matching process. The score of a cor-

respondence is taken as the average of the corresponding

normalized coefficients of the two pixel decompositions.



4. SparseFlow

Our optical flow method, called ‘SparseFlow’, uses our

proposed sparse matching. The best solver to use will fol-

low from the experiments in the next section. It also builds

on the variational optical flow strategy as expounded in the

DeepFlow paper [33]. This variational approach differs

from that of Brox and Malik [9] by the incorporation of

the external matching component, the addition of a normal-

ization in the data term (to reduce the impact of areas with

high image derivatives), and the use of a different weight at

each level. For details on those aspects, we refer the reader

to the original work [33].

5. Experiments

In this section we evaluate the SparseFlow approach.

After introducing the benchmarks, we show how sparse

matching compares with other matching algorithms, how

the matching impacts the flow estimation of the variational

optimization, and finally we report on the SparseFlow re-

sults. Our codes are publicly available at:

http://www.vision.ee.ethz.ch/˜timofter/

5.1. Datasets

The MPI-Sintel dataset [11, 2] is a benchmark with long

video game sequences, large motions (∼ 10% of displace-

ments are larger than 40 pixels in the training data), and

many (rendered) image degradations such as blur or re-

flections. We focus on the ‘Final’ version of the dataset.

As in [33] we randomly split the original training set into

a training set (20%) and validation set (80%). The flow

performance is quantified using the endpoint errors (EPE).

‘EPE all’ stands for average EPE over all pixels, while s10-

40 only for those with motions ranging from 10 to 40 pixels,

and similarly for s0-10 or s40+.

The KITTI dataset [14, 1] contains real-world sequences

captured from a driving platform. This dataset exhibits a

large number of real challenging conditions. About 16% of

the pixel motions are over 20 pixels.

5.2. Parameters and Sparse Matching

The performance of the sparse matching strategy is influ-

enced by the choice of parameters. Hence, first we discuss

the impact of the features, regulatory parameters and match-

ing decisions on its overall performance. For setting the pa-

rameters we use our small training set from MPI-Sintel. We

found it useful to cope with the scale changes explicitly, by

considering both the pixels from the original image and its

half resolution version. After trying different combinations

of parameters, we finally fixed their values to the following

settings for all our experiments: patch sizes of 13×13 (thus,

N = 169), the color parameter β = 0.33 and the coordi-

nates parameter γ = 0.01. In order to reduce the number of

patches to corners, we use Kovesi’s Harris corner detector

function [16] with the following parameters: sigma set to

1, radius to 2, and the minimum corner score to 1. In this

way, we extract only a few thousands pixel descriptors per

image.

For obtaining the linear decomposition we considered

SR (with the lasso solver from SPAMS library [22]), INN

(Matlab solver provided by the authors [30]), and LLE (with

Matlab codes based on [26]). Our choice of parameters is

λ = 0.1 for SR, λ = 0.25 for INN, and 7 the number of

nearest neighbors for LLE. The performance and the run-

ning times of our matching solvers where comparable even

if SR uses C++ code whereas INN and LLE use Matlab

scripts. The LLE matching is faster than INN with our set-

tings but the final flow performance was slightly below that

with INN. Therefore, we use INN in all our further experi-

ments.

We drop correspondences whenever the average of their

normalised coefficients for the two-ways decompositions is

below 0.5. For the MPI Sintel validation set the average

number of correspondences found by the sparse matching

approach is 2330. This is larger than the average number

1797 as obtained by the deep matching approach (corre-

spondences provided by the authors).

We decided to keep the parameters for the variational ap-

proach that were already used in the DeepFlow paper [33].

Indeed, for SparseFlow we use the settings of the varia-

tional component tuned for DeepFlow best performance,

and therefore are potentially suboptimal for our Sparse-

Flow approach. Nevertheless, this allows for direct com-

parison in flow performance between our sparse matching

and flow (SparseFlow) approach and the deep matching and

flow (DeepFlow) approach. Moreover, a fused approach

(SparseFlowFused) for matching and flow is easily derived

since the approaches share the variational component with

the same parameters.

We brought the strengths of our sparse matches to the

range of values of the deep matching. To that end, we

rescore our sparse matches using the DeepFlow rescoring

script. The ‘SparseFlowFused’ approach that is referred to

in the further discussion results from using both the rescored

sparse and deep matches in the same variational optimiza-

tion.

5.3. Comparison of matching algorithms

We compare our sparse matching directly with the deep

matching code provided by its authors [33], and indirectly

with diverse state-of-the-art algorithms: KLT tracks [3],

sparse SIFT matching [21] (here SIFT-NN), dense HOG

matching with uniqueness as in LDOF [9] (here HOG-NN).

For the quantitative results as we report them, we adhere to

the setup proposed by Weinzaepfel et al. [33]. We impose

a fixed grid with a spacing of 15 pixels. The percentage of



Table 1. Evaluation of the matching methods on the ‘Final’ MPI-Sintel validation set. We report our results and the results from [33] for a

different validation set split.
Matching input Precision Density EPE all s0-10 s10-40 s40+

Sparse+Deep (SparseFlowFused) 94.04% 84.69% 4.317 0.726 4.968 28.514

Sparse matching (SparseFlow) 95.65% 43.91% 4.872 0.732 4.756 34.665

Deep matching (DeepFlow) 91.95% 80.57% 4.592 0.922 5.407 28.991

Deep matching (DeepFlow)[33] 92.07% 80.35% 4.422 0.712 5.092 29.229

HOG-NN [33] 92.49% 40.06% 5.273 0.764 4.972 37.858

SIFT-NN [33] 93.89% 16.35% 5.444 0.846 5.313 38.283

KLT [33] 91.25% 35.61% 5.513 0.820 5.304 39.197

No match [33] – – 5.538 0.786 5.229 39.862

grid points with at least one match within its surrounding

15 × 15 cell yields a density measure. The percentage of

matches with an error smaller than 10 pixels gives a preci-

sion measure.

Table 1 summarizes our sparse matching results (with

our validation set split) and the results reported by [33]

(with their validation set). Our sparse matching method

improves precision over that of DeepFlow (95.65% vs.

91.95%), albeit at a substantially lower density. A side

note is due at this point, as deep matching extracts points

over a dense grid and is designed for providing grid-dense

matches, whereas the other methods are saliency and/or tex-

ture driven. See Fig. 1 for some visual results.

Combining the sparse and deep matching correspon-

dences leads to the best density (84.69%), while the pre-

cision (94.04%) is still better than that of the deep matching

alone. The sparse matching is significantly faster than the

deep matching, therefore the combination implies improve-

ment in both precision and density over deep matches alone

at the price of a small increase in computation time (∼ 1s

in Table 2).

5.4. Impact of the matches on the flow

In order to assess the impact of the matches on the flow

estimation, we compare all the matching methods from the

previous section, this time as matching term in the varia-

tional optimization. Note that our SparseFlow and Sparse-

FlowFused methods use the same variational optimization

codes as [33]. Sparse matching corresponds to the Sparse-

Flow, deep matching to the DeepFlow, sparse+deep match-

ing to SparseFlowFused method.

Table 1 summarizes the flow performance of the varia-

tional optimization in terms of average endpoint error (EPE)

on our MPI-Sintel validation set and on Weinzaepfel et al.’s

validation set split, as reported in [33]. We note here that

adding matches to the variational optimization is benefi-

cial. Sparse matching (SparseFlow) outperforms the other

methods especially for small (s0-s10) and medium (s10-

s40) displacements. At s40+ the error with deep matching

(DeepFlow) is more than 5 pixels smaller than the one with

sparse matching, while this one is 3 up to 5 pixels smaller

than those obtained with the other reported methods. This

Table 2. Results on the ‘Final’ MPI-Sintel test set. For more re-

sults, see the MPI-Sintel website [2].
Method EPE all s0-10 s10-40 s40+ time[s]

SparseFlowFused 7.189 1.275 3.963 44.319 20

SparseFlow 7.851 1.071 3.771 51.353 10

DeepFlow [33] 7.212 1.284 4.107 44.118 19

S2D-Matching[18] 7.872 1.172 4.695 48.782 ∼2000

MDP-Flow2 [37] 8.445 1.420 5.449 50.507 709

Data-Flow [32] 8.868 1.794 5.294 52.635 180

LDOF [9] 9.116 1.485 4.839 57.296 30

Classic+NL [28] 9.153 1.113 4.496 60.291 301

suggests the importance of a good density of the matches

for good optical flow performance. Sparse matching based

flow performance is in between deep matching and the other

matching methods. The combination of sparse and deep

matching (SparseFlowFused) leads to the best flow perfor-

mance, an ∼ 0.2 average EPE improvement over any indi-

vidual result. Also, there is a gap of ∼ 0.4 average EPE

between the flow results with sparse matches and the other

results using rigid descriptor formulations. Fig. 1 compares

results obtained with the sparse and the dense matching ap-

proaches. Deep matching covers the image space clearly

better, its average density being twice higher than that of

sparse matching, as shown in Table 1. Deep matching pro-

vides matches also in flat areas and textureless areas, it is

guided by an uniformely spaced grid. Yet sparse matching

is not contraint to a grid and often provides denser matches

in critical areas, such as textured areas and/or with pro-

nounced edges. Sparse matching provides overall higher

precision and density in edgy areas, this leading to the best

performance of SoftFlow for small to medium (s0-s40) dis-

placements, and reasonably good for large displacements.

On the other hand, deep matching while less precised, has

an overall high density also in textureless areas, and Deep-

Flow benefits from this especially in the estimation of large

(s40+) displacements. By combining soft and deep matches

we achieve strong overall performance from small to large

displacements, at the price of computing the extra matches

(∼ 1s for the sparse matches).

5.5. Results on MPISintel

Table 2 compares our results with state-of-the-art results

for the MPI-Sintel test set. Some visual results for our



Figure 1. Sample results from the MPI-Sintel dataset. (For each 4× 2 block) From top to bottom: mean of the two frames and the ground

truth flow; deep matching and flow computed with DeepFlow [33]; our sparse matching and flow (SparseFlow); the combined sparse and

deep matches and the flow (SparseFlowFused). More flow results are available on MPI-Sintel website [2].

Table 3. KITTI results. More results are available on the KITTI website [1].
Method Out-Noc3 Out3 AEE-Noc AEE Time Environment

SparseFlow 9.09% 19.32% 2.6 7.6 10 s 1 core @3.5GHz(Matlab+C/C++)

DeepFlow [33] 7.22% 17.79% 1.5 5.8 17 s 1 core @3.6GHz(Python+C/C++)

Data-Flow [32] 7.11% 14.57% 1.9 5.5 180 s 2 cores@2.5GHz(Matlab+C/C++)

Classic+NL[28] 10.49% 20.64% 2.8 7.2 888 s 1 core @2.5GHz (C/C++)

LDOF [9] 21.93% 31.39% 5.6 12.4 60 s 1 core @2.5GHz (C/C++)

methods (SparseFlow and SparseFlowFused) compared to

DeepFlow on this dataset are shown in Fig. 1. For more

results we refer the reader to the MPI-Sintel dataset web-

site [2]. The parameters of our method were optimized on

the training set. Our SparseFlow method comes second to

the DeepFlow method in terms of EPE performance, but it

is almost double as fast. The fused method, SparseFlow-

Fused, achieves the best performance from the compared

methods when considering its overall EPE value, while still

being practically as fast as DeepFlow. We refer the reader

to the official MPI-Sintel webpage for complete results [2].

SparseFlow is the best for small and medium displace-

ments (s0-10 & s10-40), while being competitive for large

displacements (s40+). Overall SparseFlowFused benefits

from the superior density of the combined sparse and deep

matches and their complementarity. Also, SparseFlow is

the fastest method – the sparse matching is faster than the

deep matching part of DeepFlow1. Sparse matching takes

on average 1 second per image pair while the variational

part takes 9 seconds. Our running time was computed on

an Intel i7 4770 CPU, while the other running times are as

reported in [33] and the other original works.

1Deep matching (v1.0) [33] takes 31s on avg on our machine (1 core)

for the suggested ‘1024x512 iccv settings’.

5.6. Results on KITTI

Table 3 and Fig. 2 show KITTI results. For more quan-

titative and qualitative results we refer to the dataset web-

site [1, 14]. Out-Noc3 and Out3 are the percentage of pixels

with an EPE over 3 pixels for non-occluded areas and for all

pixels, respectively. AEE is the average endpoint error over

all pixels, AEE-Noc excludes the occluded areas.

We use the same sparse matching parameters that were

learned from the MPI-Sintel training set. SparseFlow pro-

vides robust performance and is computationally more ef-

ficient than the other top methods with a comparable per-

formance. We found on the training data that there is only

a small difference in performance for SparseFlow when us-

ing the variational parameters learned from MPI-Sintel vs.

those learned from KITTI. Thus, for realistic scenarios, the

parameters of our method seem to generalize well.

6. Conclusions

We proposed the SparseFlow algorithm to extract

optical flow, incl. large displacements. It is based on

the introduction of a novel sparse matching term into a

variational optimization framework. The sparse matching

procedure is based on the sparsity idea. It provides pixel

correspondences under difficult conditions and at a low
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Figure 2. SparseFlow result on KITTI. More results are available

on the KITTI website [1].

computational cost. As shown experimentally, SparseFlow

performs excellently for small to medium motions, while

being competitive for large motions. It is one of the fastest

CPU methods.
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