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According to the Tag application with function of covert communication, a method for sparse frequency waveform design based
on radar-embedded communication is proposed. Firstly, sparse frequency waveforms are designed based on power spectral density
�tting and quasi-Newton method. Secondly, the eigenvalue decomposition of the sparse frequency waveform sequence is used to
get the dominant space. Finally the communication waveforms are designed through the projection of orthogonal pseudorandom
vectors in the vertical subspace. Compared with the linear frequency modulation waveform, the sparse frequency waveform
can further improve the bandwidth occupation of communication signals, thus achieving higher communication rate. A certain
correlation exists between the reciprocally orthogonal communication signals samples and the sparse frequency waveform, which
guarantees the low SER (signal error rate) and LPI (low probability of intercept). �e simulation results verify the e	ectiveness of
this method.

1. Introduction

�e purpose of general radar-communication integration
design is to achieve high bandwidth data communications
between radar platforms by using radar transmitter/receiver
subsystem. Di	erent from former methods, Blunt proposed
a method of intrapulse radar-embedded communication
applied to the Tag [1], which is a new battle�eld IFF (Identi�-
cation Friend or Foe) equipment. �e active communication
capability between Tag and radar provides further informa-
tion about the target area, for example, the exact location.
Compared with the general radar-communication integra-
tion majoring in the sharing ability between radar waveform
and communication signals, radar-embedded communica-
tion system focuses more on concealment of communication
signals. �e best way to avoid being detected by enemy
devices near theTag is to embed theTag signal into radar echo
[2]. �e basic principle of radar-embedded communications
is shown in Figure 1. �e Tag device installed in the radar
detection zone receives the radar signals, embeds the com-
munication signals by remodulation, and transmits them as
radar scattering echoes to radar receiver and achieves covert

communication [3, 4]. �e communication signals usually
choose orthogonalwaveforms, which arewidely used in radar
waveform design.

Researches of intrapulse radar-embedded communica-
tions in [5–9] focus on linear frequency modulation (LFM)
pulses. In [7, 8], Ciuonzo proposed a novel waveform design
procedure based on multiobjective optimization. �e frame-
work of design strategies for intrapulse radar-embedded
communications is summarized in [9]. Due to nearly �at
spectral characteristic of LFM, the embedded communica-
tion signals can only utilize a small range of spectrum band,
which leads to limited available communication waveform
samples and low e�ciency of communication. In view of this
problem, a method for sparse frequency waveform design
based on radar-embedded communication is proposed. It can
improve the band utilization of the communication signal,
increase the number of communication samples, and achieve
low signal error rate and low probability of intercept while the
detecting performance of the radar will not be degraded.

Sparse frequency waveform design is an important
research direction of the radar waveform design. For the
radar system, sparse frequency waveforms have advantages
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Tag

Figure 1: Radar-embedded communications applied to the Tag.

of suppressing interference and improving detection per-
formance. To design a speci�c sparse frequency waveform,
power spectral density �tting can be used to get the objective
function [10–15] by using quasi-Newton method and then
the eigenvalue decomposition of sparse frequency waveform
sequence can be further utilized to obtain the dominant
space. Following that � communication waveforms are
designed through the projection of orthogonal pseudoran-
dom vectors in the nondominant subspace.�ose� commu-
nicationwaveform samples are orthogonal to each other, with
strong independence, but have certain relevance with the
sparse frequency waveforms. �ese features ensure that the
information would not be easily intercepted by enemy radar
during the communication process. �erefore, the use of
sparse frequency waveform stopband can e	ectively increase
the frequency band occupation of communication signals, to
gain a higher communication rate.

2. Radar-Embedded Communication Model

�eTagdevice in detection range of pulse radar receives radar
signals and embeds communication signals by remodulation.
�en the output signals are mixed with echo of surrounding
scene and return to the radar receiver. �e received signals
can be expressed as

�� (�) = ���� (�) + �� (�) + � (�) , (1)

where �(�) describes system noise, ��(�) describes ambient
radar echoes of the Tag device, �� describes the combined
e	ect of the path loss, ��(�) describes communication signals
designed, � = 1, 2, . . . , � means the �th communication
waveform samples, and � is the total number of samples.
Rewrite formula (1) in vector form as

y� = ��c� + Sx + n, (2)

where c� is the communication signals, n is the noise vector,
x is the range samples of radar scattering around Tag device,
and Sx is discrete representation of convolution process
between the radar waveform and the scattering response.

Given waveform vector s = [
0 
1 ⋅ ⋅ ⋅ s�−1]�, the Toeplitz
matrix S can be expressed as

S = [[[[[
[


�−1 
�−2 ⋅ ⋅ ⋅ 
0 0 ⋅ ⋅ ⋅ 0
0 
�−1 
�−2 ⋅ ⋅ ⋅ 
0 ⋅ ⋅ ⋅ 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 ⋅ ⋅ ⋅ 
�−1 
�−2 ⋅ ⋅ ⋅ 
0

]]]]]
]
. (3)

To ensure the concealment (low probability of intercept)
of communication signals, the power of ��(�) must be lower
than that of the echo signal ��(�). When there is a correlation
between ��(�) and communication signal ��(�), it is di�cult
for standard coherent �lter to isolate communication samples
from the mixed signals. To solve this problem, a design of
correlation receiver was proposed in [1].

As communication receiving is relatively simple (embed-
ding only one of� communication samples) and the relative
power of the signal is unknown (decided by ��), a maximum
likelihood receiver (known as decorrelator receiver) can be
used to realize the communication receiving function. �e
length of sequence is set to�. �e� × (2� + � − 1)matrix
can be formed as

C = [S c1 ⋅ ⋅ ⋅ c�] . (4)

Assuming that the noise is white Gaussian N(0, �2
V
), the

probability density function of the received signal y� param-

eterized with z = [x� �1 ⋅ ⋅ ⋅ ��] can be expressed as

� (y�; z) = 1
(2��2

V
)�/2 exp{−

(y� − Cz)� (y� − Cz)
2�2

V

} . (5)

�e maximum likelihood estimate of parameter z can there-
fore be obtained:

ẑ = (CC)−1 C�y�. (6)

For embedded communication, only the most likely one of
the � communication waveform samples is needed to be
found. �e decorrelator receiver [4] of the �th sample can be
expressed as

w� = (CC�)−1 c�. (7)

A�er obtaining w1,w2, . . . ,w�, correlate each of them with
the received signal y�, respectively, and the maximum likeli-
hood estimate of � can be calculated by

�̂ = arg {max
�

{"""""w�� y�"""""}} . (8)

�e maximum likelihood receiver of formula (7) is the
minimum variance unbiased estimator of parameter z for the
linearmodel in formula (2). And formula (8) is theminimum
distance receiver for multiple hypothesis tests.
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3. Sparse Frequency Waveform Design of
Embedded Communications

3.1. Sparse Frequency Radar Waveform Design. A sparse fre-
quency waveformwith speci�c passband and stopband could
be obtained by power spectrum�tting. Given the distribution
of power spectral density u, the objective function of sparse
frequency waveform can be expressed as

min
Θ

%%%%(As (Θ)) ⊗ (As (Θ))∗ − u
%%%%2 , (9)

where s represents the designed waveform, whose phase
vector Θ = [*1 ⋅ ⋅ ⋅ *�], A is the discrete Fourier transform
matrix.

�e objective function (9) is a quartic nonconvex opti-
mization problem. It can be solved by computing its local
minimum rather than the global minimum with the quasi-
Newton method [10]. �e quasi-Newton method uses infor-
mation of the objective function value and its �rst derivative
to construct the curvature approximation of the objective
function, so it has the advantages of fast convergence. �e
gradient of the objective function needs to be calculated in
each iteration.

�e objective function (9) can be rewritten as

- (Θ) = %%%%(As (Θ)) ⊗ (As (Θ))∗ − u
%%%%2

=
%%%%%%%%%%%%%%%%%%%

a�1 s (Θ) s� (Θ) a1 − /1...
a��s (Θ) s� (Θ) a� − /��

%%%%%%%%%%%%%%%%%%%

2

= �∑
�=1

"""""s� (Θ) a�a��s� (Θ) − /�"""""2

= �∑
�=1

"""""s� (Θ)A�s� (Θ) − /�"""""2 .

(10)

�e derivative with respect toΘ of the objective function
can be expressed as

g = 4- (Θ)4Θ
= 2 �∑
�=1

(s (Θ)A�s� (Θ) − /�)
⋅ 2 Im {diag {s (Θ)}A��s� (Θ)} .

(11)

Speci�c iterative steps of sparse frequency waveform
design are as follows.

Step 1. InitializeΘ0 and tolerance 5, set � = 0 and S0 = 6, and
then calculate g0 by formula (11).

Step 2. Set the search direction d� = −S�g�, calculate -(Θ� +��d�), and �nd the optimal step size �� by line searchmethod
so that -(Θ� + ��d�) is minimized; let �� = ��d� and Θ�+1 =Θ� + ��.

Step 3. If ‖��‖ ≤ 5, end the iteration and output Θoptim =Θ�+1; if ‖��‖ > 5, go to Step 4.

Step 4. Calculate g�+1, set �� = g�+1 − g�, and then compute

S�+1 = S� + (1 + ��� S������ �� ) �������� ��
− ����� S� + S������

��� ��
.

(12)

Set � = � + 1 and repeat from Step 2.

Set an appropriate value of 5 (e.g., 10−3); then the sparse
frequency radar waveform with a distribution close to that of
the ideal power spectral density can be obtained by the quasi-
Newton method described above.

3.2. Waveform Design of Embedded Communications. First
of all, the eigenvalue decomposition of the sparse frequency
waveform sequence designed is used to get the domi-
nant space. �en � communication waveform samples are
designed through the projection of orthogonal pseudoran-
dom vectors in the nondominant subspace [4].

Set the length of sparse frequency radar waveform
sequence�. Known from formulas (1) and (2), radar scatter-
ing echo around the Tag within the radar illumination region
can be discretely represented as

y� = Sx, (13)

where S is a�×(2�−1) Toeplitz matrix. x is a 2�−1 vector,
representing range samples of radar scattering.

A�er the eigenvalue decomposition of S, � eigenval-
ues <0, <1, . . . , <�−1 and corresponding eigenvectors k0, k1,. . . , k�−1 can be calculated. With eigenvalues in ascending
order (i.e., <0 ≤ <1 ≤ ⋅ ⋅ ⋅ ≤ <�−1), constitute the
matrix V = [k0 k1 ⋅ ⋅ ⋅ k�−1] accordingly. �e eigenvalue
decomposition is shown as

SS
� = VΛV�, (14)

where Λ is a diagonal matrix which contains � associated
eigenvalues.

A sequence will be obtained if the eigenvalues are sorted
in ascending order and it clearly exhibits a demarcation
that the large eigenvalues in the sequence correspond to
the passband while small eigenvalues correspond to the
stopband. Assuming that the space spanned by eigenvectors
corresponding to the �rst ? eigenvalues is the nondomi-
nant space, as span{V�} = span{k0, k1, . . . , k−1}, the space
spanned by eigenvectors corresponding to the remaining� − ? eigenvalues is the dominant space, as span{V�} =
span{k, k+1, . . . , k�−1}.�e frequency spectrum of the stop-
band should be fully utilized to avoid the e	ect on the perfor-
mance when designing communication waveform samples.
�e design steps are as follows.

First of all, generate a set of � pseudorandom �-
dimension vectors denoted by b�, � = 1, 2, . . . , � (both Tag
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and receiver know the speci�c values of pseudorandom vec-
tors b�). �en by projecting the orthogonal pseudorandom
vector b� to its nondominant subspace, according to [4], the
�rst communication sample c1 can be designed as

c1 = (I − V�,0V
�
�,0) b1, (15)

where V�,0 = [k k+1 ⋅ ⋅ ⋅ k�−1]. Matrices S and c1 are
combined to obtain a � × 2� matrix S1 = [S c1].
Do the eigenvalue decomposition again and � eigenvalues<�0, <�1, . . . , <��−1 of S1 will be obtained as well as correspond-
ing eigenvectors k�0, k�1, . . . , k��−1. �e eigenvalue decomposi-
tion is shown as

S1S
�
1 = V1Λ1V�1 , (16)

where V1 = [k�0 k
�
1 ⋅ ⋅ ⋅ k

�
�−1] and Λ1 is a diagonal matrix

which contains � associated eigenvalues. �e nondominant
space of V1 is span{V�,1} = span{k�0, k�1, . . . , k�−2}
and the dominant space of V1 is span{V�,1} =
span{k�−1, k�, . . . , k��−1}.

�en the second communication sample can be designed
as

c2 = (I − V�,1V
�
�,1) b2, (17)

where V�,1 = [v�−1 v� ⋅ ⋅ ⋅ v��−1]. �us, matrices S and
c1, c2, . . . , c�−1 can be combined to obtain an � × (2� +� − 1) matrix S�−1 = [S c1 c2 ⋅ ⋅ ⋅ c�−1]. � eigenval-

ues <(�−1)0 , <(�−1)1 , . . . , <(�−1)�−1 and corresponding eigenvectors

v(�−1)0 , v(�−1)1 , . . . , v(�−1)�−1 of S�−1can be further obtained a�er
the eigenvalue decomposition shown as

S�−1S
�
�−1 = V�−1Λ�−1V��−1, (18)

where V�−1 = [v(�−1)0 v(�−1)1 ⋅ ⋅ ⋅ v(�−1)�−1 ] and Λ1 is a

diagonal matrix which contains � associated eigenval-
ues. �e nondominant space of V�−1 is span{V�,�−1} =
span{v(�−1)0 , v(�−1)1 , . . . , v(�−1)−� } and the dominant space ofV�−1
is span{V�,�−1} = span{v(�−1)0 , v(�−1)1 , . . . , v(�−1)−� }. �en the �th
communication sample can be designed as

c� = (I − V�,�−1V
�
�,�−1) b�, (19)

where V�,�−1 = [v(�−1)−�+1 v(�−1)−�+2 ⋅ ⋅ ⋅ v(�−1)�−1 ].
An important indicator of covert communication is inter-

ception [3]. Since the conventional method based on mea-
suring the spectral energy is no longer applicable, Blunt et al.
proposed the normalized correlation tomeasure interception
[4]. �e intended radar waveform is assumed to be known
by the enemy intercept receiver, and the dominant space of
waveform is obtained through the eigenvalue decomposition

by formula (14). �e � × @ matrix Ṽ�,� is formed by the
eigenvectors corresponding to the largest @ eigenvalues. �e
projection of received signal in the nondominant subspace
of the main space can be considered as nonradar echo
component. �e @th projected value of the received signal y�
is

a� = P�y�, (20)
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Figure 2: Power spectral density of radar waveform a�er commu-
nication signal c1 embedded.

where P� = I− Ṽ�,�Ṽ��,�, @ ∈ [1, . . . , �] is the projectionmatrix
corresponding to di	erent @.

�en, normalized correlation of the �th communication
waveform is de�ned as

C�,� =
"""""c�� a�"""""

√(c�� c�) (a�� a�)
. (21)

C�,�, having a range of (0 1), can be used to measure the
intercept probability of communications waveforms [4]. �e
larger value of C�,� indicates higher similarity between the
communication signal detected by the intercept receiver and
the actual embedded signal, which means higher probability
to be intercepted. Communication waveforms are thought to
have no covertness when C�,� approaches 1.
4. Experimental Results

Set the length of the sparse frequency radar waveform
sequence� = 200. �e desired power spectral density u has
4 passbands and 3 stopbands.�e set of passbands is 5 db and
stopbands−30 dB. 5 is presumed to be 0.001. According to the
iterative steps from Section 3.1, the obtained power spectral
density of sparse frequency waveform is shown in Figure 2.

As the sparse frequency waveforms have been obtained,
communication waveforms can be designed through the
method discussed in Section 3.2. Set the total number of
communication samples � = 16 and compute c1, c2, . . . , c16.
Figure 2 shows the power spectral density of radar waveform
a�er the communication signal c1 is embedded; that leads
to the increased power in the stopband obviously. We can
also see the change for the radar waveform in time domain
when the communication signal c1 is embedded. �e result
waveforms in time domain before and a�er c1 embedded are
shown in Figure 3.
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Figure 3: Sparse frequency radar waveform in time domain. (a) �e real part before c1 embedded; (b) the real part a�er c1 embedded; (c)
the imaginary part before c1 embedded; (d) the imaginary part a�er c1 embedded.

Figures 3(a) and 3(c) show the real part and the imaginary
part of the original sparse frequency radar waveform, which
is a multiphase coded waveform. It is constant modulus, and
the modulus value is normalized. Figures 3(b) and 3(d) show
the real part and the imaginary part of the waveform a�er the
communication signal c1 is embedded, and it can be seen that
the di	erence is not obvious in time domain. For the case that
c2–c16 embedded, the results are similar.

A�er obtaining the radar-embedded communication
waveforms, we can further analyze the SERwith the variation
of SNR. �is design method contains � = 16 kinds of
communication waveforms and the �rst one as an example
is adopted in simulation (the probability is evaluated when
the intended receiver successfully detects the communication
signal c1 transmitted by transmitter). Change the power of
noise to vary the value of SNR from −25 dB to 0 dB. Set the
number of nondominant eigenvectors used by Tag and radar
receiver ? = 80, and the number of large eigenvalues used

by intercept receiver G = 120. �e result averaged over 10000
Monte Carlo simulations is shown in Figure 4.

As is shown, when the SNR is −8 dB, SER can achieve
10−3 by using a decorrelator receiver, far less than that of the
intercept receiver. It demonstrates that the communication
waveform has good concealment. Figure 4 only shows the
result of c1. �e results of samples of c2–c16 are similar to
that of c1. When SNR ranges from −10 dB to −5 dB, the
decorrelator receiver has lower SER.

�e interception of communication waveforms is further
analyzed. Set the SNR to −15 dB. While calculating the
normalized correlation, the number of large eigenvalues of
the intercept receiver @ varies from 0 to 200 (i.e., change from
0–100%, because � = 200). Each point uses 200 samples
to calculate C�,l and get the average. Results are shown in
Figure 5.

In Figure 5, the horizontal axis represents the percentage
of the number of eigenvalues @; the vertical axis represents
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the value of C�,�. According to formula (20), the calcula-
tion of normalized correlation needs to know one of the
communication waveforms. Supposing the communication
sample c1 is known, compute the normalized correlation of
c2, c3, . . . , c16 and also that of c1, for generality. It can be seen
from Figure 5 that the maximum of C�,� corresponding to
c2–c16 is less than 0.2 and themaximumof C�,� corresponding
to c1 is approximately equal to 0.3. Even increasing the
percentage of eigenvalues, the waveform that is designed by
this method can still maintain a good ability of interception.
Simulation in Figure 5 only shows the result provided that the
communication sample c1 is known. In the actual operation,
using the communication samples c2–c16 will get the similar
curve and the same conclusion.

�e impact of embedded communication signals into
radar signal by autocorrelation function is further analyzed.
Figure 6 shows normalized autocorrelation function (ACF) of
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Figure 6: ACF of sparse frequency radar-embedded communica-
tion waveform. (a) Before c1 embedded; (b) a�er c1 embedded.

radarwaveform [16] before and a�er thewaveformembedded
communication signals, with ordinate in logarithm form.
Figure 6(a) shows the ACF under original sparse frequency
radar waveform, and Figure 6(b) shows the ACF a�er adding
the communication waveform, which would be c1. �e
integral sidelobe level (ISL) is −10.19 dB and peak sidelobe
level (PSL) is −15.62 dB before communication waveform is
embedded. And the ISL is −10.94 dB and PSL is −16.44 dB
when communication waveform is embedded.

It can be seen that the autocorrelation performances
are similar before or a�er the communication waveform c1
is embedded, which means the embedded communication
waveforms do not a	ect the detection performance of the
radar system. For c2–c16, the results are basically the same.

5. Conclusions

In this paper, we propose the sparse frequency waveform
design based on radar-embedded communication to improve
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the performance of the existing radar Tag system with the
function of covert communication. Firstly, sparse frequency
waveforms are designed based on power spectral density
�tting with the quasi-Newton method and the eigenvalue
decomposition is used to get the dominant space of the wave-
form sequence. Secondly, the communication waveforms are
designed through the projection of orthogonal pseudoran-
dom vectors in the nondominant subspace. In the end, we
analyze the error rate and the interception of sparse frequency
waveform in which communication waveform samples are
embedded under di	erent SNR conditions in simulation.
�e result shows that using sparse frequency waveform
can improve the bandwidth occupation of communication
signals. �us, a higher communication rate can be gained.
Furthermore, these samples are orthogonal to each other,
which guarantees low SER and LPI. It is also veri�ed that the
autocorrelation performance of radar signals would not be
degraded by embedding communication signals.
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