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Abstract—Sparsity-preserving graph construction is investi-
gated for the dimensionality reduction of hyperspectral imagery.
In particular, a sparse graph-based discriminant analysis is pro-
posed when labeled samples are available. By forcing the projec-
tion to be along the direction where a sample is clustered with
within-class samples that best represented it, the discriminative
power can be enhanced. The proposed method has no requirement
on the number of labeled samples as in traditional linear discrim-
inant analysis, and it can be solved by a simple generalized eigen-
problem. The quality of the dimensionality reduction is evaluated
by a support vector machine with a composite spatial-spectral
kernel. Experimental results demonstrate that the proposed sparse
graph-based discriminant analysis can yield superior classification
performance with much lower dimensionality as compared to
performance on the original data or on data transformed with
other dimensionality-reduction approaches.

Index Terms—Classification, dimensionality reduction (DR),
hyperspectral imagery (HSI), sparse representation.

I. INTRODUCTION

IN HYPERSPECTRAL imagery (HSI), the dense spectral
sampling of each pixel yields rich information content

at the cost of high data-set dimensionality. Consequently,
dimensionality reduction (DR) plays a critical role in HSI
analysis, especially for the classification task when the num-
ber of available labeled training samples is limited. Pattern-
classification systems often employ DR followed by a statistical
classifier to learn models in the reduced-dimension feature
space; those models are then used to classify test pixels. Com-
mon transform-based DR strategies include both unsupervised
approaches—e.g., principal component analysis (PCA) [1] and
the maximum-noise-fraction (MNF) transform [2]—as well
as supervised techniques—e.g., linear discriminant analysis
(LDA) [3] and local Fisher discriminant analysis (LFDA) [4].
We note that, while band selection [5]—which can also be
unsupervised [6] or supervised [7]—can be considered to be
another category of DR, in this paper, we limit consideration to
transform-based DR.

A graph is a mathematical data representation that describes
geometric structures of data. In a graph, data can be visu-
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alized as a finite collection of samples with one sample at
each vertex. The weight associated with each edge connecting
two vertices is often chosen to represent the similarity of the
corresponding data samples, and analysis of the resulting graph
can solve statistical learning problems. Recently, [8] proposed
a general graph-embedding (GE) framework that describes
many existing DR techniques. In this GE framework, each DR
algorithm is considered to be an undirected weighted graph
that embodies desired statistical or geometrical properties of
a data set, coupled with scale-normalization constraints or a
penalty graph that characterizes properties that the resulting
DR should avoid. Construction of the graph is critical: an
appropriate graph provides a high level of DR while preserving
important information such as anomalies as well as manifold
and multimodal structures. Common graph structures include
k-nearest neighbor and ǫ-radius ball [9], both of which connect
graph vertices with simple rules which are, however, highly
sensitive to data-set noise and difficult to determine for real-
world applications.

An alternative graph construction was proposed in [9].
Therein, concepts from the field of sparse representation
were exploited—specifically, an ℓ1-based optimization was
employed to produce a graph whose edges are intended to
be sparse. Additionally, the graph automatically inherited ad-
vantages of sparse representation which is increasingly being
considered to be of significant benefit to the classification task
(e.g., [10]–[12]). The resulting sparsity-based graph has been
proposed for a number of machine-learning tasks, including
DR, data clustering, and semi-supervised learning [9], [13]. We
call DR based on this ℓ1 approach “sparsity-preserving GE”
(SPGE).

In this paper, we employ such a sparse graph to construct
a supervised DR method which is referred to as sparse graph-
based discriminant analysis (SGDA). By preserving the sparse
connection in the manifold, the class-discriminative power can
be significantly reinforced [14]. Moreover, this method does
not need to actually evaluate the within-class scatter matrix
(Sw) or between-class scatter matrix (Sb) as in the traditional
Fisher’s linear discriminant analysis (LDA); in particular, it
does not have the requirement of a large number of training
samples as is necessary to produce a full-rank Sw. The solution
turns out to be a generalized eigenvalue problem, thereby
greatly facilitating its practical implementation. To quantify DR
performance, we adopt a support vector machine (SVM) [15]
for classification of the transformed data. The SVM uses a
composite kernel (CK) which is a composite of spectral and
spatial kernels [16]. Using the resulting SVM-CK classifier, we
present a battery of experimental results that demonstrate that
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SGDA-based DR can outperform SPGE-based DR as well as
other widely used transform-based DR methods.

It is worth mentioning that a sparse graph has been used pre-
viously with LDA [17]–[19]. However, our method is different
in the following respects. First, the sparse representation that we
use is generated from labeled samples; in particular, in a block-
structured variant of SGDA that we describe later, the sparse
representation arises from the use of samples within the same
class, yielding a block-structured affinity matrix and resulting in
significant performance improvement. Second, the sparse graph
in our approach is decomposed directly instead of being added
as a regularized term to an objective function, resulting in a
parameter-free model with much lower computational cost.

The remainder of the discussion is organized as follows.
We start with Section II which overviews the SPGE approach
to DR as developed in [9]; we then describe our proposed
approach in Section III. Section IV reports classification results
based on real hyperspectral data sets, comparing to a variety of
other state-of-the-art DR methods. Finally, several concluding
remarks are made in Section V.

II. BACKGROUND

Recently, [8] unified a number of DR techniques into a
common GE framework involving undirected weighted graphs.
Specifically, for data set X = [x1 · · · xM ] of M vectors with
xm ∈ R

N , [8] imposes graph G = {X,Ws}, the “intrinsic
graph,” and, optionally, graph Gp = {X,Wp}, the “penalty
graph.” In both graphs, the data set X in N -dimensional space
is the vertex set, while Ws and Wp are matrices of edge
weights between vertices. The framework in [8] argues that DR
techniques effectively attempt to find a projection that empha-
sizes the similarity between vertices in the graph as expressed in
the “similarity matrix” Ws. On the other hand, the “penalty ma-
trix” Wp captures similarity relationships that are suppressed
by the DR. Employing G and Gp with specific Ws and Wp, [8]
characterizes a number of popular DR techniques—including
PCA [1], LDA [3], and local linear embedding (LLE) [20]—in
terms of this GE framework.

More specifically, to reduce data set X from dimensionality
N to K, DR seeks to find N ×K projection matrix P which
results in low-dimensional Y = PTX. Assume M ×M real
symmetric similarity matrix Ws has zeros on the diagonal,
and let (Ws)m,m′ denote the entry at row m and column m′.
Then, [8] finds the DR projection via an optimization aimed at
preserving the intrinsic graph

P∗= argmin
PTXLpX

TP=IK×K

∑

m,m′

‖PTxm −PTxm′‖
2
(Ws)m,m′

= argmin
PTXLpX

TP=IK×K

tr(PTXLsX
TP) (1)

where Ls is the Laplacian matrix of the intrinsic graph such that
Ls = Ds −Ws, and Ds is a diagonal matrix with the sums
of the rows of Ws along the diagonal. If a penalty graph is
used, Lp may be the Laplacian matrix of the corresponding
penalty matrix Wp; alternatively, it may reflect a simple scale-
normalization constraint. In either case, [8] solves (1) as a
generalized eigenvalue problem.

For example, [8] casts PCA into this GE framework, for-
mulating PCA as an intrinsic graph with equal weights be-
tween vertices such that (Ws)m,m′ = 1/M(m �= m′) and scale
normalization with Lp = IN×N . Similarly, [8] expresses LDA
as a GE with both intrinsic and penalty graphs—the intrinsic
graph has a similarity matrix with class-dependent weights
(Ws)m,m′ = δm,m′/nm, where δm,m′ = 1 if the classes of xm

and xm′ are the same, and nm is the number of vectors in X

with class being the same as that of xm. For the penalty graph,
LDA uses (Wp)m,m′ = 1/M(m �= m′), which is identical to
the similarity matrix for PCA.

Given the generality of the GE paradigm, the key to DR by
GE is thus the proper selection of the similarity and penalty
matrices Ws and Wp, respectively. Departing from simpler
methods that construct Ws and Wp directly (as is the case
for PCA and LDA above), [9] exploits recent concepts in the
increasingly popular paradigm of sparse representation. That is,
the graph weights are found such that each xm is approximated
using the other vectors in the data set; i.e.,

x̃m =
∑

m′ �=m

(Ws)m,m′xm′ , (2)

and we seek specifically a sparse representation such that Ws is
mostly zero within each row. As is common throughout sparse-
representation literature, [9] achieves this desired sparsity via
an ℓ1 optimization that explicitly preserves sparsity in the
locality relations between vertices. Once this sparse Ws graph
is determined, the desired DR projection is formulated so as to
minimize the projection-domain reconstruction error due to this
sparse representation, yielding an optimization similar to (1)

P∗= argmin
PTXLpX

TP=IK×K

∑

m

∥∥∥∥∥P
Txm−

∑

m′

(Ws)m,m′P
Txm′

∥∥∥∥∥

2

= argmin
PTXLpX

TP=IK×K

tr(PTXLsX
TP), (3)

where Ls=(IM×M −Ws)
T (IM×M −Ws), and Lp=IM×M .

As with (1), (3) is solved via a generalized eigenvalue problem.
We present the resulting DR algorithm as Algorithm 1, which
we call SPGE.1

Algorithm 1 The SPGE Algorithm for DR (from [9])

1: Input: Data set X = [x1 · · · xM ] ∈ R
N×M , desired

reduced dimensionality K(K < N)
2: for m = 1 to M do

3: Find sparse representation for xm via ℓ1 optimization

min
αm

‖αm‖1 such that ‖Xmαm − xm‖22 ≤ ǫ (4)

where

Xm = [x1 · · ·xm−1 xm+1 · · ·xM ] ∈ R
N×(M−1)

αm = [αm,1 · · ·αm,M−1]
T ∈ R

M−1 (5)

and small tolerance ǫ > 0.
4: end for

1SPGE was also proposed independently in [18].
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5: For the graph G = {X,Ws}, form similarity matrix Ws ∈
R

M×M :

(Ws)m,m′ =

⎧
⎨
⎩

0, m = m′

αm,m′ , m > m′

αm,m′−1, m < m′.
(6)

6: Solve the generalized eigenvalue problem

XLsX
Tpk = λkXLpX

Tpk (7)

where pk ∈ R
N is the eigenvector corresponding to the

kth smallest eigenvalue λk, and

Ls =(IM×M −Ws)
T (IM×M −Ws) (8)

Lp = IM×M . (9)

7: Assemble projection matrix

P = [p1 · · ·pK ] ∈ R
N×K . (10)

8: Output: Y = PTX ∈ R
K×M

The authors of [9] claim several advantages to the SPGE ap-
proach. First, motivated by manifold learning [21], the sparse-
graph framework conveys information that is valuable for the
following data analysis, such as classification, and automatic
preservation of such sparsity within the DR process is thus de-
sirable. This is in accordance with the observation that a sparse
representation is naturally discriminative [10], [14], [22], [23].
Second, due to an overall context being incorporated into the
weight matrix, in contrast to conventional pairwise Euclidean
distance, SPGE possesses a high degree of noise robustness.
Finally, the number of neighbors adjacent to each vertex in the
graph is adaptive to the specific vertex; this property may be
useful in applications with unevenly distributed data, such as
HSI with heterogeneous spatial regions.

III. SPARSE GRAPH-BASED DISCRIMINANT ANALYSIS

A. SGDA

SPGE as described above is strictly an unsupervised method
for DR. It is limited to unsupervised use as it does not
factor class-label information into the determination of the
DR projection P. We now formulate a supervised version of
SPGE that incorporates class-label information for supervised
discriminant analysis; as the resulting algorithm inherits the
sparsity-preserving characteristics of SPGE, we call it sparse
graph-based discriminant analysis (SGDA). Specifically, for
each sample xm, we use class-label information to partition the
data set into its constituent classes and subsequently examine
the reconstruction error in the projected domain.

More precisely, suppose that, for data set X = [x1 · · · xM ],
we have corresponding class labels Z = [z1 · · · zM ], where the
class of xm is zm ∈ {1, 2, . . . , p}, and p is the total number
of classes in the data set. Define a class-selector function
to be

Sz(xm) =

{
1, the class of xm is zm = z
0, otherwise.

(11)

Then, assuming that the ℓ1 optimization of (4) has been solved
for X resulting in the similarity matrix Ws given by (6), we
define the within-class reconstruction error, in the projected
domain, by extending (3) as

Sw =

p∑

z=1

M∑

m=1

Sz(xm)

·

∥∥∥∥∥P
Txm −

M∑

m′=1

Sz(xm′)(Ws)m,m′P
Txm′

∥∥∥∥∥

2

. (12)

If we define a modified similarity matrix W′
s as

(W′
s)m,m′ =

{
(Ws)m,m′ , zm = zm′

0, otherwise
(13)

then it is straightforward to derive that

Sw=tr
(
PTX (IM×M−W′

s)
T
(IM×M−W′

s)X
TP

)
. (14)

In a similar fashion, we define the between-class reconstruc-
tion error as

Sb =

p∑

z=1

M∑

m=1

Sz(xm)

·

∥∥∥∥∥P
Txm−

M∑

m′=1

[1−Sz(xm′)](Ws)m,m′P
Txm′

∥∥∥∥∥

2

(15)

which can be expressed as

Sb = tr
(
PTX (IM×M −W′′

s )
T
(IM×M −W′′

s )X
TP

)
(16)

where

(W′′
s )m,m′ =

{
(Ws)m,m′ , zm �= zm′

0, otherwise.
(17)

We then find the projection P in an effort to minimize
the within-class reconstruction error while maximizing the
between-class reconstruction error. We thus minimize the ratio
of Sw to Sb; i.e.,

P∗ = argmin
P

Sw

Sb
= argmin

P

tr(PTXLsX
TP)

tr(PTXLpXTP)
(18)

where

Ls = (IM×M −W′
s)

T
(IM×M −W′

s) (19)

Lp = (IM×M −W′′
s )

T
(IM×M −W′′

s ) . (20)

It is well-known that a trace-ratio problem in the form of
(18) does not have a closed-form solution (see, e.g., [24]).
Consequently, such problems are typically solved approxi-
mately with a simpler determinant-ratio problem—in our case

P∗ = argmin
P

|PTXLsX
TP|

|PTXLpXTP|
(21)

which, in turn, is solved via a generalized eigenvalue problem.
The complete SGDA algorithm is detailed as Algorithm 2.
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Algorithm 2 The SGDA Algorithm for DR

1: Input: Data set X = [x1 · · · xM ] ∈ R
N×M , class labels

Z = [z1 · · · zM ], desired reduced dimensionality
K(K < N)

2: for m = 1 to M do

3: Find sparse representation for xm via ℓ1 optimization

min
αm

‖αm‖1 such that ‖Xmαm − xm‖22 ≤ ǫ (22)

where

Xm = [x1 · · · xm−1 xm+1 · · · xM ] ∈ R
N×(M−1)

αm = [αm,1 · · · αm,M−1]
T ∈ R

M−1 (23)

and small tolerance ǫ > 0.
4: end for

5: Form similarity matrices Ws,W
′
s,W

′′
s ∈ R

M×M

(Ws)m,m′ =

{
0, m = m′

αm,m′ , m > m′

αm,m′−1, m < m′
(24)

(W′
s)m,m′ =

{
(Ws)m,m′ , zm = zm′

0, otherwise
(25)

(W′′
s )m,m′ =

{
(Ws)m,m′ , zm �= zm′

0, otherwise.
(26)

6: Solve the generalized eigenvalue problem

XLsX
Tpk = λkXLpX

Tpk, (27)

where pk ∈ R
N is the eigenvector corresponding to the

kth smallest eigenvalue λk, and

Ls = (IM×M −W′
s)

T
(IM×M −W′

s) (28)

Lp = (IM×M −W′′
s )

T
(IM×M −W′′

s ) . (29)

7: Assemble projection matrix

P = [p1 · · ·pK ] ∈ R
N×K . (30)

8: Output: Y = PTX ∈ R
K×M

B. SGDA With Block-Structured Similarity Matrix

In SGDA as described in the previous session, label infor-
mation is not used directly when estimating the Ws matrix
since all samples are employed when finding the sparse rep-
resentation of a single sample. However, it is straightforward to
devise a variant of SGDA that finds the sparse representation
of a sample using only the labeled samples in the same class.
Assume that the samples are ordered, as is common, in terms
of their class labels. In this case, the resulting Ws matrix has a
block-diagonal structure, i.e.,

Ws =

⎡
⎢⎣
W(1) 0 · · · 0
0 W(2) · · · 0...

...
. . .

...
0 0 · · · W(p)

⎤
⎥⎦ (31)

where W(i) is the sparse representation matrix of size Mi ×Mi

for samples in the ith class Ci using the Mi samples belonging

to Ci only. Note that the diagonal of each W(i) is zero to avoid
self-similarity. We call the resulting algorithm block SGDA
(BSGDA) which is shown in Algorithm 3.

Algorithm 3 The BSGDA Algorithm for DR

1: Input: Data set X = [x1 · · · xM ] ∈ R
N×M , class labels

Z = [z1 · · · zM ], desired reduced dimensionality K(K <
N). Assume there are p classes, and the number of
samples in the ith class Ci is Mi, i.e.,

∑p
i=1 Mi = M .

The samples are ordered in terms of their class labels, i.e.,
{zi}|

M1

i=1=C1, {zi}|
M1+M2

I=M1+1=C2,· · ·, {zi}|
M
i=M−Mp−1+1

=

Cp. Ws has a block structure, i.e., coefficients {wij}

|j=1:M1

i=1:M1
, {wij}|

j=M1+1:M2

i=M1+1:M2
, · · · , {wij}|

j=M−Mp−1+1:M
i=M−Mp−1+1:M

may have non-zero values; all other elements are zero.
2: for i = 1 to p do

3: for j = 1 to Mi do

4: Find sparse representation for xj via ℓ1
optimization:

min
αj

‖αj‖1 such that
∥∥∥XCi

j αj − x
Ci

j

∥∥∥
2

2
≤ ǫ (32)

where X
Ci

j = {xm ∈ Ci,xm �= xj}, and small
tolerance ǫ > 0. The zero-padding version is α

′
j =

[0 · · · 0 α
T
j 0 · · · 0]T , where the numbers of

zeros being added before and after αj being∑i−1
k=1 Mk and

∑p
k=i+1 Mk, respectively.

5: end for

6: end for

7: For the graph G = {X,Ws}, form similarity matrices

(Ws)m,m′ =

⎧
⎨
⎩

0, m = m′

αm,m′ , m > m′

αm,m′−1, m < m.
(33)

8: Solve the generalized eigenvalue problem

XLsX
Tpk = λkXLpX

Tpk (34)

to find the kth smallest eigenvalue λk, where Ls = (I−
Ws)

T (I−Ws) and Lp = I.
9: Assemble projection matrix

P = [p1 · · ·pK ] ∈ R
N×K . (35)

10: Output: Y = PTX ∈ R
K×M

In BSGDA, we intentionally disconnect between-class sam-
ples in the sparse graph. This operation is critical, particularly
when the samples in the dictionary possess some coherence,
resulting in an unstable sparse solution for Ws. Since the
objective is to preserve the sparse representation from the
samples in the same class in the projected space, and any partial
representation from other classes is impossible under this set-
ting, within-class samples are further clustered in the projected
space. Consequently, class separability can be enhanced. Note
that, in this case, even when within-class samples are coherent,
class separability is not degraded because a sample is permitted
to be represented by only the samples in the same class,
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TABLE I
GROUND-TRUTH CLASSES AND CORRESPONDING

TRAINING- AND TESTING-SET SIZES FOR INDIAN PINES

Fig. 1. DR to 2-D space for a subscene of the Indian Pines data set.

meaning that it will be assigned the same class label anyway. In
subsequent experiments, we will show that BSGDA can even
outperform SGDA.

C. Evaluation With SVM-CK

The performance of DR can be evaluated with classification
applied to the data resulting from DR, and we use SVMs [15]
due to their popularity. Since spectral signatures of spatially
adjacent hyperspectral pixels are highly correlated, neighbor-
ing pixels often belong to the same class. Consequently, the
coupling of spatial context to the spectral signature can sig-
nificantly improve classification accuracy [25]. A well-known
approach for incorporating such spectral-spatial information
into classification is via the use of a CK within SVM [16]
(called SVM-CK). As in [16], we define the spatial feature
vector for hyperspectral pixel xm to be x̄m, the average vector
over a spatial window of size 5 × 5 surrounding xm. The
spectral feature vector is simply xm itself. Then, using weight
parameter μ, the weighted-summation CK is

K(xm,xm′)=μKs(x̄m, x̄m′) +(1−μ)Kω(xm,xm′). (36)

For spatial kernel Ks, we use a polynomial kernel while a
radial-basis-function (RBF) kernel is used for the spectral
kernel Kω . Note that this is opposite of [16] which origi-
nally used a polynomial kernel spectrally and an RBF kernel
spatially—we have found a 2 to 3% better overall accuracy in
experimental observations for the CK that we propose here. We

Fig. 2. SVM-CK classification performance (overall accuracy) under DR
for Indian Pines. Error bars indicate standard deviation. (a) Mean accuracy.
(b) Mean accuracy with standard deviation.

Fig. 3. Weight matrices for SPGE (Ws), SGDA (W′

s), and BSGDA (Ws).

note that, in this work, SVM-CK is applied to the data after DR;
i.e., xm and x̄m in (36) are of reduced dimensionality.

IV. EXPERIMENTAL RESULTS

We now demonstrate the effectiveness of the proposed SGDA
and BSGDA algorithms on three hyperspectral images. The
classifier parameters (RBF kernel parameter γ, SVM regu-
larization parameter ς , and CK weight μ) are obtained via
cross-validation. The one-against-one strategy is employed for
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TABLE II
SVM-CK CLASSIFICATION ACCURACY (%) FOR INDIAN PINES (K = 30)

classification using SVM-CK. We use the popular libSVM
toolkit2 for SVM, and ℓ1-optimization problems are solved
using SPGL13 [26]. For each image, the number of training
samples is randomly selected according to [27], and we run
the simulation 100 times and report the average as well as the
standard deviation. Throughout, we report results for a variety
of state-of-the-art DR methods, comparing SPGE, SGDA, and
BSGDA to PCA, LFDA, as well as nonparametric weighted
feature extraction (NWFE) [28].

A. Discriminant Capability From a 2-D Visualizaton

To demonstrate the efficacy of SGDA and BSGDA, we
perform a simple visualization experiment on a small spatial
region from the AVIRIS Indian Pines data set (see Section IV-B
for a complete description of the data set) which includes the
alfalfa, corn-notill, corn-min, and corn classes (the first four
classes in Table I); 202 features; and 255 samples as the training
set. Fig. 1 illustrates scatter plots of the original data (the first
two dimensions), wherein classes are highly mixed, as well as
the data after DR to two dimensions by PCA, LFDA, NWFE,
SPGE, SGDA, and BSGDA.

From Fig. 1, we draw several conclusions. First, SPGE,
SGDA, and BSGDA all yield DR superior to that of PCA since
the Euclidean pairwise distance employed by PCA fails to iden-
tify the real local structure. Moreover, with SGDA and BSGDA,
we see that the four classes can be perfectly separated, which
can be explained from the imposed sparsity-preserving and
discriminative information provided by each sample in terms
of the whole training data set. SGDA and BSGDA therefore
preserve the local structure (i.e., multiple modes) better than
the other methods. Second, as compared to LFDA, SGDA and
BSGDA are nonparametric and do not require the setting of
global parameters as needed by LFDA for the computation
of the affinity and local scaling. In particular, LFDA may, in
fact, fail in the case of non-evenly distributed data; this can be
seen in this experiment in the case of the alfalfa class which is

2http://www.csie.ntu.edu.tw/~cjlin/libsvm/
3http://www.cs.ubc.ca/labs/scl/spgl1

represented by only five samples. Thus, in the case that the data
is severely non-Gaussian—a prevalent occurrence in real-world
HSI applications—it is anticipated that SGDA and BSGDA
will outperform other techniques for DR projection. We note
also that, in this demonstration, NWFE also produces perfect
separation of the four classes.

B. AVIRIS Data Set: Indian Pines

We start our experimental evaluation with the popular
AVIRIS Indian Pines4 data set. The AVIRIS sensor generates
220 bands across the 0.2- to 2.4-μm spectral range; however,
we remove 18 water-absorption bands, resulting in an original-
image dimensionality of 202. The Indian Pines image has a
spatial coverage of 145 × 145 pixels at a spatial resolution of
20 m. It contains 16 ground-truth classes which are tabulated
in Table I. For each of the 16 classes, we randomly choose
10% of the labeled samples for training and the remaining 90%
for testing for each class; Table I gives the resulting number of
training and testing samples for each class.

The parameters of SVM and SVM-CK, (ς, γ, μ) =
(256, 0.3536, 0.7) for the original data, are obtained by five-
fold cross-validation. The parameters for the data after DR are
only slightly different from these values. The effect of DR on
the overall classification accuracy is shown in Fig. 2. In this fig-
ure, SVM-CK in the original dimensionality is used as a base-
line, while the three sparsity-based algorithms—SPGE, SGDA,
and BSGDA—are compared to PCA, LFDA, and NWFE. The
results show that BSGDA gives the best overall accuracy for
low dimensionality. Fig. 3 illustrates the weight matrices for
SPGE, SGDA, and BSGDA, where it can be seen that BSGDA
matrix is sparser than the other two.

From Fig. 2, we choose a reduced dimensionality of K = 30
which well represents the classification performance of each
algorithm. We tabulate the classification accuracy (mean and
standard deviation) for each class, overall accuracy, average
accuracy, and κ coefficient in Table II. The overall accuracy

4ftp://ftp.ecn.purdue.edu/biehl/MultiSpec
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Fig. 4. Ground-truth and SVM-CK classification maps for Indian Pines (K = 30).

Fig. 5. SVM-CK classification performance (overall accuracy) as the num-
ber of training samples varies for Indian Pines. Error bars indicate standard
deviation.

is computed as the ratio of correctly classified test samples to
the total number of test samples; the average accuracy is the
mean of the 16 individual class accuracies; and the Cohen-κ
coefficient is computed by weighting the measured accuracies
which show a robust measure of the degree of agreement. In
most cases, the proposed BSGDA outperforms the original
SVM-CK, as well as other DR methods coupled with SVM-CK.
Overall, BSGDA provides the best performance, especially in
the extreme case (e.g., classes 1, 7, and 9 which have only 5,
3, and 2 training samples, respectively). Due to the high cost of
training data, such performance at low numbers of training data
is important in many applications.

Fig. 6. Comparison with k-NN graphs for Indian Pines. Error bars indicate
standard deviation.

One might expect that, as the reduced dimensionality K
approaches the full data set dimensionality N (e.g., Fig. 2(a)
as K → 202), the classification performance of each of the DR
methods would become identical and converge to the perfor-
mance of the original data set. However, as we see in Fig. 2(a),
this is not the case; in fact, when K = N , the performance of
the DR-based methods is even better than that of the original
data set, despite the fact that no DR actually takes place.5

Additionally, the different DR-based methods yield somewhat
different performance even for K = N . We note that this is a

5For example, when K = N , PCA becomes a unitary rotation instead of a
dimension-reducing projection.
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Fig. 7. SVM-CK classification performance (overall accuracy) under added
noise for Indian Pines. Error bars indicate standard deviation. (a) Gaussian.
(b) Uniform.

phenomenon that arises when SVM-CK is the classifier due to
the interaction between its incorporation of spatial features and
the transformation represented by the DR method.

Classification maps on labeled pixels obtained from the
various algorithms are shown in Fig. 4. One can see that, by
incorporating contextual information, BSGDA provides a much
smoother classification map than do the other methods.

Fig. 5 demonstrates how the number of training samples af-
fects the classification performance for the various algorithms.
For this figure, the various parameters are fixed to be the same
as used for Fig. 4. For each test, we randomly choose 1 to 10%
of the labeled data in each class as the training samples and the
remaining samples for testing. The overall accuracy is averaged
over 100 simulations at each training rate so as to avoid any
bias induced by random sampling. We observe that the overall
accuracy of BSGDA monotonically increases as the training
rate increases in all cases.

Fig. 6 compares with two k-nearest-neighbor (k-NN) graphs
with weights assigned by both binary values as well as a

TABLE III
GROUND-TRUTH CLASSES AND CORRESPONDING

TRAINING- AND TESTING-SET SIZES FOR SALINAS

Fig. 8. SVM-CK classification performance (overall accuracy) under DR for
Salinas. Error bars indicate standard deviation. (a) Mean accuracy. (b) Mean
accuracy with standard deviation.
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TABLE IV
SVM-CK CLASSIFICATION ACCURACY (%) FOR SALINAS (K = 30)

Fig. 9. Ground-truth and SVM-CK classification maps for Salinas (K = 30).
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Gaussian heat kernel. Specifically, two vertices are connected
in the k-NN graph if and only if they are among the k nearest
neighbors of each other (we use k = 5 in both graphs). Regard-
ing weight assignment, all edge weights are unity for binary
weights, while the edge weight between vertices m and m′ is

Wm,m′ = exp

(
−
‖xm − xm′‖2

2

)
(37)

for the Gaussian heat kernel. The parameters are chosen after
careful cross-validation. We see that the k-NN graphs result
in performance significantly lower than that of the ℓ1 graph.
We note that, for Fig. 6, we test using SPGE; however, similar
results have been observed for the SGDA and BSGDA graph
constructions.

Finally, Fig. 7 demonstrates the effect of added noise, in
terms of signal-to-noise ratio (SNR), on the overall classifica-
tion accuracy of the various algorithms. We test both Gaussian
and uniform noise and average over 100 runs as was done
in [29]. We observe that BSGDA gives the best accuracy at
every SNR, emphasizing the robustness to noise that BSGDA
provides as compared to other DR techniques. We note that
low SNR (≤ 30 dB) is commonly encountered in real-world
situations, which is where BSGDA provides the most gain over
other techniques.

C. AVIRIS Data Set: Salinas

The second data set evaluated was collected over the Valley
of Salinas, Central Coast of California, in 1998. It contains
217 × 512 pixels and 224 spectral bands over 0.4 to 2.5 μm
with spatial resolution of 3.7 m. Table III tabulates the
16 classes of interest; we randomly choose 5% of the labeled
pixels in each class as training data and the remainder for test
data. We note that this image has greater spatial homogeneity
than is present in the Indian Pines image.

The parameters of SVM and SVM-CK are set to (ς, γ, μ) =
(512, 0.1768, 0.8) for the original data, and slightly varied for
DR according to cross validation. We investigate performance
as the reduction of dimensionality varies in Fig. 8; again,
BSGDA consistently outperforms the others. The classification
accuracy for each class, overall accuracy, average accuracy,
and the κ coefficient are given in Table IV when K = 30.
Classification maps on labeled pixels obtained are shown in
Fig. 9; we see that the BSGDA map is smoother and in greater
accord with the ground truth.

D. ROSIS Data Set: Pavia

The final image is the University of Pavia, an urban scene
acquired by the Reflective Optics System Imaging Spectrom-
eter (ROSIS) [30]. The ROSIS sensor generates 115 spectral
bands over 0.43 to 0.86 μm. The University of Pavia image has
a spatial resolution of 1.3 m and 610 × 340 pixels, each having
103 bands after bad-band removal. There are nine ground-truth
classes, as shown in Table V. For this image, we randomly
select 8% of all labeled data as training and the remaining 92%
as testing. The University of Pavia image is collected from
an urban area and consequently consists of small buildings,
materials, and trees—this image is substantially different from

TABLE V
GROUND-TRUTH CLASSES AND CORRESPONDING

TRAINING- AND TESTING-SET SIZES FOR UNIVERSITY OF PAVIA

Fig. 10. SVM-CK classification performance (overall accuracy) under DR for
University of Pavia. Error bars indicate standard deviation. (a) Mean accuracy.
(b) Mean accuracy with standard deviation.

the homogeneous Indian Pines and Salinas data sets. Classify-
ing this image therefore is expected to be a challenging task for
many algorithms.

We set (ς, γ, μ) = (128, 0.3536, 0.45) for SVM-CK of the
original data and modify appropriately for DR based on cross
validation. The classification performance as the reduction of
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TABLE VI
SVM-CK CLASSIFICATION ACCURACY (%) FOR UNIVERSITY OF PAVIA (K = 30)

Fig. 11. Ground-truth and SVM-CK classification maps for University of Pavia (K = 30).

dimensionality varies is shown in Fig. 10. The classification
accuracy for each class, overall accuracy, average accuracy,
and the Cohen-κ coefficient are shown in Table VI using a

reduced dimensionality of K = 30. For this image, BSGDA
yields better overall performance compared to SGDA as well
as other methods for DR plus SVM-CK. Classification maps
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TABLE VII
COMPUTATION TIME FOR “UNIVERSITY OF PAVIA”

(Ws HAS SIZE 3422 × 3422)

are shown in Fig. 11. There is a significant difference between
BSGDA and the other DR methods. Visually, BSGDA produces
the smoothest map.

To illustrate the computational efficiency of the proposed al-
gorithms as compared to other DR approaches, Table VII shows
the computing times6 for the various methods for the University
of Pavia data set in which the proposed algorithms are slower
than PCA/LFDA but much faster than NWFE. Specifically,
we note:

1) Computation for NWFE includes calculations of a pair-
wise distance matrix, weighted means, scatter-matrix
weight, as well as a generalized eigenvalue decomposi-
tion [28].

2) PCA is calculated via SVD, while LFDA constructs local

between-class and within-class scatter matrices based
on an affinity matrix with the projection matrix finally
computed by a generalized eigenvalue problem [1], [4].

3) The heaviest computational burden in SPGE, SGDA, and
BSGDA is the construction of an ℓ1 graph while the
projection matrices are calculated the same as in NWFE
and LFDA. BSGDA is fast due to the use of within-
class samples only for sparse representation of each
sample.

V. CONCLUSION

DR has been widely used as a preprocessing step for HSI
analysis. In this paper, we proposed a new supervised DR using
a sparse graph. The resulting SGDA exploited the discriminant
capability from sparse representation, and the discriminant
power was reinforced when labeled information was explicitly
utilized. In particular, the proposed BSGDA constrained the
sparse representation to using only samples with the same class
label to ensure that within-class samples are further clustered
together in the low-dimensional space, thereby maintaining or
even enhancing class separability. Experimental results demon-
strated that the transformed data from SGDA- and BSGDA-
based DR yielded classification performance for HSI superior
to that of other widely used DR methods. The performance
improvement is significant even when the number of training
samples is too limited to apply traditional LDA.

The proposed algorithms inherit the advantage of graph-
based data analysis in terms of capturing geometric structures
of the original data (here, it is about maintaining sparse presen-
tation among classes). However, it has the same disadvantage
of high computational cost associated with graph construction,

6All of the experiments are carried out using MATLAB on a quad-core
3.2-GHz machine with 5.8 GB of RAM.

which is related to determining a large weight matrix (equal to
the number of samples) and solving the corresponding eigende-
composition problem.
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