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Sparse-grid finite-volume multigrid for 3D-problems 

P.W. H e m k e r  

Centrum voor Wiskunde en Informatica, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands 

We introduce a multigrid algorithm for the solution of a second order elliptic equation in 
three dimensions. For the approximation of the solution we use a partially ordered hierarchy 
of finite-volume discretisations. We show that there is a relation with semicoarsening and 
approximation by more-dimensional Haar wavelets. By taking a proper subset of all possible 
meshes in the hierarchy, a sparse grid finite-volume discretisation can be constructed. 

The multigrid algorithm consists of a simple damped point-Jacobi relaxation as the 
smoothing procedure, while the coarse grid correction is made by interpolation from several 
coarser grid levels. 

The combination of sparse grids and multigrid with semi-coarsening leads to a relatively 
small number of degrees of freedom, N, to obtain an accurate approximation, together 
with an O(N) method for the solution. The algorithm is symmetric with respect to the three 
coordinate directions and it is fit for combination with adaptive techniques. 

To analyse the convergence of the multigrid algorithm we develop the necessary Fourier 
analysis tools. All techniques, designed for 3D-problems, can also be applied for the 2D 
case, and - for simplicity - we apply the tools to study the convergence behaviour for the aniso- 
tropic Poisson equation for this 2D case. 

Keywords: Sparse grids, multigrid, finite volume, discrete Fourier transform, wavelets. 

AMS subject classification: 65N55, 65N22, 65T20. 

1. I n t r o d u c t i o n  

In this pape r  we describe the a p p r o x i m a t i o n  o f  a func t ion  on  a f ini te-volume 

sparse grid, and  a mul t igr id  a lgor i thm for  the solut ion o f  par t ia l  differential  

equa t ions  in three dimensions .  The  a lgor i thm is in tended  for  the solut ion o f  flow 

prob lems  descr ibed by conse rva t ion  laws, and  the re fore  finite volumes  are a 

na tura l  choice  for  the discret isat ion.  But  to  in t roduce  the ma in  principles,  we 

will restr ict  the t r ea tmen t  here  to second o rde r  elliptic equat ions ,  and  in par t icu la r  

to the an iso t rop ic  Po isson  equat ion .  

In con t ras t  to the usual  mul t igr id  approach ,  we do  no t  use a sequential ly  o rde red  

set o f  discret isat ions on  different  meshes,  bu t  we use a par t ia l ly  o rde red  h ie ra rchy  o f  

" s emi -coa r sened"  grids as p r o p o s e d  e.g. by  M u l d e r  [6,7] and  N a i k - V a n R o s e n d a l e  

[8] or  Zenger  et al. [3,9]. As indicated  in [9], adap t ive  " spa r se -g r id"  discret isat ions 
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can be constructed by taking a suitable subset of  all possible discretisations in such 
a hierarchy. However,  in contrast  to the sparse grid approximat ion  proposed in 
[3,9], we base our approximat ion  on finite volumes rather than on finite elements. 

The multigrid algori thm consists of  damped  Jacobi relaxation as a smoothing  
procedure and a coarse grid correction constructed by extrapolat ion f rom simul- 
taneous corrections on several coarser grid levels. 

The algori thm is completely symmetric with respect to the three coordinate 
directions and it is suitable for combinat ion  with adaptive techniques. A descrip- 
t ion of a data structure to implement  such adaptive three-dimensional algori thms 

is given elsewhere [5]. 

2. F i n i t e - v o l u m e  sparse  g r ids  

In this section we introduce finite-volume sparse grids. We show the relation 

between the approximat ion by Haar  wavelets (when this not ion is extended to 
more  dimensions) and the sparse-grid approximation.  For  the theory of  wave- 
lets, mult iresolution analysis (MRA)  etc. we refer to Daubechies [2]. 

2.1. The more-dimensional MRA 

A multidimensional multiresolution analysis of L2(f~), ft = IR 3, is a partially 
ordered set of  closed linear subspaces 

{v. v. c 
with the properties: 

(1) MVn= {0}; Uvn Cdense L2(a); 
n n 

(2) f ( x )  E V, ,~=~f(2"x) E V.+m Vn E g 3, m E E; 
(1) 

(3) f ( x )  E V, ec, f ( x -  2-"k) E V, V k E Z  3 , n E E ;  

(4) 3q~ E Vo: {4~(x - k)}k~z~ is a Riesz basis for Vo. 

Here n = (nl,n2,n3) E Z 3, and we denote In I = n I + n  2 -k- n3; 2 n = (2"',2"2,2"3). 
We also use the nota t ion  o = ( 0 , 0 , 0 ) E  N3; x = (xl,x2,x3)E tR3; 2"x = (2'(xl, 

2~2x2,2"3x3). Further ,  we introduce in N 3 the unit  vectors ek, k = 1, 2, 3, as 

follows: e l ( I ,0 ,0 ) ;  e2 = (0, 1,0); e3 = (0,0, 1), and we use e = (1, 1, 1). Finally 
we define E = {el,ez,e3}. Al though we are particularly interested in the three- 
dimensional case, generalisation to a different number  of  space dimensions is 

straightforward. The function ~b(x) in (1.4) is called the sealing function of the 
mult iresolution analysis. 

2.2. Piecewise constant function spaces 

Let either [2 =]1~3 be the three-dimensional Euclidean space, or let 
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f~ = (0, 1)3 c R 3 be the open  unit  cube. For  any n E Z 3 we introduce the function 

space V., i.e. the space o f  piecewise constant  functions on a uniform grid with 
meshsize h = (2-"~,2-n2,2-"3). These grids are uniformly spaced in each of  the 
three coordinate directions, but  possibly with a different meshsize in the different 
directions. The volume of  these cells is denoted by h 3 = 2 -In[. The functions in V. 

are all constant  in each cell 

an, * = [kl2-n',(kl + 1)2-"'1 x [ke2-"2, (k2 + 1)2 -"2] x [k32-"~, (k3 + 1)2-~3], 

and this family of  cells forms the grid f~. = {[2~,k t fin, , C f~, k E Z3}. The family of  
cell centres or cell nodes is denoted by f~  = {Z~,k [Z.,t, = (k + e/2)2-";  k E Z3; 
Z.,k C (~}. The number  of  these nodes is equal to the dimension of  V.. 

Apparently,  all grids are identified by a triple n; the number  Inl is called the level 

of the grid n, Notice that  - different f rom a classical multigrid - here and later in 
our multigrid algorithm, there is a clear distinction between the grid-identification 

index n and the level number  Inl. 
Because 

V. C Vn+ej, f o r j  = 1,2,3, (2) 

we see, for construction,  that  nesting relations exist between spaces V. and that  the 
nesting provides a partial ordering1: 

V,C V. ¢~ n ~< m. (3) 

Spaces V, and Vm or grids f~. and ~"~m that satisfy this nesting relation n < m are 

called related. The construction of the spaces V, shows that even a stronger 

relation holds than (2), namely 

V._ej N V._~ = V.-ej-ek, j , k =  l,2,3, j C k. (4) 

We also see that  for f~ = IR 3 the spaces { V.}.~z3 form a mult iresolution analysis 

and that  in this case the characteristic function on the unit  cube, ~b E Vo, 

1 i f x  E Fro, o, 

q~(x) = 0 i f x ~ f ] o , o ,  (5) 

serves as the scaling function. The set {q~, I q~,(x) = ~b(2"x - k), k C Z 3} forms a 
basis in V., which corresponds with the usual Haar-basis for the one-dimensional  

case. 
In the case f~ = (0, 1) 3 we restrict ourselves to V. with nl,n2,n3 >1 0 and we see 

dim(V.)  = 2 tnl. Formally,  for f~ = (0, 1) 3 and nl,nz or n 3 negative we define 

V. = V~,,.2,.3 by V. = {0}. 

t W e  def ine  the  inequa l i t i e s  b e t w e e n  t r iples  by  

n < m ¢* n I < ml~r/2 < m2~n 3 < m3~ 
a n d  

n <~ m ¢e~ nl <<. ml,n2 <<. m2,n3 <-% rn3. 
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For  all spaces V. we introduce the restriction operator  R.: L2(f~) ---, V., the L 2- 
projection such that  for u E L2(f~) we have R.u E V. and 

(R.u)(z.,k) = 21"1~ u(z) dz. (6) 

2.3. More-dimensional wavelets 

We introduce the wavelet space IV. c Vn which consists of  all functions in V~ 
that  are not  represented in any of  the related function spaces on the next coarser 

level, i.e. they are in V. but not  in Span(V._e, ,  Vn_e:, V._~),  or 

Vn = W. ® Span(V._~,,  V._~2 , V._~),  (7) 

{0} = IV. n Span(V._e, ,  I/"._. 2, V._~3). (8) 

This means that  W. contains the "difference informat ion"  that is available in the 

fine grid V. but  not in the span of  the coarser grids V.-e~, V.-e2 and V._e3. 
In our  case, where V. contains the piecewise constant  functions, it is simple to 

construct  the spaces IV. such that  

IV. _1_ Span(V._, , ,  Vn_e2 , Vn_e3 ). (9) 

This makes IV. the or thogonal  complement  of Span( V._ It,0,0), V._ (0, t,0/, Iv._ (0,0,1)) 
in V., and (8) follows immediately f rom (9). 

For  Sq c IR 3 the relation (9) allows a straightforward decomposi t ion of  V.. In the 
case fl = IR 3 we have 2 

t! 1 I! ~ n 3 

V"(IR3)= O O ~ Wj, (10) 
j l  = - - ~  j 2 = - - ~  j 3 = - - ~  

where all IV/are or thogonal  to each other. 
To handle the bounded  domain  f~ = (0, 1)3 we introduce the functions V°(f~) C 

Vn(f2 ) which have a zero mean value on f~, i.e. V°(~)  = {u E Vn(f~)lRo(u) = 0}, 
and we have 3 

n I n2 n3 

V ° ( ~ 2 ) = O  O ~ I . V j ,  (11) 
Jl = 0  9'2=0 ,/'3=0 

and hence 

V n ( a ) =  V o G V  ° =  Vo@ @ I, Vj. (12) 
o~<j~<n 

2 Notice that here, in the more-dimensional case, it is convenient to choose an indexing that is differ- 
ent from the usual indexing in the well-known one-dimensional case. 
3 In the case of a bounded domain, w = (0, 1) 3, W(o&o)(gt ) is the zero-function and the functions 
Wo.,k,J3) with some zero-index (e.g. Wij~,j,.,o) or W(o,o031) have a shape different from those withj > 0. 
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The "difference information" between the approximations of a function 
f EL2(~) on two successive levels, R . f E  V. on the one hand and 
R.-e j f  E V._e:,j = 1,2, 3, on the other hand, is given by the orthogonal projec- 
tion Qnf o f f  onto the orthogonal complement W. of V._e: in V.. This is described 
in the following theorem. 

Theorem 2.1 
Let the operator Q.: L2(f~) --, W. be the orthogonal projection onto IV., then it 
follows that 

Q.u = Rnu - Rn_ejU - R n _ e 2 U  - R n _ e 3  u 

-I- Rn_e2 _e3U q- Rn_el _e3U -t- Rn_el _e2 u - -  Rn_eU, 

or, equivalently, 

Q.u = Rnu - Rn_eU 3v Z ( R n - e + e j  u - R n - e j / ' / ) "  (13) 
j =  1,2,3 

Pl'oof 
From (10) or (12) it follows that (possibly neglecting functions in V o if ~2 = (0, 1)3) 

~.=®w. 

so that 

and 

j<~n 

RnU = E Qju, (14) 
j~<n  

R n - Rn_e l  - Rn_e2 - Rn_e3 -t- Rn_e2_e3 -~ R n - e l - e 5  + R n - e t - e z  - -  R n _ e  

j~<n  j ~ < n - e l  j ~ < n - e 2  j ~ < n - e 3  

+ Z Q,+ Z Q,+ Z 
j ~< n - e z - e  3 j ~ < n - e  I - e  3 j ~< n - e | - e  2 

: Z Q,+ Z; e,+ Z 
n - e < j  ~ n n - e  I < j  ~ n n - e  2 < j  ~ n 

- E Q,- ~ Q'-- 
n-e2-e3 <j ~ n n-el -e3 <j<~ n 

= Qn- 

. Q j -  Qj 

j ~ < n - e  

n - e 3 < j ~ <  n 

Z Q, 
n--e  I --e 2 < j  ~< n 

[]  

Remarks 
• In the right-hand-side of equation (13) we recognise the information that can be 

represented on the levels In[, In[ - 3, [n I - 2,  In[ - 1, respectively. 
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In (13) the information on the levels In[ - 2 and In[ - 3 can directly be derived 
from the information on level Inl - 1, e.g. by R._e2_e3u = R._e2_e3(R._~u ). 

Thus, expression (13) describes the difference information between R.u  and 
its approximation on the related next coarser grids. 
Notice that in the two-dimensional case the relation (13) reduces to 

Q.u = R,~u - R . _ ~ u  - R,,_~2u + Rn_eU , (15) 

where e = (1, 1), and in the one-dimensional case we have 

Q.u = R.u  - R._eu. (16) 

First, in the remainder of this section we restrict ourselves to the case of the 
unbounded domain f~ = R3. The four relations (1.1) to (1.4) imply that also the 
spaces W n are scaled versions of one space Wo, 

f ( x )  E W.  ¢*f(2-*x) E Wo, Vn E Z 3, (17) 

and, moreover, that they are translation invariant for the discrete translations 
2-nz 3, 

f ( X )  E W o e * f ( x - k )  E Wo, V n E Z  3. (18) 

The relations (7) and (9) make that they are mutually orthogonal spaces, generating 
all functions of L2(II~3), 

W._t_ W., f o r n C m ,  

~nEZ3 W° Cdens e L2(]~3). (19) 

Summarising, we obtain a nesting between the spaces { V°} and { IV.}, 

Vn-e| 
@ 

Wn-e 

• =V~ 

VII-- e 3 

G 

w. Wn+ej ' 
@ 

g n  + ej - ej _ ~ 

@ 

Vn+e/-e/+l 
@ 

Wo+¢j 
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that  is essentially more  complex than in the classical one-dimensional  case, where 
there is a sequential ordering of  the spaces { V.} and { IV.}. 

As soon as we find a function ~b(x) with the proper ty  that  ~b(x - k), k E Z 3, is a 
basis of  W,, then by a simple rescaling, we see that  ~b(2"x- k) yields a basis of  

W~+,. Such a function is the more-dimensional  generalisation of  a wavelet. Since 
L2(N 3) is the direct sum of  these W~+~, the full collection {~b~,+e(x)[~b~,+e(x)= 
~(2nx - k), n, k E Z 3} is a basis of  L2(R3). 

It is easy to check that  the more-dimensional  wavelet ~b(x) E We, corresponding 
with the scaling funct ion 4~(x) E V., f rom the previous section, is the three-dimen- 
sional checkerboard basis funct ion 4 given by (5): 

= 0 i f x  ~ f~o,o, 

~b(x) = +1 i f x  ~ S2o, o, x ~ f~,k, Ikl even, 

- 1  i f x  ~ f~o,o, x ~ f~,k, Iki odd. 

This funct ion is the three-dimensional generalisation of  the Haar-wavelet.  
In wavelet theory the spaces W. are labelled channels, and the distinct channels 

are linearly independent .  The first decomposi t ion  of  an arbitrary funct ion f rom 
L2(f~) with ~ = R 3 consists in writing u(x) = }-'~. u.(x),  where each u. belongs to 

the corresponding channel  W. with n c Z 3. 
Similarly, we can write for functions defined on f~ = (0, 1) 3 the relation (12) and 

make  a similar decomposi t ion  in channels. Each subspace W~+e, n />  o, has its 
natural  basis, the standard basis 5 

{~b~,+e(x) 1 ~b~,+'(x) = g,(2"x - k)} 

of  functions with a minimal  support .  The basis function ~b~, +e is a scaled, elementary 
checkerboard function, that  may  be characterised either by its suppor t  which is a 

single cell in f~. or by the centerpoints of  this cell, zn, k. 
For  f~ = (0, 1 )3, the exceptions related with the boundary  are found in the spaces 

W. with a zero index (i.e. nl.n2"n3 = 0). These IV. have basis functions with 
different shapes. They are derived f rom the corresponding functions for the 

u n b o u n d e d  case, but  their suppor t  is restricted to f in- ,  M ft. Their  corresponding 
nodal  points  z._ e,k are found on the boundary  0f~ = (~ \ 9t, n ~< e, n ¢ o. Taking  
this into account,  bo th  for f~ = (0, 1) 3 and for f~ = R we may write for each 
u E L2(f2) a wavelet expansion 

u(x) = Z a,,,kg,(2"x - k). (20) 
n,k 

4 Notice ~b E We c V, is a function piecewise constant on fl,. 
5 Notice that in more dimensions we use the indexing ~b~, +e, whereas in the one-dimensional case one 
usually writes ~b~.. 
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2.4. Approximation results 

The decomposi t ions (10) or (12) clearly allow the approximat ion  of  a sufficiently 
smooth  function in L2(ft) by a series with elements in I,V i. To obtain an impression 

of  the quality of  these expansions we derive some error estimates. 
As the case where boundaries  are present is the more  general one, we take 

f~ = (0, 1) 3. To  quantify the error of  approximat ion  on f~, we introduce for 
U E C3(~='~) t he  seminorm 6 

tut = sup 03u(x) 
x~a OXlOX2OX3 

Now we derive the following 

]( 0 ; (  0 ) q (  0 ) r • 
+ max sup ~ - -  - -  u(x) 

P,q,r=O, l xsOft COX 1 OX 2 COX 3 
(21) 

Theorem 2.2 
If  we consider an expansion o f a  C3(~)-funct ion,  u, in piecewise constant  functions 

on the grid ~in, for an arbitrary n E Z 3, n > o, and if we write 

R.u = vo + ~ ui, 
o~j~<n 

w i t h y  oC V o a n d u  i E W i, o <~ j <~ n, then 

IlujllL:(n) ~< 2-3ul/21ul, 

and we get an estimate for the approximat ion  error 

[lu - Rnullf2(n ) ~< 8.7-3/2(2 -3'' + 2 -3"2 + 2-3n3)l/2[u I 

<.N 8.7-3/2(h3/2 + h~/2 + h~/2)lul. (22) 

Proof 
We take the normalised {~)/} = {21J-~l/2~p~} as a basis in Wj, o ~<j~< n, j C o .  

Clearly, all those functions are or thogonal  to all functions Vo c Vo and mutual ly  
they form an o r thonormal  set (an o r thonormal  Haar  basis) in W i c L2(f2). We 
see this as follows 

~ W e ,  

We, 

we, 

suppor t  (~b) = f~o,o, 

support  (~b~,) --- f2o, k, 

suppor t  (~b~) = f2i_e,k, 

(23) 

or, in other words, ~b~ E V i, but  ~L scales like a basis funct ion in V~_ e. Hence 

/ 91j-el/2d,jglj-el/2d,j df~ 0 for k # m~ Wk ~ wm 

6 The necessity of the boundary terms in this seminorm is seen immediately if we want to approximate 
in L2(f~) smooth functions u E C3(~) that do not satisfy homogeneous boundary conditions. 
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and 

f "~li-el/Z°d'~lJ-~l/2"/"i df't = 21i-~t f "~]~] dUt = 21J-°l fa vk'- +k -o,k df~ = 1. 

Thus, we find 
R.U = Vo + ~ uj, 

o~<j~<n 

with 
uj = ~ ajk(bd = y~(u, (bd)(b~. 

k k 
Now 

aj. ( u , ~ d ) ~ u ~ b L d f ~  fa, -J = = = u ~ k  dO. 
-e,k  

By Taylor expansion around Zj_e,k, we have 

a~_o,k u@d df~ ~< 2-21Jt)t i. (24) 

F o r j  I> e the point zy-e,k lies in the interior of  f~ and the estimate holds with 

lu l=sup  03 u(x) ] 
x~f~ OXlOX2OX3 ." 

For j ;$ e, i.e. for ~b~ with .bcomponent equal to zero, the point zj_e,k lies on 
the boundary and the function ~b~ is constant in one direction over the whole 
domain f~, and it is of Haar-wavelet type for the non-zero indices (or index). In 
this situation the same estimate (24) holds with, e.g. if j l  = 0, 

1 02u(x) 1 
lul = sup ~ l '  

For j = o the relation (24) is trivially satisfied. Hence, the estimate (24) holds for 
j I> o if we use the serminorm (21), and we find 

la, kl ~ 2-2Lyllul, 

so that 

and 

llujll: = ~ lajkl 2 ~ ~ 2-arJtlul 2 = 2-slJllul 2, 
k k 

Ilujll ~ 2-31jl/2[ul, 

l l u -  R.ull: = 

Jl >n!  nl Jl >~ 0 Jl >/0 
orj2 >n2 Z,>n2 j_, I>0 
°r  J3 > n3 J3 >/0 J3 > n3 
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~< (~ )3 (2 -3" l+2-3n2+2-3n3) lU]2 .  

and it follows that  

llu - Roull <. (2 -3nd2 + 2-3nd2 + lul 

= (~)3/2(h3,/2 + h~/2 + h32/2) lu,. 

[]  

I f  we have no further a-priori knowledge about  u, the most  efficient approxi-  

mat ion  will be one with h~ = h2 = h3 because this equalises the three main terms 
in the error bound.  We see that  

Rn=~-~Qj,  
j <<.n 

and the t runcat ion error for u -  Rnu is neither particularly promising nor  
surprising: the major  part  of  the error is produced by the largest meshwidth:  
(max(hl,h2, h3)) 3/2, whereas the total number  of degrees of  f reedom for an 
element in V. is 2 Inl. 

Following the idea of  sparse grids, as in t roduced for finite elements in [3,9], a 

better accuracy per degree of  f reedom is obtained for the approximat ion  operator  

dl~m = ~ Qj (25) 
lJl ~< m 

with m E Z. 

Theorem 2.3 

For  the approximat ion  operator  (25) we have the t runcat ion error estimate 

liu - Rmu[[ < M(e)R-(3-~)m/2]u I = M(e)(hlh2h3)I3-')/2lu 1. (26) 

for some arbitrary small constant  e and a constant  M(e),  depending on e. 

Proof 
Following the same lines as in theorem 2.2, and because ]]ujl ]2 ~< 2-3ijl ]u], we get 

I lu -  Rmull 2= ~ Ilujll = 
Ijl>m 

~< lu] 2 ~ 2 -3u I=  lul 2 ~ ~ 2 -31jl 

IJl >m l>m lJl =1 

= l u 1 2 ~ ( / +  1)(1 + 2) 2_a2_i3_,) , 
2 

l> rn 
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Hence 

lul2M(E) 2 2 -O-')t  

l>m 

= lu12M(e)22-mO-'). (27) 

Ilu- kmull ~< M(c)2-m{3-')/2{ut, (28) 

where 2-"  = h~h2h3 is the volume of the smallest cells in the sparse grid used for the 
approximation of  u. []  

In (22), all hj need to be small and in (26) only their product.  This means that 
for convergence in (22) all meshsizes should tend to zero, whereas in (26) only 
the area should vanish. Further, the estimate (26) is of the same order of  accuracy 
as (22), except for a logarithmic small factor. However, the number of degrees of 
freedom for the approximation (26) is significantly less. Namely, in the unit 
cube, for R.u the number of degrees of freedom is 2 Inl, whereas for /~mu it is 
(m 2 + m + 2)2 m - 1. Because significantly fewer degrees of freedom are involved 
in the approximation Rmu than in the approximation of R(m,m,m)12, i.e. fewer coeffi- 
cients aj, k and fewer gridpoints zi, k, following [3], we call the approximation Rmu the 
sparse grid approximation and 

f2~,= {zj, k I zj, k E f~;, [jl ~<m} 

is the sparse grid or sparse box grid for this approximation on level m. 
In this paper we are interested in the approximate solution of PDEs discretised 

on a sparse grid, i.e. we are looking for an approximation of the solution of  these 
equations in the space 

in I ~< m InI ~< m 

or, for f~ = (0, 1) 3, in the space 

= • v,  = ro • 
o .< Int --<. m 

We call S,,(f~) the mth level sparse-grid space. 

O w.. 
o~<lnl~<m 

3. The multigrid algorithm 

The basis principle of multigrid for the solution of the discrete equation 

Lhuh = fh 

is that the high frequencies in the error are reduced by relaxation on a fine grid, 
whereas the low frequencies are taken care of by coarse-grid discrete equations. 
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The classical coarse grid correction (CGC) step is described by 

u (new) = u (°l°) + PhHLZ, l Rm, (fh - LhU(°ld)), 

where LH is the coarse-grid discrete operator  and Phn and Rm, are the grid-transfer 
operators f rom the coarse-to-the-fine and fine-to-the-coarse grid respectively. 

Uusually the coarse-grid mesh size is twice the mesh size on the next finer grid. 
The coarse grid problem is approximately solved by means of the recursive appli- 
cation of  the same algori thm on the coarser level. In this classical procedure a line- 
arly ordered sequence of  fine and coarse discretisations is required. 

In the case of  our  sparse-grid finite-volume approximat ion,  a discretisation 
should exist for all grids f~., In] ~< m, fine and coarse. On each of  these grids we 
can obtain approximat ions  to un E V~, the solution of  the discrete problem 

L.u,  =fn  on ~ , .  (29) 

These discretisations, however, do not  offer an ordered sequence. Nevertheless, the 
mult idimensional  wavelet decomposi t ion of  ua EVa,  

ua = Vo + ~[] 1~/, with wj C W~, 
j~<n 

allows us to distinguish a high-frequency component ,  wa, that  cannot  be repre- 

sented on coarser grids, and all other components ,  vo and wj, j ~< n, j ¢ n, which 
can be present in coarser grid representations. Therefore we may consider the 
grid ~ .  to be solely responsible for the accurate (and efficient) representation of  
w,. This componen t  is clearly a high-frequency function (in fact a checkerboard- 
type function), of  which an error can be efficiently reduced by a simple relaxation 
procedure as e.g. damped  Jacobi. 

The decomposi t ion (13) in theorem 2. I shows us how a CGC can be obtained 

from these coarser grids in ~2,_ej, J = 1,2, 3, 

u(new) . (old) 
n =Un -}" Z Pn'n-ejLn!ejRn-e) 'nl'n 

j =  1,2,3 

- -  Z Pn.n-e+ejLNle+eJRn-e+% hr. 
j =  1,2,3 

with 

+ P a n  eLn fern earn ,  (30) 

(old) 
r~ = f ~ - L ~ . ~  . (3t)  

Here we denote by Rm, n: V, ~ V m, m ~< n, the restriction operator  defined by 
Rm, nU. = Rmu,, for all u~ E V. c L2(f~). The prolongat ion opera tor  P.,m: Vm--' 
V. can be defined e.g. as the adjoint  of  Rm,.. 

The  third remark following theorem 2.1 shows how the two- or one-dimensional  
case can be treated similarly and we see that  - for the one-dimensional  case - our  
approach  reduces to the classical scheme. 
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1 cn-e+ei = 2 (R"-~+%"-e~+~c"-~j+l + Rn-e+%n-e~_lc,-ej_~), 

j = 1,2,3, and 
1 

c . _ ,  = 5 

./=1,2,3 

This is justified by the fact that  the restrictions are commutat ive,  i.e. 

m <~ n <~ ! ~ Rm, nRn, t = Rm, t 

and the following (trivial) lemma. 

The approach (30) would imply three coarser levels to be active for a CGC,  and 
- as was shown in the remark after theorem 2.1 - we can do with only one coarser 

level by deriving the informat ion on the levels tnl - 3 and Inl - 2 f rom the infor- 

mat ion on level Inl - 1. If  we consider the corrections f rom level Inl - 1, 

Cn_ej = L-~l_ejRn_ejRn_ej,nrn, j = 1,2, 3, (32) 

as approximat ing a single (but unknown)  correction function c. E V., the correc- 

tions f rom the levels In I - 2 and lnl - 3 can be computed  as the mean  values 

(33) 

Lemma 3.1 
If  all discrete operators  Ln are stable and relatively consistent,  i.e. 

IIR.,.+ejL.+o~ - L .R. , .+~II  <~ O(2-I"IP), 

then 

lic.-~j - R . _ % . c . l l  < O(2-1"IP). 

(34) 

The consistent discretisations can be derived e.g. f rom the fine grid discretisation 

L.  by taking the Galerkin approximat ion  

Ln_~j = Rn_ej,.LnP.,n_ej.  

If  the three corrections c._,j were all restrictions of  the (unknown)  correction 

c. E V. indeed, then Rn_e+ehn_ej+,Cn_ey+l and Rn-~+eg,"-~9-' c._~9_, would both 
have delivered the same result, viz., R._~+~j,.c..  This gives the possibility to check 

how well such a function Cn can be determined,  by moni tor ing the quantities, 
j =  1,2,3, 

1 
d._e+ej = ~ (Rn_e+ehn_ej+,Cn_ej+1 -- Rn_e+ej ,n_ej_,en_ej_,  ). (35)  

Summarising,  our  mult igrid a lgori thm now reads: 

(i+ 1) = u(ni) 
un + 

j=1,2,3 

j=  1,2,3 

-I- Pn, n_eCn, n_e, 

Pn, n-ej cn-ej 

Pn, n-e+ejCn-e+ej 

(36) 
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where the corrections are given by (32), (33) and (34). This appears to be much 
similar to a multigrid algorithm by semi-coarsening, proposed by Mulder in [7]. 
The main difference being that Mulder computes an approximation on the full 

grid Rn, whereas we compute the sparse grid approximation Rm. 
The result of  our algorithm is a solution on a sparse grid, i.e. a set of approximate 

solutions, viz. {u.] In] = m}, that are the solutions of the discrete equations 
Lnu, = f . .  All approximations u, representing the same solution u of the contin- 
uous problem, we assume that they approximate the LZ(f~)-projection of  u in 

V m = V(m,m,m ). To approximate this Rmu C I'm, we can construct a unique function 
Um E Vm by means of  the recursive interpolation formula that immediately follows 
from theorem 2.1: 

uk = Z (uk_~j - uk-e+~j) + Uk_~, (37) 
j=1,2,3 

where o ~< k ~< m, tkl = m + 1 , . . . ,  3m; uk_ej are the functions computed in the 

previous recursion cycle and Uk_e+ej and Uk-e are approximations (possibly) 
derived as (33) and (34). In this way we finally obtain the unique representation 

Um=Vo+ Z wk (38) 
o .<< Ikt -< m 

o r  

• s (a) c 

This representation can be considered as the computed solution. 
The same construction can be realised by a "decomposition and reconstruction" 

algorithm as used in wavelet theory [2]. Then the available approximate solutions 
{u,} are decomposed into their components % and {wk} by 

Inl=~ InJ=m 
Vo - and w k -- 

521 
Int =m Inl =m 

and the reconstruction is performed by (38). This can conveniently be performed by 
a kind of a "pyramid algorithm". This will be reported in a later paper. 

In practice, by the choice of  the discrete operator our assumption that the L2(f2)- 
projection of  u was indeed consistently approximated on V,, may not necessarily 

hold, and it can be checked by a monitor  as (35). Now, e.g. the corresponding 
erroneous components might be removed from the sum (38). 

In the light of  the treatment in section 2 it is clear what restrictions and pro- 
longations can be used between the different grids in the multigrid process. 
Because Vn C L2(f~), the obvious restriction R._ej,, is the L2(ft)-projection onto 

Vn-ej: 

R n - % n  = Rn-e i .  
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This makes the diagram for the restrictions commutative: for any ! ~< m ~< n we 

have Rl, mRm, n = RI, n. 

An obvious prolongation can be the transposed restriction 

T 
P~,n-ej = R~-ej,n. 

However, this prolongation being of  low order, it may be more appropriate to 
consider higher order prolongations. Such prolongations can always be repre- 
sented by an additional operator B.: II. ~ V. so that we have 

Pn, . -e j  = B .Rr . -e j  • 

Here we will not elaborate on the different possibilities for B,. 
The algorithm (36) shows that all relaxation processes for u. on one and the same 

level m = lnl can be made in parallel. The cycling between the different (scalar) 

levels can be made as for the classical multigrid method: we can distinguish 
between V-, W- or F-cycles. However, in order to prove that the convergence of 
our multigrid-method is independent of the meshwidth, we now have to take 
into account that all aspect ratios will appear in the discretisations used. 

4. F o u r i e r  convergence  analysis  

In this section we first summarise some results of  Fourier analysis for more- 
dimensional discrete approximations and then we apply this to compute the 
convergence rate of  our sparse-grid multiple-grid methods for the solution of the 
anisotropic Poisson equation. The approach is different from the usual treatment 

of Fourier analysis for multigrid for finite difference methods for the following 
reasons. First, in view of the discretisation of conservation laws and divergence 

problems, we study nested box grids. This implies that mesh points in the coarse 
grids do not appear in the fine grids as well. The nesting of the (box) grids is 
different from the usual nesting of the (finite difference or finite element) grids. 

Second, we do not consider the usual sequences of fine and coarser meshes for 
multigrid methods, but we allow d-dimensional (d = 2, 3) sparse grids. 

Fourier analysis is one of  the common tools to analyse linear constant coefficient 
problems on regular grids, and it is particularly useful if the treatment of boundary 

conditions can be neglected. 
In section 4.1 we describe general tools that can be used for the Fourier analysis 

of functions defined on more-dimensional box grids. The definitions and theorems 
provide a useful machinery for the application of  local mode analysis for the multi- 
grid box-methods. For the technical proof  and details related to this section we 
refer to [4]. 

In section 4.2 we apply tools to analyse the multigrid algorithm introduced in 

section 3. The technical preparations in section 4.1 allow us to be brief and clear 
in this treatment. 
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4.1. Fourier analysis for sparse box grids 

For u E Lz(R 3) we introduce its Fourier Transform (FT) fi, scaled as 

fi(w) = (27r) 3/2 . ~  e-iX~'u(x) dx. (39) 

Then we know that fi E L2(~3), and a back-transformation formula is available, 

t~(x) = (27r) -3/2 : e+;X~'fi(w) dw, (40) 
JR 3 

such that f i (x)= u(x) almost everywhere on IR 3. Moreover, fi ~ L2(IR 3) and 

Parseval's equality holds: I lulIL2(R2) = I lfillL2(R3). 
We are interested in the Fourier transformation for an infinite set of equally 

spaced data. In this case the FT of such a "grid function" is a periodic function 
(a function defined on a torus). Therefore we introduce a few definitions. 

Let h E 1t~ 3, h > o, be given, then the h-periodisation of a function u: ~3 ---, C is 
defined by 

f i (x)= ~ u(x -kh ) ,  (41) 
k E Z  3 

where kh=(klhl,k2h2,k3h3). We also introduce a notation for the three- 
dimensional torus 

Th = (-Tr/h, 7r/hi = (-Tr/hl, 7r/hl] × . . .  × (-Tr/h3, 7r/h3]. (42) 

Further, we need the functions 17 and Sinc [1, pp. 62, 67] on ~3, 

1 f o r l x i l < l / 2 ,  1~<i~<3, 
II(x) = (43) 

0 otherwise, 

and 

sin 7rxi 
S i n c x = ? ~  ~ . 

Using the relations mentioned in [1, p. 98] we find 

0./ HI /= I/sinc(; ) /441 
i = 1 , 2 , 3  

For an h 6 N 3, h > o, we define the dilation operator Dn: L2(]~ 3) --+ L2(]~ 3) by 

Dhf(x) = h-V2f(xh), (45) 

where h = (hlh2h3) 1/3, and the convolution operator,., by 

( f  . g)(x) = (27r)-3/2 JR/3 f (y )g(x  - y ) d y .  (46) 



P. w. Hemker / Sparse-grid finite-volume multigrid 

We now know that 

= D1/hf and f . " g ( w ) = f ( w ) . ~ ( w ) .  

99 

(47) 

4.1.1. Grid functions 
Here we introduce notations for the different types of  grids and grid functions. 

Definition 4.1 

For a fixed mesh parameter h E ~3, h > O, and f o r j  E 7Z3, we define an elementary 

cell by f2h, j = {xl jh  < x < ( j + e ) h } ,  the volume of  the cell is denoted by 
h 3 =  hi "ha "h3, and the box-grid is defined by [2h = {f~h,j [J E Z3}. The regular 

infinite three-dimensional grid of  vertices Zh is defined by Zh = {jh IJ ~ Z3}, 
which should be well distinguished from the shifted grid which is defined by 
g~ = { ( j +  e/2)h IJ ~ Z3} • 

Notice the relation with the grids as defined in section 2.2: f~n can be considered 

as a special case of  f~h, and f~  as a special case of  Z~. 

Definition 4.2 

A complex or a real grid function u'h is a mapping Zh ~ C, or Zh ~ R, and a shifted 
or box-grid function u*h is a mapping Z~, ~ C or Z~ ~ R. 

The vector space of  such grid functions we denote by l(Zh) or I(Z;), or briefly, by 

l. For  any p >/ 1 the space l(Zh) can be provided with a norm I1" lip 

IMllp = h 3 lu'h(jh)l p (48) 

For  a fixed p, all grid functions with a finite norm 11. lip form a Banach space 
denoted by lP(Zh). For p = 2 we know that 12(Zh) is a Hilbert space with the 

inner product 

(u~, v*h)t2(z,) = h 3 ~ u'n(jh)~(jh) with u], v~, E Zh. (49) 
j~Z 3 

Similar definitions are given for I(Z~,): 

* * = E Uh(Z)Vh(Z) with Uh, Vh E Zh. h 3 * = * *  * ( 5 0 )  

zEZ~ 

Definition 4.3 

The direct restriction R'h: L2(]~ 3) ~ l(Zh) is the operator that associates with a 

continuous 7 u E L2(R 3) the corresponding grid function on the grid Zh, defined 

7 In case of a discontinuous function we can replace u by ~ as defined in (40). 
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by 
(R'hu)(jh) = u(jh), Vj C Z 3, (51) 

and the direct restriction R'n: L2(I~ 3) ~/(Z]~) on the shifted grid Z], is defined by 

(R*nu)((j+ e/2)h) = u((j+ e/2)h), Vj e Z 3. (52) 

Definition 4.4 
The box restriction Rh: Lz(N 3) - - *  L2(~ 3) is the LZ-projection on the piecewise 
constant functions on f~h, defined by (cf. equation (6)) 

(Rhu)(x) = h -3 [ u(z) dz, Vx (53) 
dst 

The box-restriction RSn: L2(]~ 3) --' l(Z;t) is defined by Rg = RnRn,* • it associates the 
mean value of u on a cell f~,i with the nodal value at the centre of ~2n, i. 

The box-restriction Rgu should be well distinguished from R*nu. However, the 
L2(fl)-projection Rnu in (53) and the restriction Rgu in (52) are conveniently 
related to each other by 

Rhu = R*h((DnII) * u). (54) 

4.1.2. The Fourier transform of a grid function 
Let u;,: Zh ~ C be a grid function. We give the following 

Definition 4.5 

L2(Th) of grid function u~ c 12(Zh) is a function The Fourier transform u h E a 
Th ~ (2, defined by 

/ ]7 NI3~"~ -ijh . . . . . .  
~(w) = t ~ !  2 ~  e uh(jn ). (55) 

\x/27rJ iez3 

The inverse transformation is given by 

( I ) 3 f ~  e+"n'~(w) dw. (56) 

Let u~,: Z] ~ C be a shifted grid function, then we have 

Definition 4.6 

The Fourier transform u~ E L2(Th) of a shifted grid function u~ E 12(Z~) is a func- 
tion T h --~ C, defined by 

~ ( w ) =  ~ e-i(J+e/2)~°u;((j+e/2)h). (57) 
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Its inverse t ransformat ion is given by 

u ; ( ( j  + e/2)h) = e+ilJ+'/2)t"'~(w) dw. 
~rh 

101 

(58)  

Remarks 

We immedia t e ly see  that  ~ (w)  is [27r/h]-periodic, whereas t ~ ( w ) i s  [27r/h]- 
antiperiodic, i.e. u*h(w + 27r/h) = (-)lelu],(w). 

• We denote  the Fourier  t ransforms also by 

u h = )V(u~) or Uh = ~'(Uh), (59) 

i.e. we introduce the mapping  ~ : /2 (Zh)  ~ L2(Th) or f :  12(Z],) ~ L2(Th). At 

the end of  this section we shall generalise this meaning of  .T'. 
• By the Parseval equality we have 

Ilu;l12 = IluhllL (Th) and Ilugl12 --  Ilu, llL It,). (60)  

Hence the Fourier  t ransformat ion operators  Yr:12(Zh)~L2(Th ) and 
5r: 12(g]t) ~ L2(Th) are unitary operators. 

* f ~lekle* • Because e~,.,, = e~,.,,+2~,/, or e,.~, = ~- /  ,.,o+2~k/,, for all k E 7/"3, on a mesh of  

size h a frequency w cannot  be distinguished f rom a frequency w + 27rk/h. This 

phenomenon  is called aliasing. 

4.1.3. The relation between FTs of a function restricted to different grids 
In this section we first present a few theorems associated with the different 

restrictions between two grids. We describe the relation between the FT  of  a con- 
t inuous function defined on N 3 and the F T  of  its restriction to the grid and then 

we show the relation between the FT  of  a fine grid function and the FT  of  its rep- 
resentation on a coarser grid. Next, we give the corresponding theorems for the 

prolongations.  

Lemma 4.7 

Let u E L2(~ 3) be a cont inuous  function with FT  ~. Its restriction u.~ to the grid gh 

is defined by (51). We have the following relation between h and u~,: 

~(w) = ~ ft(w+ 27rk/h), (61) 
k E Z  3 

is the [2rr/h]-periodisation of  ft. i.e. u h 

Proof 
For  the p roo f  we refer to [4]. [] 

In the following lemmas q-restrictions are considered, with q E Z 3. Here 

q = (ql, q2, q3) is the coarsening factor, where usually 1 ~< qy ~< 2, j = 1,2, 3. 
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Definition 4.8 

Let q E Z 3 with q > o and H = qh, then the canonical q-restriction P~ is the 
operator Rq: l(Zh) ~ l(Zqh) = t(Zn), defined by 

( R;u'h) ( jH ) = u~(jH ) = u'h(jqh ). (62) 

Theorem 4.9 
We have the following relation between the FT of a grid function and that of its 
canonical q-restriction, 

(R~u'h)(w) = ~ ~(oa + 2Top~h), Voa e Tn, H =  qh. (63) 
,e[o,q) 

Proof  

For the proof we refer to [4]. [] 

Lemma 4.9 shows that, using the restriction R~ with q C Z 3, q > o, we get 
aliasing of q3 = q~ "q2"q3 frequencies onto one. 

Now we describe the relation between the Fourier transforms of a continuous 
function and its box restrictions. First we consider the direct restriction to the 
shifted grid, R~, and later the box-restriction, Rh and the q-restriction Rq. 

Lemma 4.10 

= = + 2 k/h). 

k E Z  3 

Proof 
For the proof we refer to [4]. 

For the Fourier transform of u E L2(II~ 3) and Rhu E L2(~ 3) 
following relation. 

(64) 

[] 

we have the 

Theorem 4.11 

~(w)  = R .u (w)= ~ (_);kl Sinc ~ + k .a(w + 2rck/h). 
k E Z  3 

Proof 
Using (54) we see 

= 

= - -  .F'(R**,((DhlI) * u))(w) 

k 

(65) 
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k 

= (2-~)3 /2Z(- ) lk lDl /h~(oo-k-2rrk /h) .~(6o+2rrk /h  ), 

k 

Z (w : k/h).fi(w + 2rrk/h). = h -3/2 (-)lktD~/h Sinc 

k 

) = Z ( - )  It'I Sinc ~-~+ k .gt(w + 2rck/h). (66) 
k 

[] 

Definition 4.12 

Let q E Z 3 with q > o and H = qh, then, for s E [o, q), the s-frequency decomposi- 
s. l(Zh) ~ / (Z qh )  = I(Zn) is defined by tion q-restriction is the operator  Rq. 

(l~qu*n)((j+e/2)t-I)=q -3 ~ (-)St'u*h((qj+k+e/2)h), (67) 
k~[o,q) 

w h e r e  q3 denotes q3 = ql "q2" q3. 

Remarks 
0 ¢¢ • In the case s = o we call/~q = Rq = Rq simply the q-restriction. 

• F r o m  the construct ion of  the restriction operators  Rn s a n d / ~  it is clear that  the 

following relation holds: 

R ~  . B = RqRh. 

Theorem 4.13 
Let q = 2e E Z 3, then for all w E T 3, H = 2h, we have 

(Rquh)(w)=2q_3i  s ~_~ (_ )mCo  s h w + ~ r ( m + s ) . . ~ ( w + ~ / h ) ,  

me[o,q) 2 

where 

Cos(hw/2)= H cos(hjwJ2). 
j= 1,2,3 

Proof 
For  the p roo f  we refer to [4]. 

Definition 4.14 

The natural box-prolongation P'h: 12(Zh) ~ L2(]I~3) is defined by 

u(x) = (/~DZ)(x) = uh((m + e /2 )h) ,  

(68) 

[]  
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for all m C Z 3 and mh < x < (m + e)h. We also introduce a natural prolongation, 
* • • * 2 * * P~, from a coarse to a fine grldfunctlon P~: l (Zn) --~ 12(Zh) by P~ = R ~  where 

• * 2 3 - H = qh. The prolonganon P~h: l(Zh) -~ L ( R )  is the operator dual to R~ in the 
sense that for all u~, E lZ(Z~,) and v E L2(R 3) we have 

( P~ u~, v) t.2(~3) = (u;,, R~ v),2(z~). ( 69 ) 

The following theorems show how we find the FT of the prolongation if the FT 
of the source function is given. 

Lemma 4.15 

a(to) = f(P u )(to) - 

Sin(hto/2) ~(to)• (70) 
hto/2 

Proof 
For the proof we refer to [4]. [] 

Theorem 4.16 
With H = qh and q3 = q~. q2" q3, we have for the FT of the prolongation of a box 
gridfunction 

q-3 Sin(Hto/2) A 
~(w)  = Y:(P*qu*n)(w)= Sin(hto/2) u*n(to). (71) 

Proof 
For the proof we refer to [4]. [] 

4.1.4. The Fourier transform of  operators involving different grids 
In (68) and (71) we see that, by the restriction and prolongation between func- 

tions on grids 9t n and ft.+q, aliasing takes place and that q3 frequencies on f~,+q 
correspond with a single frequency on f~.. This implies that, analysing a multigrid 
algorithm, we have to study the behaviour of the q3 aliasing frequencies together. 
Collecting the q3 corresponding amplitudes of the aliasing frequencies in a single q3_ 
vector, we extend the definition (59) of.T to the case q3 > 1 and obtain ~': 12(Zn) ---, 
[L2(Tqh)] q3 o r  ~-: lZ(z]) ~ [L2(Tqh)] q3 by 

ffY(Uh)(t.O ) ~-- (~lh(to --~ 71"lll/h))mE[o,q), O.1 E Tqh. ( 7 2 )  

With these amplitude-vectors .T(u])(w) and .T(u])(w), we can introduce the linear 
operators .T(R'q)(W) and JC(R*q)(w) by 

.T(R;u'h)(to) = Yr(R'q)(to).T(u'h)(to), to C T,h, (73) 

and 

~(R*qu*n)(to) = ~(R*q)(to).f(u*n)(to), to C Tqn. (74) 

We call the new operators, that depend on to, the Fourier transforms of the original 
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operators. The new operators are g x q3g matrices if g aliasing frequencies are 
considered on the coarse grid. 

Similar to the restrictions, the prolongations can be associated with their Fourier 
transforms. 

and 

.~(P;u'h)(w) = .~(P'q)(W)~(u'h)(w), w E Tqh, (75) 

U(P*qu*h)(w) = Y~(P*q)(W),T(u*h)(w), w E Tqh, (76) 

These operators are q3g x g matrices. 
For arbitrary linear constant coefficient operators Ah: 12(Zh)~/Z(Zh), its 

Fourier transform ¢'(Ah): LZ(Tn) ~ L2(Tn), can also be considered as a q3g x q3g 

diagonal matrix 

7(Ahuh)( o) = V,,  Tqh. 

Because of Parseval's equality we know that 

[[Ah[[2 = max [[Sr(Ah)(w)[[2 = max o(.Y'(Ah))(w), (77) 
~GTqA WETqh 

with o-(A) the spectral norm (the largest singular value) of the matrix A, and 

p(Ah) = max p(U(Ah))(w) ,  (78) 
w E  Tq~ 

where p denotes the spectral radius. This provides us with the means to study the 
norm and the spectral radius of the error-amplification operator of the multigrid 
iteration. 

4.2. Fourier analysis convergence results 

To get some insight in the behaviour of the more-dimensional multigrid 
algorithm introduced in section 3, we use the Fourier analysis to determine the 
convergence rate of the two-level algorithm for the two-dimensional anisotropic 
Poisson equation 

Uxx -[- ~2 Uyy = f , (79) 

discretised by the usual 5-point discretisation. 
The error-amplification operator, Mr., of the two-level cycle (with/z pre- and u 

post-relaxation steps) for the solution of (29) is described by 

e(i+l) = Mne~i) . ~ ( '  .~p(i) (80) 

where Sn denotes the smoothing, e.g. damped Jacobi iteration: 

(new) She(Old) (In aD; 'L . ) e~  °ld), (81) e n ~ ~ _ 

with a the damping parameter and D. the main diagonal of the discrete operator 
L.. The coarse grid correction is described by (30) and (31). For gridfunctions 
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u, E 12(Z~), i.e. neglecting boundary conditions, we find, using (30) 

:r(M.)(,,) = J:(Sn)~(~)J:(C.)(~,)J:(S.)"(~), 
with 

and 

~-(s.) = ~(I .)  - c~'(O.)-l~(L.) ,  

(82) 

(83) 

and 

/ t~lhl cos 
)V(R.-e 2 .) = [ 

' \ 0 

J:(R._,,.)= ( 

0 sin w2h 2 0 ~ ,  

) COS w2h 2 0 sin w2h 2 

sinwlhl 0 0 

) 0 coswlh2 sinwjhl 

cos(~l  hi ) cos(~2h2) , T  

sin(wlhl) cos(w2h2) ] 

cos(wlhl) sin(w2h2) / " 

sin(wlhl) sin(w2h2) ] 

So, with 5v(P. , ._ , , )= U(R._e,,.) r, .T'(Pn, n_e2 ) = U(R._~2,.) r and ~- (P . , . -e )=  
.~(R._,,.) r, the norm IIMn[I and the spectral radius p(M.) can be computed by 
means of (77) and (78). 

From (68) and (71) we know 

.) = ( cosw2h2 
.F ( R,_e, 

' \ 0 

7(C.)  = f f f . )  

- ~ f(e, , . -oj)~(L.-e)-~7(R.-ej , . )~:(L.)  
j= 1,2,3 

+ ~ 7(~.,.-,+,)~:(L.-o+o)-I~:(R.-o+o~,.)f(L.) 
j= 1,2,3 

- 7(P.,n_,).~(Ln_e)-'.~(R._e,.).~(L.). (84) 

To get an impression of the behaviour of the algorithm, keeping the explicit 
computation to reasonable size, we elaborate (82) for the equation (79), for the 
two-dimensional case, with q = (2, 2) and ~ = v = 1. Then YZ(M.)(w) is a 4 x 4- 
matrix, which we derive from (82), (83) and (cf. (15)) 

~-(c.) = Jr(z.) 

_ :r(~. , ._ . ,  ):~(L._.,  )-' ~:(R._. , , . )~:(L.)  

- :F(P.,._,~.)Y(L._,.)-I.~(R._.2,.)y(L.) 

+ Y(P., ._,) .~(L._.)-~.~(R._, , . )Y(L.) .  
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(d) The singular values of 

~-(Mn)(w). 

Figure 1. The frequency response of the operators S. ,  C.  a n d  Mn, for  e = 1, q = (2.2) a n d  a = 2 /3 .  

To study the convergence behaviour of  our algorithm, we consider the matrices 

(83), (84) and (82) as a function of  w E Th = [ - n / h ,  7c/h] 2, and for each w we 

compute the eigenvalues and singular values of  these matrices. We show these 

values in figure 1 for the case a = 2/3 ,  E = 1. Without loss o f  generality we can 

take h = (1, 1), the parameter e taking care of  the anisotropy. The damping para- 

meter a E [0, 1] for the Jacobi relaxation can be chosen freely. We select the value 

a = 2 /3  because it minimises 

max p(~(S.)(w)). 
" ,  = (o, ~rl/,), (¢, o), (~/h,,~/#,) 

This means that o~ = 2 /3  makes S.  a well balanced smoother for the different types 

of  high frequencies (see figure la). 

In figure 1 a we show the eigenvalues of  the smoothing operator, and in figure lb 

o f  the coarse grid correction. In this figure we see that one eigenvalue of  .T(C.) is 

always equal to one. This eigenvalue corresponds with the highest frequencies, for 

which no correction can be obtained from any of  the three coarser grids. The 

combined effect of  the smoother and the coarse grid correction is seen in figure 

lc, which shows that sup., p ( M . ( w ) )  ..~ 1/9, and also in figure ld,  where we see 
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o.I o.+ 

(a) The  eigenvalues of  9V(Mn)(oa). 

1.6 
l.t 

o,1 

o++ 
o.4 

(b) The  s ingular values  of  ~'(Mn)(Oa). 

Figure 2. The frequency response of the operator 3//., for e = 1/8, q = (2,2) and a = 2/3, 

sup  IIM.( )It ~ 1/3. The rather low maximal values show that - at least for 

square fine-grid cells - the multigrid algorithm has good convergence behaviour. 

Because it is important that the algorithm is effective for an arbitrary cell aspect 

ratio, in figures 2 - 4  we show the singular values of  9r(M,)(w) also for e = 1/8 and 

for the limit as e ~ 0. N o w  it appears that for high aspect ratios the convergence 

behaviour deteriorates. We find sups, lim+~0 cr(Sr(M.)(w)) ,~ 5. This implies that 

we cannot always guarantee error reduction for a single iteration sweep. Therefore 

we show in figure 4 also the behaviour of  M2.(w). This shows that a couple of  two 

consecutive iteration steps does guarantee error reduction, and the convergence 

rate is significant: 

!im pC.F(M2. )(w)) .~ 1/9. s u p  
~ --"p u 

As a consequence we can expect that a W-type cycle of  the multigrid algorithm will 

have good convergence properties. 

From the computations of  which the results are summarised in figures 2-4 ,  

we conclude that the eigenvalues of  the iteration matrix are less than 1, uniformly 

in the parameter e. In fact, max+ p(M.),-~0.33 and max+ IIM.II ~ 5.0 and 

.O. 

-¢.2 
+0.) 

(a) The  eigenvalues of  

lime--.o .T'(Mn)(~o). 

0.2 

0+I 

l o . i  

o.6 o4 o.1 

(b) The singular values of 

l im,-+o ~'(Mn)(Oa).  

Figure 3. The frequency response of the operator lim,_0/14+., for q = (2, 2) and a = 2/3. 
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0 . 0 1  
I) 0 ' I  

0 . 0 1  

0.¢* 

l l , l l  

o . l ,  

* . o l .  

(a) The eigenvalues of 
lime-,0 .f(M~)(~o). 

(b) The singular values of 
lime--.o ~'(M2n)(oa). 

Figure  4. The  f requency response  o f  the o p e r a t o r  l im ,~  o M .  z, for  q = (2, 2) and  a = 2 /3 .  

max~ IIM 211 ~ 0.11. The fact  that  IIM.II > 1 and  IIMffll << l shows that ,  in general,  
a W-cycle  will be necessary to guarantee  a good  convergence  rate for  the algori thm. 

A l though  only 4 x 4-matrices,  the expressions for  S ' ( M . ) ( w )  or  ~ ( C . ) ( w )  are 

too  complex  to show them here explicitly. Howeve r ,  to unders t and  their behav iour  

it is interest ing to see how the matr ices  behave  in the n e i g h b o u r h o o d  o f  the origin. 

Therefore  we expand  the elements  o f  f ( M , ) ( o . , )  in powers  o f  ~ and we show the 

principal terms. We  see that  

Y ( M . ) ( w )  

( - d  - c~2)2da 2 . j  (d + ¢2)~2(-d + 6G 2) ( - d  - ¢2)¢4(¢_, _ &2) ( - d  - ~2)6 

8(e2 + 1)2(e2 + 0.2) 2 2(e2 + i)2(e2 + o.2) 2 co 2a( e2 + o~)2(e 2 + 1) 2 co cr(e 2 + 1) 

(E2 + cr2)cr2(_e2 + &p)co 3 (_e2 + 6o.2)22e2(2 + c2) oJ 2 (e2 _ &r2)(a2 _ &2)e2 (~2 _ &~r2)e26w 

8(e2 + 8)(e2 + oa) 2 4(e2+l)2(e2+oa) 2 a(e2+oa)2(e2+l) 2~(e2 + 1) 

¢(_E2 _ ~2)e2(¢2 _ &2).j (¢2 _ &2)(_e2 + 6o.2)o. ( o2 - 6e2)2( 1 + 2e2) 2 ( °.2 --  6~2) 6 

(8d  + 8)(e 2 + oa) 2 (e 2 + a2)2(e 2 + 1) 4(e2 + 1)2(e2 + o.2) 2 w 2e2(~ 2 + 1) w 

cr(-¢ 2 - a:2)6 , 6e2(--J  + 60"2)Cr (or 2 -- &2)6 62 

" 4 ~ ' - + 4 ~ "  w- - - ( 2 c 2 + 2 o a ) ( e 2 + l ) W  ( 2 e 2 + 2 o a ) ( e 2 + l ) W  

where 6 = 2a  - 1 is the damping  parameter ,  and we denote  w = cv~ and 032 : O'W. 

We notice that  a singulari ty is present  at the origin. The  limit lim~_~0 . T (M, ) (w)  

depends  on  the rat io a = Wz/~Vl. This is the reason why  the eigen- and  singular 

values are missing at w = o in figures 1 and 2. 

5. Summary 

In this paper  we describe a mult igr id a lgor i thm for second order  elliptic 

equat ions  in three dimensions.  We  assume f ini te-volume discretisation,  F o r  the 

approx ima t ion  we use piecewise cons tan t  basis funct ions,  that  are the tensor  

p roduc t  general isat ion of  the one-dimensional  case. Using a family o f  un i fo rm 
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grids, each member with a different size of support in the different coordinate direc- 
tions, we obtain a hierarchy of approximations. The corresponding set of function 
spaces can be interpreted in terms of wavelet terminology as a three-dimensional 
multiresolution analysis. Following the idea of sparse grids, a selection of 
degrees of freedom is made, that gives a high accuracy for a relatively small 
number of degrees of freedom, provided that a certain smoothness requirement 
is satisfied. 

A multigrid algorithm of additive Schwarz type is now constructed for the 
solution of the discrete system, and its convergence is analysed by Fourier 
analysis. For this purpose the necessary tools are developed for the Fourier 
analysis of the box-grid functions. 

From the analysis of which the results are summarized in figures 1-4, we 
conclude that, with simple damped Jacobi iteration as a smoother, the spectral 
radius of the multigrid iteration matrix is less than 1, uniformly in the cell aspect 
ratio. In fact, for e the cell aspect ratio, we find max, p(M.) ~ 0.33. 

The spectral norm can be larger than one. We find max, IIMnll ~ 5.0. This may 
indicate that a V-cycle type algorithm will not converge. However, it appears that 
max, IIM.211 ~ 0.11. This shows that, in general, a W-cycle will be necessary to 
guarantee a good convergence rate for the algorithm. 
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