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SPARSE-GRID POLYNOMIAL INTERPOLATION APPROXIMATION AND
INTEGRATION FOR PARAMETRIC AND STOCHASTIC ELLIPTIC PDES

WITH LOGNORMAL INPUTS

Dinh Dũng

Abstract. By combining a certain approximation property in the spatial domain, and weighted
ℓ2-summability of the Hermite polynomial expansion coefficients in the parametric domain obtained in
Bachmayr et al. [ESAIM: M2AN 51 (2017) 341–363] and Bachmayr et al. [SIAM J. Numer. Anal. 55
(2017) 2151–2186], we investigate linear non-adaptive methods of fully discrete polynomial interpola-
tion approximation as well as fully discrete weighted quadrature methods of integration for parametric
and stochastic elliptic PDEs with lognormal inputs. We construct such methods and prove convergence
rates of the approximations by them. The linear non-adaptive methods of fully discrete polynomial
interpolation approximation are sparse-grid collocation methods which are certain sums taken over fi-
nite nested Smolyak-type indices sets of mixed tensor products of dyadic scale successive differences of
spatial approximations of particular solvers, and of successive differences of their parametric Lagrange
interpolating polynomials. The Smolyak-type sparse interpolation grids in the parametric domain are
constructed from the roots of Hermite polynomials or their improved modifications. Moreover, they
generate in a natural way fully discrete weighted quadrature formulas for integration of the solution to
parametric and stochastic elliptic PDEs and its linear functionals, and the error of the corresponding
integration can be estimated via the error in the Bochner space 𝐿1(R∞, 𝑉, 𝛾) norm of the generating
methods where 𝛾 is the Gaussian probability measure on R∞ and 𝑉 is the energy space. We also briefly
consider similar problems for parametric and stochastic elliptic PDEs with affine inputs, and problems
of non-fully discrete polynomial interpolation approximation and integration. In particular, the con-
vergence rates of non-fully discrete polynomial interpolation approximation and integration obtained
in this paper significantly improve the known ones.
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1. Introduction

One of basic problems in Uncertainty Quantification are approximation and numerical integration for para-
metric and stochastic PDEs. Since the number of parametric variables may be very large or even infinite, they
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are treated as high-dimensional or infinite-dimensional approximation problems. Let 𝐷 ⊂ R𝑑 be a bounded
Lipschitz domain. Consider the diffusion elliptic equation

−div(𝑎∇𝑢) = 𝑓 in 𝐷, 𝑢|𝜕𝐷 = 0, (1.1)

for a given fixed right-hand side 𝑓 and spatially variable scalar diffusion coefficient 𝑎. Denote by 𝑉 := 𝐻1
0 (𝐷)

the energy space and let 𝑉 ′ = 𝐻−1(𝐷) be the conjungate space of 𝑉 . If 𝑎 satisfies the ellipticity assumption

0 < 𝑎min ≤ 𝑎 ≤ 𝑎max <∞,

by the well-known Lax–Milgram lemma, for any 𝑓 ∈ 𝑉 ′, there exists a unique solution 𝑢 ∈ 𝑉 in weak form
which satisfies the variational equation∫︁

𝐷

𝑎∇𝑢 · ∇𝑣 d𝑥 = ⟨𝑓, 𝑣⟩, ∀𝑣 ∈ 𝑉.

We consider diffusion coefficients having a parametrized form 𝑎 = 𝑎(𝑦), where 𝑦 = (𝑦𝑗)𝑗∈N is a sequence of
real-valued parameters ranging in the set U∞ which is either R∞ or I∞ := [−1, 1]∞. In this case, the solution
𝑢(𝑦) to the parametrized diffusion elliptic equation

−div(𝑎(𝑦)∇𝑢(𝑦)) = 𝑓 in 𝐷, 𝑢(𝑦)|𝜕𝐷 = 0, (1.2)

can be considered as a map 𝑦 ↦→ 𝑢(𝑦) from U∞ to the space 𝑉 . The objective is to achieve numerical approx-
imation of this complex map by a small number of parameters with some guaranteed error in a given norm.
Depending on the nature of the modeled object, the parameter 𝑦 may be either deterministic or random. In the
present paper, we consider the so-called lognormal case when U∞ = R∞ and the diffusion coefficient 𝑎 is of the
form

𝑎(𝑦) = exp(𝑏(𝑦)), 𝑏(𝑦) =
∞∑︁

𝑗=1

𝑦𝑗𝜓𝑗 , (1.3)

where the 𝑦𝑗 are i.i.d. standard Gaussian random variables and 𝜓𝑗 ∈ 𝐿∞(𝐷). We also briefly consider the affine
case when U∞ = I∞ and the diffusion coefficient 𝑎 is of the form

𝑎(𝑦) = �̄�+
∞∑︁

𝑗=1

𝑦𝑗𝜓𝑗 . (1.4)

In order to study fully discrete approximations of the solution 𝑢(𝑦) to the parametrized elliptic PDEs (1.1),
we assume that 𝑓 ∈ 𝐿2(𝐷) and 𝑎(𝑦) ∈𝑊 1

∞(𝐷), and hence we obtain that 𝑢(𝑦) has the second higher regularity,
i.e., 𝑢(𝑦) ∈𝑊 where 𝑊 is the space

𝑊 := {𝑣 ∈ 𝑉 : ∆𝑣 ∈ 𝐿2(𝐷)}

equipped with the norm
‖𝑣‖𝑊 := ‖∆𝑣‖𝐿2(𝐷),

which coincides with the Sobolev space 𝑉 ∩𝐻2(𝐷) with equivalent norms if the domain 𝐷 has 𝐶1,1 smoothness,
see Theorem 2.5.1.1 of [19]. Moreover, we assume that there holds the following approximation property for the
spaces 𝑉 and 𝑊 .

Assumption 1.1. There are a sequence (𝑉𝑛)𝑛∈N0 of subspaces 𝑉𝑛 ⊂ 𝑉 of dimension ≤ 𝑚, and a sequence
(𝑃𝑛)𝑛∈N0 of linear operators from 𝑉 into 𝑉𝑛, and a number 𝛼 > 0 such that

‖𝑃𝑛(𝑣)‖𝑉 ≤ 𝐶‖𝑣‖𝑉 , ‖𝑣 − 𝑃𝑛(𝑣)‖𝑉 ≤ 𝐶𝑛−𝛼‖𝑣‖𝑊 , ∀𝑛 ∈ N0, ∀𝑣 ∈𝑊. (1.5)
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A basic role in the approximation and numerical integration for parametric and stochastic PDEs are general-
ized polynomial chaos (gpc) expansions for the dependence on the parametric variables. We refer the reader to
[9,12,20,28,29] and references there for different aspects in approximation for parametric and stochastic PDEs.
In [5–11], based on the conditions

(︀
‖𝜓𝑗‖𝑊 1

∞(𝐷)

)︀
𝑗∈N ∈ ℓ𝑝(N) for some 0 < 𝑝 < 1 on the affine expansion (1.4),

the authors have proven the ℓ𝑝-summability of the coefficients in a Taylor or Legendre polynomials expansion
and hence proposed best adaptive 𝑛-term methods of Galerkin and collocation approximations in energy norm
by choosing the set of the 𝑛 most useful terms in these expansions. To derive a fully discrete approximation the
best 𝑛-term approximants are then approximated by finite element methods. Similar results have been received
in [24] for Galerkin approximation in the lognormal case based on the conditions

(︀
𝑗‖𝜓𝑗‖𝑊 1

∞(𝐷)

)︀
𝑗∈N ∈ ℓ𝑝(N) for

some 0 < 𝑝 < 1. In these papers, they did not take into account support properties of the functions 𝜓𝑗 .
A different approach to studying summability that takes into account the support properties has been recently

proposed in [2] for the affine case and [3] for the lognormal case. This approach leads to significant improvements
on the results on ℓ𝑝-summability when the functions 𝜓𝑗 have limited overlap, such as splines, finite elements or
wavelet bases. These results by themselves do not imply practical applications, because they do not cover the
approximation of the expansion coefficients which are functions of the spatial variable.

In the recent paper [1], the rates of fully discrete adaptive best 𝑛-term Taylor, Jacobi and Hermite polynomial
approximations for elliptic PDEs with affine or lognormal parametrizations of the diffusion coefficients have
been obtained based on combining a certain approximation property on the spatial domain, and extensions
of the results on ℓ𝑝-summability of [2, 3] to higher-order Sobolev norms of corresponding Taylor, Jacobi and
Hermite expansion coefficients. These results providing a benchmark for convergence rates, are not constructive.
In the case when ℓ𝑝-summable sequences of Sobolev norms of expansion coefficients have an ℓ𝑝-summable
majorant sequence, these convergence rates can be achieved by linear methods of gpc expansion and collocation
approximations in the affine case [9,14–16,32,34]. However, this non-adaptive approach is not applicable for the
improvement of ℓ𝑝-summability in [1–3] since the weakened ℓ𝑝-assumption leads only to the ℓ𝑝-summability of
expansion coefficients, but not to an ℓ𝑝-summable majorant sequence. Non-adaptive non-fully discrete methods
have been considered in [18] for polynomial collocation approximation, and in [4] for weighted integration (see
also Rem. 3.2 of [2] and Rem. 5.1 of [3] for briefly considering non-adaptive non-fully discrete approximations
by truncated gpc expansions).

Let us briefly describe the main contribution of the present paper. By combining spatial and parametric
approximability, namely, the approximation property in Assumption 1.1 in the spatial domain and weighted
ℓ2-summability of the 𝑉 and 𝑊 norms of Hermite polynomial expansion coefficients obtained in [1,3], we inves-
tigate linear non-adaptive methods of fully discrete approximation by truncated Hermite gpc expansion and
polynomial interpolation approximation as well as fully discrete weighted quadrature methods of integration
for parametric and stochastic elliptic PDEs with lognormal inputs (1.3). We construct such methods and prove
convergence rates of the approximations by them. We show that the convergence rate in terms of the dimen-
sion of the approximation space of adaptive fully discrete approximation by truncated Hermite gpc expansion
obtained in [1], is achieved by linear non-adaptive methods of fully discrete approximation by truncated Her-
mite gpc expansion approximation. The linear non-adaptive methods of fully discrete polynomial interpolation
approximation are sparse-grid collocation methods which are certain sums taken over finite nested Smolyak-
type indices sets of tensor products of dyadic scale successive differences of spatial approximations of particular
solvers, and of successive differences of their parametric Lagrange interpolating polynomials. The Smolyak-type
sparse interpolation grids in the parametric domain are constructed from the roots of Hermite polynomials or
their improved modifications. Moreover, these methods generate in a natural way fully discrete weighted quadra-
ture formulas for integration of the solution 𝑢(𝑦) and its linear functionals, and the error of the corresponding
integration can be estimated via the error in the space 𝐿1(R∞, 𝑉, 𝛾) norm of the generating methods where 𝛾
is the Gaussian probability measure on R∞. The convergence rate of fully discrete integration is better than
the convergence rate of the generating fully discrete polynomial interpolation approximation due to the simple
but useful observation that the integral

∫︀
R 𝑣(𝑦) d𝛾(𝑦) is zero if 𝑣(𝑦) is an odd function and 𝛾 is the Gaussian

probability measure on R. (This property has been used in [32–34] for improving convergence rate of integration
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in the affine case.) We also briefly consider similar problems for parametric and stochastic elliptic PDEs with
affine inputs (1.4) by using counterparts-results in [1, 2], and problems of non-fully discrete polynomial inter-
polation approximation and integration similar to those treated in [4, 18]. In particular, the convergence rates
of non-fully discrete interpolation approximation and integration in terms of number of the evaluation points
obtained in this paper, are significantly better than those which have been proven in [4, 18].

Finally, let us notice that the aim of this paper is to establish approximation results which should show
possibilities of non-adaptive approximation methods and convergence rates of approximation by such methods
for the parametrized diffusion elliptic equation (1.2) with lognormal inputs. The two most popular numerical
methods are Galerkin projection and collocation. Since in the lognormal case, the diffusion coefficient 𝑎(𝑦)(𝑥) is
not uniformly bounded in 𝑦 ∈ R∞, there is no a well-posed linear variational problem on the space 𝐿2(R∞, 𝑉, 𝛾)
for Galerkin approximation. Some best 𝑛-term Galerkin approximations with respect to a “stronger” Gaussian
measure 𝛾𝜚 were considered in [24]. Collocation methods will be discussed in a forthcoming paper which extends
the results in the affine case [33,34].

The paper is organized as follows. In Sections 2–4, we construct general linear fully discrete and non-fully
discrete methods of Hermite gpc expansion and polynomial interpolation approximations in the Bochner space
𝐿𝑝(R∞, 𝑋1, 𝛾), and quadrature of functions taking values in 𝑋2 and having a weighted ℓ2-summability of Her-
mite expansion coefficients for Hilbert spaces 𝑋1 and 𝑋2 satisfying a certain “spatial” approximation property
(see (2.3)). In particular, in Section 2, we prove convergence rates of general linear fully discrete methods of
approximation approximation by truncated Hermite gpc expansion; in Section 3, we prove convergence rates
of general linear fully discrete and non-fully discrete polynomial interpolation methods of approximation; in
Section 4, we prove convergence rates of general linear fully discrete and non-fully discrete quadrature for inte-
gration. In Section 5, we apply the results of Sections 2–4 to obtain the main results of this paper on convergence
rates of linear non-adaptive methods of fully discrete approximation by truncated Hermite gpc expansion, and
fully discrete and non-fully discrete polynomial interpolation approximation and weighted quadrature methods
of integration for parametric and stochastic elliptic PDEs with lognormal inputs. In Section 6, by extending the
theory in Sections 2–4, we briefly consider similar problems for parametric and stochastic elliptic PDEs with
affine inputs.

2. Linear approximation by truncated Hermite gpc expansion

In this section, we treat a general linear fully discrete approximation by truncated Hermite gpc series of
functions from the Bochner space 𝐿2(R∞, 𝑋2, 𝛾). The approximation error is measured in the Bochner space
𝐿𝑝(R∞, 𝑋1, 𝛾) with 0 < 𝑝 ≤ 2. Here, 𝑋1 and 𝑋2 are Hilbert spaces, and 𝛾 is the infinite tensor product Gaussian
probability measure. We construct linear (non-adaptive) methods of this approximation and prove convergence
rates for the approximation error.

We first recall a concept of infinite tensor product of probability measures. (For details see, e.g., [23], pp. 429–
435.) Let 𝜇(𝑦) be a probability measure on U, where U is either R or I := [−1, 1]. We introduce the probability
measure 𝜇(𝑦) on U∞ as the infinite tensor product of probability measures 𝜇(𝑦𝑖):

𝜇(𝑦) :=
⨂︁
𝑗∈N

𝜇(𝑦𝑗), 𝑦 = (𝑦𝑗)𝑗∈N ∈ U∞.

The sigma algebra for 𝜇(𝑦) is generated by the set of cylinders 𝐴 :=
∏︀

𝑗∈N 𝐴𝑗 , where 𝐴𝑗 ⊂ U are univariate
𝜇-measurable sets and only a finite number of 𝐴𝑖 are different from U. For such a set 𝐴, we have 𝜇(𝐴) =∏︀

𝑗∈N 𝜇(𝐴𝑗). If 𝜚(𝑦) is the density of 𝜇(𝑦), i.e., d𝜇(𝑦) = 𝜚(𝑦)d𝑦, then we write

d𝜇(𝑦) :=
⨂︁
𝑗∈N

𝜚(𝑦𝑗)d(𝑦𝑗), 𝑦 = (𝑦𝑗)𝑗∈N ∈ U∞.

Let 𝑋 be a Hilbert space and 0 < 𝑝 < ∞. The probability measure 𝜇(𝑦) induces the Bochner space
𝐿𝑝(U∞, 𝑋, 𝜇) of strongly 𝜇-measurable mappings 𝑣 from U∞ to 𝑋 which are 𝑝-summable. The (quasi-)norm in
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𝐿𝑝(U∞, 𝑋, 𝜇) is defined by

‖𝑣‖𝐿𝑝(U∞,𝑋,𝜇) :=
(︂∫︁

U∞
‖𝑣(·,𝑦)‖𝑝

𝑋 d𝜇(𝑦)
)︂1/𝑝

.

Notice that if 𝑋 is separable, 𝐿2(U∞, 𝑋, 𝜇) is the tensor product of the Hilbert spaces 𝐿2(U∞,R, 𝜇) and 𝑋.
In the present paper, we focus our attention mainly to the lognormal case with U∞ = R∞ and 𝜇(𝑦) = 𝛾(𝑦),

the infinite tensor product Gaussian probability measure. Let 𝛾(𝑦) be the probability measure on R with the
standard Gaussian density:

d𝛾(𝑦) := 𝑔(𝑦) d𝑦, 𝑔(𝑦) :=
1√
2𝜋
𝑒−𝑦2/2. (2.1)

Then the infinite tensor product Gaussian probability measure 𝛾(𝑦) on R∞ can be defined by

d𝛾(𝑦) :=
⨂︁
𝑗∈N

𝑔(𝑦𝑗)d(𝑦𝑗), 𝑦 = (𝑦𝑗)𝑗∈N ∈ R∞.

A powerful strategy for the approximation of functions 𝑣 in 𝐿2(R∞, 𝑋, 𝛾) is based on the truncation of the
Hermite gpc expansion

𝑣(𝑦) =
∑︁
𝑠∈F

𝑣𝑠𝐻𝑠(𝑦), 𝑣𝑠 ∈ 𝑋. (2.2)

Here F is the set of all sequences of non-negative integers 𝑠 = (𝑠𝑗)𝑗∈N such that their support supp(𝑠) := {𝑗 ∈
N : 𝑠𝑗 > 0} is a finite set, and

𝐻𝑠(𝑦) =
⨂︁
𝑗∈N

𝐻𝑠𝑗 (𝑦𝑗), 𝑣𝑠 :=
∫︁

R∞
𝑣(𝑦)𝐻𝑠(𝑦) d𝛾(𝑦), 𝑠 ∈ F,

with (𝐻𝑘)𝑘≥0 being the Hermite polynomials normalized according to
∫︀

R |𝐻𝑘(𝑦)|2 𝑔(𝑦) d𝑦 = 1. It is well-known
that (𝐻𝑠)𝑠∈F is an orthonormal basis of 𝐿2(R∞,R, 𝛾). Moreover, for every 𝑣 ∈ 𝐿2(R∞, 𝑋, 𝛾) represented by the
series (2.2) it holds Parseval’s identity

‖𝑣‖2𝐿2(R∞,𝑋,𝛾) =
∑︁
𝑠∈F

‖𝑣𝑠‖2𝑋 .

We make use of the abbreviations: 𝐿𝑝(R∞, 𝜇) := 𝐿𝑝(R∞,R, 𝜇); ℒ𝑝(𝑋) := 𝐿𝑝(R∞, 𝑋, 𝛾) for 0 < 𝑝 < ∞. We
use letter 𝐶 to denote a general positive constant which may take different values, and 𝐶𝑝,𝑞,𝛼,𝐷,... a constant
depending on 𝑝, 𝑞, 𝛼,𝐷, . . .

To construct general linear fully discrete methods of approximation in the Bochner space ℒ𝑝(𝑋1) and of
integration of functions taking values in 𝑋2, we need the following assumption on approximation property for
𝑋1 and 𝑋2, which is a generalization of Assumption 1.1.

Assumption 2.1. The Hilbert space 𝑋2 is a linear subspace of the Hilbert space 𝑋1 and that ‖·‖𝑋1 ≤ 𝐶 ‖·‖𝑋2 .
There are a sequence (𝑉𝑛)𝑛∈N0 of subspaces 𝑉𝑛 ⊂ 𝑋1 of dimension ≤ 𝑛, and a sequence (𝑃𝑛)𝑛∈N0 of linear
operators from 𝑋1 into 𝑉𝑛, and a number 𝛼 > 0 such that

‖𝑃𝑛(𝑣)‖𝑋1 ≤ 𝐶‖𝑣‖𝑋1 , ‖𝑣 − 𝑃𝑛(𝑣)‖𝑋1 ≤ 𝐶𝑛−𝛼‖𝑣‖𝑋2 , ∀𝑛 ∈ N0, ∀𝑣 ∈ 𝑋2. (2.3)

For 𝑘 ∈ N0, we define

𝛿𝑘(𝑣) := 𝑃2𝑘(𝑣)− 𝑃2𝑘−1(𝑣), 𝑘 ∈ N, 𝛿0(𝑣) := 𝑃0(𝑣).

We can represent every 𝑣 ∈ 𝑋2 by the series

𝑣 =
∞∑︁

𝑘=0

𝛿𝑘(𝑣)
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converging in 𝑋1 and satisfying the estimate

‖𝛿𝑘(𝑣)‖𝑋1 ≤ 𝐶 2−𝛼𝑘 ‖𝑣‖𝑋2 , 𝑘 ∈ N0. (2.4)

For a finite subset 𝐺 in N0 × F, denote by 𝒱(𝐺) the subspace in ℒ2(𝑋1) of all functions 𝑣 of the form

𝑣 =
∑︁

(𝑘,𝑠)∈𝐺

𝑣𝑘 𝐻𝑠, 𝑣𝑘 ∈ 𝑉2𝑘 .

Let Assumption 2.1 hold for Hilbert spaces 𝑋1 and 𝑋2. We define the linear operator 𝒮𝐺 : ℒ2(𝑋2) → 𝒱(𝐺) by

𝒮𝐺𝑣 :=
∑︁

(𝑘,𝑠)∈𝐺

𝛿𝑘(𝑣𝑠)𝐻𝑠

for 𝑣 ∈ ℒ2(𝑋2) represented by the series

𝑣 =
∑︁
𝑠∈F

𝑣𝑠𝐻𝑠, 𝑣𝑠 ∈ 𝑋2. (2.5)

Lemma 2.2. Let Assumption 2.1 hold for Hilbert spaces 𝑋1 and 𝑋2. Then for every 𝑣 ∈ ℒ2(𝑋2),

lim
𝐾→∞

‖𝑣 − 𝒮𝐺𝐾
𝑣‖ℒ2(𝑋1) = 0, (2.6)

where 𝐺𝐾 := {(𝑘, 𝑠) ∈ N0 × F : 0 ≤ 𝑘 ≤ 𝐾}.

Proof. Obviously, by the definition,

𝒮𝐺𝐾
𝑣 =

∑︁
𝑠∈F

𝐾∑︁
𝑘=0

𝛿𝑘(𝑣𝑠)𝐻𝑠 =
∑︁
𝑠∈F

𝑃2𝐾 (𝑣𝑠)𝐻𝑠.

From Parseval’s identity and (2.3) it follows that

‖𝒮𝐺𝐾
𝑣‖2ℒ2(𝑋1) =

∑︁
𝑠∈F

‖𝑃2𝐾 (𝑣𝑠)‖2𝑋1 ≤ 2
∑︁
𝑠∈F

‖𝑣𝑠‖2𝑋1 + 2
∑︁
𝑠∈F

‖𝑣𝑠 − 𝑃2𝐾 (𝑣𝑠)‖2𝑋1

≤ 2
∑︁
𝑠∈F

‖𝑣𝑠‖2𝑋1 + 2𝐶22−𝛼𝐾
∑︁
𝑠∈F

‖𝑣𝑠‖2𝑋2 <∞.

This means that 𝒮𝐺𝐾
𝑣 ∈ ℒ2(𝑋1). Hence, by Parseval’s identity and (2.3) we deduce that

‖𝑣 − 𝒮𝐺𝐾
𝑣‖2ℒ2(𝑋1) =

∑︁
𝑠∈F

‖𝑣𝑠 − 𝑃2𝐾 (𝑣𝑠)‖2𝑋1 ≤ 𝐶2 2−2𝛼𝐾
∑︁
𝑠∈F

‖𝑣𝑠‖2𝑋2 = 𝐶2 2−2𝛼𝐾‖𝑣‖2ℒ2(𝑋2)

which proves the lemma.
�

Theorem 2.3. Let 0 < 𝑝 ≤ 2. Let Assumption 2.1 hold for Hilbert spaces 𝑋1 and 𝑋2. Let 𝑣 ∈ ℒ2(𝑋2) be
represented by the series (2.5). Assume that for 𝑟 = 1, 2 there exist sequences (𝜎𝑟;𝑠)𝑠∈F of numbers strictly
larger than 1 such that ∑︁

𝑠∈F
(𝜎𝑟;𝑠‖𝑣𝑠‖𝑋𝑟 )2 <∞
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and (𝜎−1
𝑟;𝑠)𝑠∈F ∈ ℓ𝑞𝑟

(F) for some 0 < 𝑞1 ≤ 𝑞2 <∞. Define for 𝜉 > 0

𝐺(𝜉) :=

{︃{︀
(𝑘, 𝑠) ∈ N0 × F : 2𝑘𝜎𝑞2

2;𝑠 ≤ 𝜉
}︀

if 𝛼 ≤ 1/𝑞2;{︀
(𝑘, 𝑠) ∈ N0 × F : 𝜎𝑞1

1;𝑠 ≤ 𝜉, 2𝛼𝑞1𝑘𝜎𝑞1
2;𝑠 ≤ 𝜉

}︀
if 𝛼 > 1/𝑞2.

(2.7)

Then for each 𝑛 ∈ N there exists a number 𝜉𝑛 such that dim(𝒱(𝐺(𝜉𝑛)) ≤ 𝑛 and

‖𝑣 − 𝒮𝐺(𝜉𝑛)𝑣‖ℒ𝑝(𝑋1) ≤ 𝐶𝑛−min(𝛼,𝛽). (2.8)

The rate 𝛼 corresponds to the approximation of a single function in 𝑋2 as given by (2.3), and the rate 𝛽 is
given by

𝛽 :=
1
𝑞1

𝛼

𝛼+ 𝛿
, 𝛿 :=

1
𝑞1
− 1
𝑞2
· (2.9)

The constant 𝐶 in (2.8) is independent of 𝑣 and 𝑛.

Proof. Due to the inequality ‖ · ‖ℒ𝑝(𝑋1) ≤ ‖ · ‖ℒ2(𝑋1), it is sufficient to prove the theorem for 𝑝 = 2.

We first consider the case 𝛼 ≤ 1/𝑞2. Let 𝜉 > 0 be given and take arbitrary positive number 𝜀. Since 𝐺(𝜉) is
finite, from the definition of 𝐺𝐾 and Lemma 2.2 it follows that there exists 𝐾 = 𝐾(𝜉, 𝜀) such that 𝐺(𝜉) ⊂ 𝐺𝐾

and
‖𝑣 − 𝒮𝐺𝐾

𝑣‖ℒ2(𝑋1) ≤ 𝜀. (2.10)

By the triangle inequality,

‖𝑣 − 𝒮𝐺(𝜉)𝑣‖ℒ2(𝑋1) ≤ ‖𝑣 − 𝒮𝐺𝐾
𝑣‖ℒ2(𝑋1) + ‖𝒮𝐺𝐾

𝑣 − 𝒮𝐺(𝜉)𝑣‖ℒ2(𝑋1). (2.11)

We have by Parseval’s identity and (2.4) that

‖𝒮𝐺𝐾
𝑣 − 𝒮𝐺(𝜉)𝑣‖2ℒ2(𝑋1) =

⃦⃦⃦∑︁
𝑠∈F

𝐾∑︁
𝑘=0

𝛿𝑘(𝑣𝑠)𝐻𝑠 −
∑︁
𝑠∈F

∑︁
2𝑘𝜎

𝑞2
2;𝑠≤𝜉

𝛿𝑘(𝑣𝑠)𝐻𝑠

⃦⃦⃦2

ℒ2(𝑋1)

=
⃦⃦⃦∑︁

𝑠∈F

∑︁
𝜉𝜎
−𝑞2
2;𝑠 <2𝑘≤2𝐾

𝛿𝑘(𝑣𝑠)𝐻𝑠

⃦⃦⃦2

ℒ2(𝑋1)
=
∑︁
𝑠∈F

⃦⃦⃦ ∑︁
𝜉𝜎
−𝑞2
2;𝑠 <2𝑘≤2𝐾

𝛿𝑘(𝑣𝑠)
⃦⃦⃦2

𝑋1

≤
∑︁
𝑠∈F

⎛⎜⎝ ∑︁
𝜉𝜎
−𝑞2
2;𝑠 <2𝑘≤2𝐾

‖𝛿𝑘(𝑣𝑠)‖𝑋1

⎞⎟⎠
2

≤
∑︁
𝑠∈F

⎛⎜⎝ ∑︁
𝜉𝜎
−𝑞2
2;𝑠 <2𝑘≤2𝐾

𝐶 2−𝛼𝑘‖𝑣𝑠‖𝑋2

⎞⎟⎠
2

≤ 𝐶
∑︁
𝑠∈F

‖𝑣𝑠‖2𝑋2

⎛⎜⎝ ∑︁
2𝑘>𝜉𝜎

−𝑞2
2;𝑠

2−𝛼𝑘

⎞⎟⎠
2

≤ 𝐶
∑︁
𝑠∈F

‖𝑣𝑠‖2𝑋2 (𝜉𝜎−𝑞2
2;𝑠 )−2𝛼.

Hence, by the inequalities 𝑞2𝛼 ≤ 1 and 𝜎2;𝑠 > 1 we derive that

‖𝒮𝐺𝐾
𝑣 − 𝒮𝐺(𝜉)𝑣‖2ℒ2(𝑋1) ≤ 𝐶𝜉−2𝛼

∑︁
𝑠∈F

(𝜎2;𝑠‖𝑣𝑠‖𝑋2)2 = 𝐶 𝜉−2𝛼.

Since 𝜀 > 0 is arbitrary, from the last estimates and (2.10) and (2.11) we derive that

‖𝑣 − 𝒮𝐺(𝜉)𝑣‖ℒ2(𝑋1) ≤ 𝐶 𝜉−𝛼. (2.12)



1170 D. DŨNG

For the dimension of the space 𝒱(𝐺(𝜉)) we have that

dim𝒱(𝐺(𝜉)) ≤
∑︁

(𝑘,𝑠)∈𝐺(𝜉)

dim𝑉2𝑘 ≤
∑︁

(𝑘,𝑠)∈𝐺(𝜉)

2𝑘

≤
∑︁
𝑠∈F

∑︁
2𝑘 ≤𝜉𝜎

−𝑞2
2;𝑠

2𝑘 ≤ 2
∑︁
𝑠∈F

𝜉𝜎−𝑞2
2;𝑠 = 𝑀 𝜉,

(2.13)

where 𝑀 := 2
⃦⃦(︀
𝜎−1

2;𝑠

)︀⃦⃦𝑞2

ℓ𝑞2 (F)
. For any 𝑛 ∈ N, letting 𝜉𝑛 be a number satisfying the inequalities

𝑀 𝜉𝑛 ≤ 𝑛 < 2𝑀 𝜉𝑛, (2.14)

we derive that dim𝒱(𝐺(𝜉𝑛)) ≤ 𝑛. On the other hand, from (2.14) it follows that 𝜉−𝛼
𝑛 ≤ (2𝑀)𝛼 𝑛−𝛼. This

together with (2.12) proves that

‖𝑣 − 𝒮𝐺(𝜉𝑛)𝑣‖ℒ2(𝑋1) ≤ 𝐶 𝑛−𝛼, 𝛼 ≤ 1/𝑞2. (2.15)

We now consider the case 𝛼 > 1/𝑞2. Putting

𝑣𝜉 :=
∑︁

𝜎
𝑞1
1;𝑠≤𝜉

𝑣𝑠𝐻𝑠,

we get

‖𝑣 − 𝒮𝐺(𝜉)𝑣‖ℒ2(𝑋1) ≤ ‖𝑣 − 𝑣𝜉‖ℒ2(𝑋1) + ‖𝑣𝜉 − 𝒮𝐺(𝜉)𝑣‖ℒ2(𝑋1).

The norms in the right hand side can be estimated using Parseval’s identity and the hypothesis of the theorem.
Thus, for the norm ‖𝑣 − 𝑣𝜉‖ℒ2(𝑋1) we have that

‖𝑣 − 𝑣𝜉‖2ℒ2(𝑋1) =
∑︁

𝜎1;𝑠>𝜉1/𝑞1

‖𝑣𝑠‖2𝑋1 =
∑︁

𝜎1;𝑠>𝜉1/𝑞1

(𝜎1;𝑠‖𝑣𝑠‖𝑋1)2𝜎−2
1;𝑠

≤ 𝜉−2/𝑞1
∑︁

𝜎1;𝑠>𝜉1/𝑞1

(𝜎1;𝑠‖𝑣𝑠‖𝑋1)2 ≤ 𝐶𝜉−2/𝑞1 .

(2.16)

For the norm ‖𝑣𝜉 − 𝒮𝐺(𝜉)𝑣‖ℒ2(𝑋1), with 𝑁 = 𝑁(𝜉, 𝑠) := 2⌊log2(𝜉
1/𝑞1𝛼𝜎

−1/𝛼
2;𝑠 )⌋ we obtain

‖𝑣𝜉 − 𝒮𝐺(𝜉)𝑣‖2ℒ2(𝑋1) =
∑︁

𝜎1;𝑠>𝜉1/𝑞1

⃦⃦⃦
𝑣𝑠 −

∑︁
2𝛼𝑞1𝑘𝜎

𝑞1
2;𝑠≤𝜉

𝛿𝑘(𝑣𝑠)
⃦⃦⃦2

𝑋1
≤
∑︁
𝑠∈F

⃦⃦⃦
𝑣𝑠 − 𝑃𝑁 (𝑣𝑠)

⃦⃦⃦2

𝑋1

≤
∑︁
𝑠∈F

𝐶𝑁−2𝛼‖𝑣𝑠‖2𝑋2 ≤ 𝐶𝜉−2/𝑞1
∑︁
𝑠∈F

(𝜎2;𝑠‖𝑣𝑠‖𝑋2)2 ≤ 𝐶𝜉−2/𝑞1 .

These estimates yield that

‖𝑣 − 𝒮𝐺(𝜉)𝑣‖ℒ2(𝑋1) ≤ 𝐶𝜉−1/𝑞1 . (2.17)
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For the dimension of the space 𝒱(𝐺(𝜉)), with 𝑞 := 𝑞2𝛼 > 1 and 1/𝑞′ + 1/𝑞 = 1 we have that

dim𝒱(𝐺(𝜉)) ≤
∑︁

(𝑘,𝑠)∈𝐺(𝜉)

dim𝑉2𝑘 ≤
∑︁

𝜎
𝑞1
1;𝑠≤𝜉

∑︁
2𝛼𝑞1𝑘𝜎

𝑞1
2;𝑠≤𝜉

2𝑘

≤ 2
∑︁

𝜎
𝑞1
1;𝑠≤𝜉

𝜉1/(𝑞1𝛼)𝜎
−1/𝛼
2;𝑠 ≤ 2𝜉1/(𝑞1𝛼)

⎛⎝ ∑︁
𝜎

𝑞1
1;𝑠≤𝜉

𝜎−𝑞2
2;𝑠

⎞⎠1/𝑞⎛⎝ ∑︁
𝜎

𝑞1
1;𝑠≤𝜉

1

⎞⎠1/𝑞′

≤ 2𝜉1/(𝑞1𝛼)

(︃∑︁
𝑠∈F

𝜎−𝑞2
2;𝑠

)︃1/𝑞 (︃∑︁
𝑠∈F

𝜉𝜎−𝑞1
1;𝑠

)︃1/𝑞′

= 𝑀𝜉1+𝛿/𝛼,

where 𝑀 := 2
⃦⃦(︀
𝜎−1

2;𝑠

)︀⃦⃦𝑞2/𝑞

ℓ𝑞2 (F)

⃦⃦(︀
𝜎−1

1;𝑠

)︀⃦⃦𝑞1/𝑞′

ℓ𝑞1 (F)
. For any 𝑛 ∈ N, letting 𝜉𝑛 be a number satisfying the inequalities

𝑀 𝜉1+𝛿/𝛼
𝑛 ≤ 𝑛 < 2𝑀 𝜉1+𝛿/𝛼

𝑛 , (2.18)

we derive that dim𝒱(𝐺(𝜉𝑛)) ≤ 𝑛. On the other hand, by (2.18),

𝜉−1/𝑞1
𝑛 ≤ (2𝑀)

𝛼
𝛼+𝛿 𝑛−

1
𝑞1

𝛼
𝛼+𝛿 .

This together with (2.17) proves that

‖𝑣 − 𝒮𝐺(𝜉𝑛)𝑣‖ℒ2(𝑋1) ≤ 𝐶𝑛−𝛽 , 𝛼 > 1/𝑞2.

By combining the last estimate and (2.15) we obtain (2.8). �

Remark 2.4. Let us compare the non-adaptive fully discrete method constructed in Theorem 2.3 with adaptive
one considered in Theorem 3.1 of [1]. Both the methods give the same convergence rate min(𝛼, 𝛽). However,
the ways to form them are different. Let us explain this.

In Theorem 3.1 of [1] for the lognormal case, for a given 𝑣 ∈ 𝑋2, a preliminary polynomial approximation
𝑣𝑚 :=

∑︀
𝑠∈Λ𝑚

𝑣𝑠𝐻𝑠 is taken by truncation of the Hermite gpc expansion (2.5), where Λ𝑚 ⊂ F is a set corre-
sponding to 𝑚 largest ‖𝑣𝑠‖𝑋1 . The coefficients 𝑣𝑠 ∈ 𝑋2 then is approximated by 𝑣𝑠,𝑚𝑠

:= 𝑃𝑚𝑠
(𝑣𝑠), and 𝑣 is

approximated by the resulting approximant 𝑣𝑚 :=
∑︀

𝑠∈Λ𝑚
𝑣𝑠,𝑚𝑠𝐻𝑠. An optimal choice of

(︀
𝑚𝑠

)︀
𝑠∈Λ𝑚

give the
rate min(𝛼, 𝛽) in terms of 𝑛 where 𝑛 =

∑︀
𝑠∈Λ𝑚

𝑚𝑠 is the dimension of the space 𝒱𝑚 ⊂ 𝑋2 of all functions
of the form

∑︀
𝑠∈Λ𝑚

𝑣𝑠𝐻𝑠, 𝑣𝑠 ∈ 𝑉𝑚𝑠 . This is an adaptive approximation method, since the choice of 𝑚 largest
‖𝑣𝑠‖𝑋1 essentially depends of 𝑣.

In Theorem 2.3, the approximant 𝒮𝐺(𝜉𝑛)𝑣 belongs to the space 𝒱(𝐺(𝜉𝑛)) ⊂ 𝒱(𝑋2). The convergence rate
min(𝛼, 𝛽) of approximation by 𝒮𝐺(𝜉𝑛)𝑣 is given in terms of 𝑛 where the thresholding parameter 𝜉𝑛 is chosen
such that dim(𝒱(𝐺(𝜉𝑛)) ≤ 𝑛. Notice that 𝒮𝐺(𝜉𝑛)𝑣 =

∑︀
𝑠∈Λ 𝑣𝑠,𝑚𝑠

𝐻𝑠 and the space 𝒱(𝐺(𝜉𝑛)) consists of all
functions of the form

∑︀
𝑠∈Λ 𝑣𝑠𝐻𝑠, 𝑣𝑠 ∈ 𝑉𝑚𝑠 , for a certain set Λ depending on 𝑛, i.e., formally they are similar

to those in Theorem 3.1 of [1]. The difference here is that the set Λ is defined independently of 𝑣. Hence, our
approximation methods are non-adaptive provided that there is a sequence (𝑃𝑛)𝑛∈N0 of linear operators from
𝑋1 into 𝑛-dimensional subspaces 𝑉𝑛 ⊂ 𝑋1 satisfying (2.3) for all 𝑣 ∈ 𝑋2 (Assumption 2.1). See also Remark 3.2
of [1].

3. Polynomial interpolation approximation

In this section, we construct general linear fully discrete polynomial interpolation methods of approximation
in the Bochner space ℒ𝑝(𝑋1) of functions taking values in 𝑋2 and having a weighted ℓ2-summability of Hermite
expansion coefficients for Hilbert spaces 𝑋1 and 𝑋2 satisfying a certain “spatial” approximation property. In
particular, we prove convergence rates for these methods of approximation. We also briefly consider linear
non-fully discrete polynomial interpolation methods of approximation.
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3.1. Auxiliary results

Let 𝑤 = exp(−𝑄), where 𝑄 is an even function on R and 𝑦𝑄′(𝑦) is positive and increasing in (0,∞), with
limits 0 and ∞ at 0 and ∞. Notice that for the standard Gaussian density 𝑔 defined in (2.1),

√
𝑔 is such a

function. For 𝑚 ∈ N, the 𝑛th Mhaskar–Rakhmanov–Saff number 𝑎𝑚 = 𝑎𝑚(𝑤) is defined as the positive root of
the equation

𝑚 =
2
𝜋

∫︁ 1

0

𝑎𝑚𝑦𝑄
′(𝑎𝑚𝑦)√︀

1− 𝑦2
d𝑦.

From Page 11 of [25] we have for 𝑤 =
√
𝑔,

𝑎𝑚(
√
𝑔) =

√
𝑚. (3.1)

For 0 < 𝑝, 𝑞 ≤ ∞, we introduce the quantity

𝛿(𝑝, 𝑞) :=
1
2

⃒⃒⃒⃒
1
𝑝
− 1
𝑞

⃒⃒⃒⃒
·

Lemma 3.1. Let 0 < 𝑝, 𝑞 ≤ ∞. Then there exists a positive constant 𝐶𝑝,𝑞 such that for every polynomial 𝜙 of
degree ≤ 𝑚, the Nikol’skii-type inequality holds

‖𝜙√𝑔‖𝐿𝑝(R) ≤ 𝐶𝑝,𝑞𝑚
𝛿(𝑝,𝑞) ‖𝜙√𝑔‖𝐿𝑞(R).

Proof. This lemma is an immediate consequence of (3.1) and the inequality

‖𝜙√𝑔‖𝐿𝑝(R) ≤ 𝐶𝑝,𝑞𝑁𝑚(𝑝, 𝑞) ‖𝜙√𝑔‖𝐿𝑞(R)

which follows from Theorem 9.1 and p. 61 of [25], where

𝑁𝑚(𝑝, 𝑞) :=

⎧⎨⎩𝑎
1/𝑝−1/𝑞
𝑚 , 𝑝 < 𝑞,(︁

𝑛
𝑎𝑚

)︁1/𝑞−1/𝑝

, 𝑝 > 𝑞.

�

Lemma 3.2. We have
‖𝐻𝑚

√
𝑔‖𝐿∞(R) ≤ 1, 𝑚 ∈ N0. (3.2)

Proof. From Cramér’s bound (see, e.g., [17], Page 208, (19)) we have for every 𝑚 ∈ N0 and every 𝑥 ∈ R,
|𝐻𝑚(𝑥)

√︀
𝑔(𝑥)| ≤ 𝐾(2𝜋)−1/4, where 𝐾 := 1.086435. This implies (3.2).

�

For our application the estimate (3.2) is sufficient, see [13] for an improvement.
For 𝜃, 𝜆 ≥ 0, we define the sequence

𝑝𝑠(𝜃, 𝜆) :=
∏︁
𝑗∈N

(1 + 𝜆𝑠𝑗)𝜃, 𝑠 ∈ F. (3.3)

Lemma 3.3. Let 0 < 𝑝 ≤ 2 and 𝑋 be a Hilbert space. Let 𝑣 ∈ 𝐿2(R∞, 𝑋, 𝛾) be represented by the series (2.2).
Assume that there exists a sequence 𝜎 = (𝜎𝑠)𝑠∈F of positive numbers such that∑︁

𝑠∈F
(𝜎𝑠‖𝑣𝑠‖𝑋)2 <∞.
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We have the following.

(i) If
(︀
𝑝𝑠(𝜃, 𝜆)𝜎−1

𝑠

)︀
𝑠∈F ∈ ℓ𝑞(F) for some 0 < 𝑞 ≤ 2 and 𝜃, 𝜆 ≥ 0, then (𝑝𝑠(𝜃, 𝜆)‖𝑣𝑠‖𝑋)𝑠∈F ∈ ℓ𝑞(F) for 𝑞 such

that 1/𝑞 = 1/2 + 1/𝑞.
(ii) If

(︀
𝜎−1

𝑠

)︀
𝑠∈F ∈ ℓ𝑞(F) for some 0 < 𝑞 ≤ 2, then the series (2.2) converges absulutely in ℒ𝑝(𝑋) to 𝑣.

Proof. Since 𝜏 := 2/𝑞 ≥ 1, with 1/𝜏 + 1/𝜏 ′ = 1 and 𝑝𝑠 = 𝑝𝑠(𝜃, 𝜆) by the Hölder inequality we have that

∑︁
𝑠∈F

(𝑝𝑠‖𝑣𝑠‖𝑋)𝑞 ≤
(︂∑︁

𝑠∈F
(𝜎𝑞

𝑠‖𝑣𝑠‖𝑞
𝑋)𝜏

)︂1/𝜏(︂∑︁
𝑠∈F

(︀
𝑝𝑞

𝑠𝜎
−𝑞
𝑠

)︀𝜏 ′ )︂1/𝜏 ′

=
(︂∑︁

𝑠∈F
(𝜎𝑠‖𝑣𝑠‖𝑋)2

)︂𝑞/2(︂∑︁
𝑠∈F

(︀
𝑝𝑠𝜎

−1
𝑠

)︀𝑞 )︂1−𝑞/2

<∞ .

This proves the assersion (i).
We have by the inequality 𝑞 ≤ 1 and (i) for 𝜃 = 𝜆 = 0,∑︁

𝑠∈F
‖𝑣𝑠𝐻𝑠‖ℒ2(𝑋) =

∑︁
𝑠∈F

‖𝑣𝑠‖𝑋‖𝐻𝑠‖𝐿2(R∞,𝛾)

≤
∑︁
𝑠∈F

‖𝑣𝑠‖𝑋 ≤

(︃∑︁
𝑠∈F

(‖𝑣𝑠‖𝑋)𝑞

)︃1/𝑞

<∞.

This yields that the series (2.2) absolutely converges in ℒ2(𝑋) to 𝑣, since by the assumption this series converges
in ℒ2(𝑋) to 𝑣. The assertion (ii) is proven for the case 𝑝 = 2. The case 0 < 𝑝 < 2 is derived from the case 𝑝 = 2
and the inequality ‖ · ‖ℒ𝑝(𝑋) ≤ ‖ · ‖ℒ2(𝑋).

�

Lemma 3.4. Let 0 < 𝑝 ≤ 2. Let Assumption 2.1 hold for Hilbert spaces 𝑋1 and 𝑋2, and let the assumptions
of Lemma 3.3(ii) hold for the space 𝑋1. Then every 𝑣 ∈ ℒ2(𝑋2) can be represented as the series

𝑣 =
∑︁

(𝑘,𝑠)∈N0×F

𝛿𝑘(𝑣𝑠)𝐻𝑠 (3.4)

converging absolutely in ℒ𝑝(𝑋1) to 𝑣.

Proof. This lemma can be proven in a way similar to the proof of Lemma 2.1 in [16]. For completeness, let us
give a detailed proof. As in the proof of Lemma 3.3, it is sufficient to prove the lemma for the case 𝑝 = 2. Put
𝑣𝑘,𝑠(𝑦)(𝑥) := 𝛿𝑘(𝑣𝑠)(𝑥)𝐻𝑠(𝑦). It is well known that the unconditional convergence in a Banach space follows
from the absolute convergence. Using this fact, from Lemma 3.3(ii) and Assumption 2.1 we derive that on one
hand, the series

∑︀
𝑠∈F 𝑣𝑘,𝑠(𝑦)(𝑥) converges unconditionally in ℒ2(𝑋1), and uniformly for 𝑘 ∈ N0, and on the

other hand, the series
∑︀

𝑘∈N0
𝑣𝑘,𝑠(𝑦)(𝑥) converges absolutely in ℒ2(𝑋1), and uniformly for 𝑠 ∈ F to 𝑣𝑠(𝑥)𝐻𝑠(𝑦).

Hence, since the series (2.5) converges unconditionally in ℒ2(𝑋1), we have that

𝑣(𝑦)(𝑥) =
∑︁
𝑠∈F

𝑣𝑠(𝑥)𝐻𝑠(𝑦) =
∑︁
𝑠∈F

∑︁
𝑘∈N0

𝑣𝑘,𝑠(𝑦)(𝑥) =
∑︁

(𝑘,𝑠)∈N0×F

𝑣𝑘,𝑠(𝑦)(𝑥), 𝑥 ∈ 𝐷, 𝑦 ∈ R∞,

where the last series converges unconditionally in ℒ2(𝑋1). This means that the series in (3.4) converges abso-
lutely to 𝑣, since by Lemma 2.6 the sum 𝑆𝐺𝐾

converges in ℒ2(𝑋1) to 𝑣 when 𝐾 →∞.
�
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We will need the following two lemmata for application in estimating the convergence rate of the fully discrete
polynomial interpolation approximation in this section and of integration in Section 4.

Lemma 3.5. Under the hypothesis of Theorem 2.3, assume in addition that 𝑞1 < 2. Define for 𝜉 > 0

𝐺(𝜉) :=

{︃{︀
(𝑘, 𝑠) ∈ N0 × F : 2𝑘𝜎𝑞2

2;𝑠 ≤ 𝜉
}︀

if 𝛼 ≤ 1/𝑞2 − 1/2;{︀
(𝑘, 𝑠) ∈ N0 × F : 𝜎𝑞1

1;𝑠 ≤ 𝜉, 2(𝛼+1/2)𝑘𝜎2;𝑠 ≤ 𝜉𝜗
}︀

if 𝛼 > 1/𝑞2 − 1/2,
(3.5)

where

𝜗 := 1/𝑞1 + (1/𝑞1 − 1/𝑞2)/(2𝛼). (3.6)

Then for each 𝜉 > 0,

‖𝑣 − 𝒮𝐺(𝜉)𝑣‖ℒ𝑝(𝑋1) ≤ 𝐶 ×

{︃
𝜉−𝛼 if 𝛼 ≤ 1/𝑞2 − 1/2;
𝜉−(1/𝑞1−1/2) if 𝛼 > 1/𝑞2 − 1/2.

(3.7)

The rate 𝛼 is given by (2.3). The constant 𝐶 in (3.7) is independent of 𝑣 and 𝜉.

Proof. Similarly to the proof of Lemma 3.3, it is sufficient to prove the lemma for 𝑝 = 2. Since in the case
𝛼 ≤ 1/𝑞2 − 1/2, the formulas (2.7) and (3.5) define the same set 𝐺(𝜉) for 𝜉 > 0, from (2.12) follows the lemma
for this case. Let us consider the case 𝛼 > 1/𝑞2 − 1/2. Putting

𝑣𝜉 :=
∑︁

𝜎
𝑞1
1;𝑠≤𝜉

𝑣𝑠𝐻𝑠,

we get

‖𝑣 − 𝒮𝐺(𝜉)𝑣‖ℒ2(𝑋1) ≤ ‖𝑣 − 𝑣𝜉‖ℒ2(𝑋1) + ‖𝑣𝜉 − 𝒮𝐺(𝜉)𝑣‖ℒ2(𝑋1). (3.8)

As in the proof of Lemma 3.4, by Lemma 3.3(ii) the series (2.2) converges unconditionally in ℒ2(𝑋1) to 𝑣.
Hence the norm ‖𝑣 − 𝑣𝜉‖ℒ2(𝑋1) can be estimated by

‖𝑣 − 𝑣𝜉‖ℒ2(𝑋1) ≤
∑︁

𝜎1;𝑠>𝜉1/𝑞1

‖𝑣𝑠‖𝑋1 ‖𝐻𝑠‖𝐿2(R∞,𝛾) =
∑︁

𝜎1;𝑠>𝜉1/𝑞1

‖𝑣𝑠‖𝑋1

≤

⎛⎝ ∑︁
𝜎1;𝑠>𝜉1/𝑞1

(𝜎1;𝑠‖𝑣𝑠‖𝑋1)2

⎞⎠1/2⎛⎝ ∑︁
𝜎1;𝑠>𝜉1/𝑞1

𝜎−2
1;𝑠

⎞⎠1/2

≤ 𝐶

⎛⎝ ∑︁
𝜎1;𝑠>𝜉1/𝑞1

𝜎−𝑞1
1;𝑠 𝜎

−(2−𝑞1)
1;𝑠

⎞⎠1/2

≤ 𝐶𝜉−(1/𝑞1−1/2)

(︃∑︁
𝑠∈F

𝜎−𝑞1
1;𝑠

)︃1/2

≤ 𝐶𝜉−(1/𝑞1−1/2).

(3.9)
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For the norm ‖𝑣𝜉 − 𝒮𝐺(𝜉)𝑣‖ℒ2(𝑋1), with 𝑁 = 𝑁(𝜉, 𝑠) := 2
⌊︀

log2

(︀
𝜎
−(𝛼+1/2)−1

2;𝑠 𝜉𝜗(𝛼+1/2)−1
)︀⌋︀

we have that

‖𝑣𝜉 − 𝒮𝐺(𝜉)𝑣‖ℒ2(𝑋1) ≤
∑︁

𝜎
𝑞1
1;𝑠≤𝜉

⃦⃦⃦
𝑣𝑠 −

∑︁
2𝛼𝑞1𝑘𝜎

𝑞1
2;𝑠≤𝜉

𝛿𝑘(𝑣𝑠)
⃦⃦⃦

𝑋1
‖𝐻𝑠‖𝐿2(R∞,𝛾)

= 𝐶
∑︁

𝜎
𝑞1
1;𝑠≤𝜉

⃦⃦⃦
𝑣𝑠 − 𝑃𝑁 (𝑣𝑠)

⃦⃦⃦
𝑋1

≤ 𝐶
∑︁

𝜎
𝑞1
1;𝑠≤𝜉

𝑁−𝛼‖𝑣𝑠‖𝑋2

≤ 𝐶
∑︁

𝜎
𝑞1
1;𝑠≤𝜉

(𝜉1/(𝑞1𝛼)𝜎
−1/𝛼
2;𝑠 )−𝛼‖𝑣𝑠‖𝑋2 ≤ 𝐶 𝜉−1/𝑞1

∑︁
𝜎

𝑞1
1;𝑠≤𝜉

𝜎2;𝑠‖𝑣𝑠‖𝑋2

≤ 𝐶 𝜉−1/𝑞1

⎛⎝ ∑︁
𝜎

𝑞1
1;𝑠≤𝜉

(𝜎2;𝑠‖𝑣𝑠‖𝑋2)2

⎞⎠1/2⎛⎝ ∑︁
𝜎

𝑞1
1;𝑠≤𝜉

1

⎞⎠1/2

≤ 𝐶 𝜉−1/𝑞1

⎛⎝ ∑︁
𝜎

𝑞1
1;𝑠≤𝜉

𝜎−𝑞1
1;𝑠 𝜉

⎞⎠1/2

≤ 𝐶 𝜉−(1/𝑞1−1/2)

(︃∑︁
𝑠∈F

𝜎−𝑞1
1;𝑠

)︃1/2

≤ 𝐶 𝜉−(1/𝑞1−1/2).

This, (3.8) and (3.9) prove the lemma for the case 𝛼 > 1/𝑞2 − 1/2.
�

We make use the notation: Fev := {𝑠 ∈ F : 𝑠𝑗 even, 𝑗 ∈ N}. The following lemma can be proven in a similar
way.

Lemma 3.6. Let 0 < 𝑝 ≤ 2. Let Assumption 2.1 hold for Hilbert spaces 𝑋1 and 𝑋2. Let 𝑣 ∈ ℒ2(𝑋2) be
represented by the series

𝑣 =
∑︁

𝑠∈Fev

𝑣𝑠𝐻𝑠, 𝑣𝑠 ∈ 𝑋2. (3.10)

Assume that for 𝑟 = 1, 2 there exist sequences (𝜎𝑟;𝑠)𝑠∈Fev of numbers strictly larger than 1 such that∑︁
𝑠∈Fev

(𝜎𝑟;𝑠‖𝑣𝑠‖𝑋𝑟 )2 <∞

and (𝜎−1
𝑟;𝑠)𝑠∈Fev ∈ ℓ𝑞𝑟 (Fev) for some 0 < 𝑞1 ≤ 𝑞2 <∞ with 𝑞1 < 2. Define for 𝜉 > 0,

𝐺ev(𝜉) := 𝐺(𝜉)∩(N0×Fev) =

{︃{︀
(𝑘, 𝑠) ∈ N0 × Fev : 2𝑘𝜎𝑞2

2;𝑠 ≤ 𝜉
}︀

if 𝛼 ≤ 1/𝑞2 − 1/2;{︀
(𝑘, 𝑠) ∈ N0 × Fev : 𝜎𝑞1

1;𝑠 ≤ 𝜉, 2(𝛼+1/2)𝑘𝜎2;𝑠 ≤ 𝜉𝜗
}︀

if 𝛼 > 1/𝑞2 − 1/2,
(3.11)

where 𝜗 is as in (3.6). Then for each 𝜉 > 0 ,

‖𝑣 − 𝒮𝐺ev(𝜉𝑛)𝑣‖ℒ𝑝(𝑋1) ≤ 𝐶 ×

{︃
𝜉−𝛼 if 𝛼 ≤ 1/𝑞2 − 1/2;
𝜉−(1/𝑞1−1/2) if 𝛼 > 1/𝑞2 − 1/2.

(3.12)

The rate 𝛼 is given by (2.3). The constant 𝐶 in (3.12) is independent of 𝑣 and 𝜉.
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3.2. Interpolation approximation

For every 𝑚 ∈ N0, let 𝑌𝑚 = (𝑦𝑚;𝑘)𝑚
𝑘=0 be a sequence of points in R such that

−∞ < 𝑦𝑚;0 < · · · < 𝑦𝑚;𝑚−1 < 𝑦𝑚;𝑚 < +∞; 𝑦0;0 = 0. (3.13)

If 𝑣 is a function on R taking value in a Hilbert space 𝑋 and 𝑚 ∈ N0, we define the function 𝐼𝑚(𝑣) on R taking
value in 𝑋 by

𝐼𝑚(𝑣)(𝑦) :=
𝑚∑︁

𝑘=0

𝑣(𝑦𝑚;𝑘)ℓ𝑚;𝑘, ℓ𝑚;𝑘(𝑦) :=
𝑛∏︁

𝑗=0, 𝑗 ̸=𝑘

𝑦 − 𝑦𝑚;𝑗

𝑦𝑚;𝑘 − 𝑦𝑚;𝑗
, 𝑦 ∈ R, (3.14)

interpolating 𝑣 at 𝑦𝑚;𝑘, i.e., 𝐼𝑚(𝑣)(𝑦𝑚;𝑘) = 𝑣(𝑦𝑚;𝑘). Notice that for a function 𝑣 : R → R, the function 𝐼𝑚(𝑣)
is the Lagrange polynomial having degree ≤ 𝑚, and that 𝐼𝑚(𝜙) = 𝜙 for every polynomial 𝜙 of degree ≤ 𝑚.

Let
𝜆𝑚(𝑌𝑚) := sup

‖𝑣√𝑔‖𝐿∞(R)≤1

‖𝐼𝑚(𝑣)
√
𝑔‖𝐿∞(R)

be the Lebesgue constant, see, e.g., Page 78 of [25]. We want to choose a sequence (𝑌𝑚)∞𝑚=0 so that for some
positive numbers 𝜏 and 𝐶, there holds the inequlity

𝜆𝑚(𝑌𝑚) ≤ (𝐶𝑚+ 1)𝜏 , ∀𝑚 ∈ N0. (3.15)

We present two examples of (𝑌𝑚)∞𝑚=0 satisfying (3.15). The first example is (𝑌 *𝑚)∞𝑛=0 where 𝑌 *𝑚 = (𝑦*𝑚;𝑘)𝑛
𝑘=0

are the strictly increasing sequences of the roots of 𝐻𝑚+1. Indeed, it was proven by Matjila and Szabados
[26,27,30] that

𝜆𝑚(𝑌 *𝑚) ≤ 𝐶(𝑚+ 1)1/6, 𝑚 ∈ N,

for some positive constant 𝐶 independent of 𝑛 (with the obvious inequality 𝜆0(𝑌 *0 ) ≤ 1). Hence, for every 𝜀 > 0,
there exists a positive constant 𝐶𝜀 independent of 𝑛 such that

𝜆𝑚(𝑌 *𝑚) ≤ (𝐶𝜀𝑚+ 1)1/6+𝜀, ∀𝑚 ∈ N0. (3.16)

The minimum distance between consecutive roots 𝑑𝑚+1 satisfies the inequalities 𝜋
√

2√
2𝑚+3

< 𝑑𝑚+1 <
√

21√
2𝑚+3

,

see pp. 130–131 of [31]. The sequences 𝑌 *𝑚 have been used in [4] for sparse quadrature for non-fully discrete
integration with the measure 𝛾, and in [18] non-fully discrete polynomial interpolation approximation with the
measure 𝛾.

The inequality (3.16) can be improved if 𝑌 *𝑚−2 is slightly modified by the “method of adding points” suggested
by Szabados [30] (for details, see also [25], Sect. 11). More precisely, for 𝑛 > 2, he added to 𝑌 *𝑚−2 two points
±𝜁𝑚−1, near ±𝑎𝑚−1(𝑔), which are defined by the condition |𝐻𝑚−1

√
𝑔|(𝜁𝑚−1) = ‖𝐻𝑚−1

√
𝑔‖𝐿∞(R). By this way,

he obtained the strictly increasing sequences

𝑌 *𝑚 := {−𝜁𝑚, 𝑦*𝑚−2;0, . . . , 𝑦
*
𝑚−2,𝑚−2, 𝜁𝑚}

for which the sequence ¯(𝑌
*
𝑚)∞𝑛=0 satisfies the inequality

𝜆𝑚(𝑌 *𝑚) ≤ 𝐶 log(𝑚− 1) (𝑚 > 2)

which yields that for every 𝜀 > 0, there exists a positive constant 𝐶𝜀 independent of 𝑛 such that

𝜆𝑚(𝑌 *𝑚) ≤ (𝐶𝜀𝑚+ 1)𝜀, ∀𝑚 ∈ N0.

For a given sequence (𝑌𝑚)∞𝑚=0, we define the univariate operator ∆𝐼
𝑚 for 𝑚 ∈ N0 by

∆𝐼
𝑚 := 𝐼𝑚 − 𝐼𝑚−1,

with the convention 𝐼−1 = 0.
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Lemma 3.7. Assume that (𝑌𝑚)∞𝑚=0 is a sequence satisfying the condition (3.15) for some positive numbers 𝜏
and 𝐶. Then for every 𝜀 > 0, there exists a positive constant 𝐶𝜀 independent of 𝑚 such that for every function
𝑣 on R,

‖∆𝐼
𝑚(𝑣)

√
𝑔‖𝐿∞(R) ≤ (𝐶𝜀𝑚+ 1)𝜏+𝜀‖𝑣√𝑔‖𝐿∞(R), ∀𝑚 ∈ N0, (3.17)

whenever the norm in the right-hand side is finite.

Proof. From the assumptions we have that

‖∆𝐼
𝑚(𝑣)

√
𝑔‖𝐿∞(R) ≤ 2(𝐶𝑚+ 1)𝜏‖𝑣√𝑔‖𝐿∞(R), ∀𝑚 ∈ N0,

which similarly to (3.16) gives (3.17).
�

We are interested in sparse-grid interpolation approximation and integration of functions 𝑣 from the space
ℒ2(𝑋). In order to have a correct definition of interpolation operator let us impose some necessary restrictions
on 𝑣. Let ℰ be a 𝛾-measurable subset in R∞ such that 𝛾(ℰ) = 1 and ℰ contains all 𝑦 ∈ R∞ with |𝑦|0 < ∞,
where |𝑦|0 denotes the number of nonzero components 𝑦𝑗 of 𝑦. For a given ℰ and Hilbert space 𝑋, we define
ℒℰ2 (𝑋) as the subspace in ℒ2(𝑋) of all elements 𝑣 such that the point value 𝑣(𝑦) (of a representative of 𝑣) is
well-defined for all 𝑦 ∈ ℰ . In what folllows, ℰ is fixed.

For 𝑣 ∈ ℒℰ2 (𝑋), we introduce the tensor product operator ∆𝐼
𝑠 for 𝑠 ∈ F by

∆𝐼
𝑠(𝑣) :=

⨂︁
𝑗∈N

∆𝐼
𝑠𝑗

(𝑣),

where the univariate operator ∆𝐼
𝑠𝑗

is applied to the univariate function 𝑣 by considering 𝑣 as a function of
variable 𝑦𝑖 with the other variables held fixed. From the definition of ℒℰ2 (𝑋) one can see that the operators ∆𝐼

𝑠

are well-defined for all 𝑠 ∈ F.
Next, we introduce the interpolation operator 𝐼Λ for a given finite set Λ ⊂ F by

𝐼Λ :=
∑︁
𝑠∈Λ

∆𝐼
𝑠.

Let Assumption 2.1 hold for Hilbert spaces 𝑋1 and 𝑋2. We introduce the interpolation operator ℐ𝐺 :
ℒℰ2 (𝑋2) → 𝒱(𝐺) for a given finite set 𝐺 ⊂ N0 × F by

ℐ𝐺𝑣 :=
∑︁

(𝑘,𝑠)∈𝐺

𝛿𝑘∆𝐼
𝑠(𝑣).

Notice that ℐ𝐺𝑣 is a linear (non-adaptive) method of fully discrete polynomial interpolation approximation
which is the sum taken over the indices set 𝐺, of mixed tensor products of dyadic scale successive differences
of “spatial” approximations to 𝑣, and of successive differences of their parametric Lagrange interpolating poly-
nomials. It has been introduced in [14] (see also [16]). A similar construction for the multi-index stochastic
collocation method for computing the expected value of a functional of the solution to elliptic PDEs with
random data has been introduced in [21,22] by using Clenshaw–Curtis points for quadrature.

A set Λ ⊂ F is called downward closed if the inclusion 𝑠 ∈ Λ yields the inclusion 𝑠′ ∈ Λ for every 𝑠′ ∈ F
such that 𝑠′ ≤ 𝑠. The inequality 𝑠′ ≤ 𝑠 means that 𝑠′𝑗 ≤ 𝑠𝑗 , 𝑗 ∈ N. A sequence (𝜎𝑠)𝑠∈F is called increasing if
𝜎𝑠′ ≤ 𝜎𝑠 for 𝑠′ ≤ 𝑠. Put 𝑅𝑠 := {𝑠′ ∈ F : 𝑠′ ≤ 𝑠}.

Theorem 3.8. Let 0 < 𝑝 ≤ 2. Let Assumption 2.1 hold for Hilbert spaces 𝑋1 and 𝑋2. Assume that (𝑌𝑚)𝑚∈N0

is a sequence satisfying the condition (3.15) for some positive numbers 𝜏 and 𝐶. Let 𝑣 ∈ ℒℰ2 (𝑋2) be represented
by the series (2.5). Assume that for 𝑟 = 1, 2 there exist increasing sequences (𝜎𝑟;𝑠)𝑠∈F of numbers strictly larger
than 1 such that ∑︁

𝑠∈F
(𝜎𝑟;𝑠‖𝑣𝑠‖𝑋𝑟 )2 <∞
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and
(︀
𝑝𝑠(2𝜃, 𝜆)𝜎−1

𝑟;𝑠

)︀
𝑠∈F ∈ ℓ𝑞𝑟

(F) for some 0 < 𝑞1 ≤ 𝑞2 <∞ with 𝑞1 < 2, where

𝜃 := 𝜏 + 𝜀+ 5/4, 𝜆 := max (𝐶∞,2, 𝐶2,∞, 𝐶𝜀, 1) , (3.18)

𝐶∞,2, 𝐶2,∞ are as in Lemma 3.1, 𝜀 is arbitrary positive number and 𝐶𝜀 is as in Lemma 3.7. For 𝜉 > 0, let 𝐺(𝜉)
be the set defined as in (3.5).

Then for each 𝑛 ∈ N there exists a number 𝜉𝑛 such that for the interpolation operator ℐ𝐺(𝜉𝑛) : ℒℰ2 (𝑋2) →
𝒱(𝐺(𝜉𝑛)), we have that dim𝒱(𝐺(𝜉𝑛)) ≤ 𝑛 and

‖𝑣 − ℐ𝐺(𝜉𝑛)𝑣‖ℒ𝑝(𝑋1) ≤ 𝐶𝑛−min(𝛼,𝛽). (3.19)

The rate 𝛼 corresponds to the approximation of a single function in 𝑋2 as given by (2.3). The rate 𝛽 is given
by

𝛽 :=
(︂

1
𝑞1
− 1

2

)︂
𝛼

𝛼+ 𝛿
, 𝛿 :=

1
𝑞1
− 1
𝑞2
· (3.20)

The constant 𝐶 in (3.19) is independent of 𝑣 and 𝑛.

Proof. Clearly, by the inequality ‖ · ‖ℒ𝑝(𝑋1) ≤ ‖ · ‖ℒ2(𝑋1) it is sufficient to prove the theorem for 𝑝 = 2.
By Lemmata 3.3 and 3.4 the series (2.5) and (3.4) converge absolutely, and therefore, unconditionally in the
Hilbert space ℒ2(𝑋1) to 𝑣. We have that ∆𝐼

𝑠𝐻𝑠′ = 0 for every 𝑠 ̸≤ 𝑠′. Moreover, if Λ ⊂ F is downward closed
set, 𝐼Λ𝐻𝑠 = 𝐻𝑠 for every 𝑠 ∈ Λ, and hence we can write

𝐼Λ𝑣 = 𝐼Λ

(︁∑︁
𝑠∈F

𝑣𝑠𝐻𝑠

)︁
=
∑︁
𝑠∈F

𝑣𝑠 𝐼Λ𝐻𝑠 =
∑︁
𝑠∈Λ

𝑣𝑠𝐻𝑠 +
∑︁
𝑠 ̸∈Λ

𝑣𝑠 𝐼Λ∩𝑅𝑠 𝐻𝑠. (3.21)

Let us first consider the case 𝛼 ≤ 1/𝑞2 − 1/2. Let 𝜉 > 0 be given. For 𝑘 ∈ N0, put

Λ𝑘 := {𝑠 ∈ F : (𝑘, 𝑠) ∈ 𝐺(𝜉)} = {𝑠 ∈ F : 𝜎𝑞2
2,𝑠 ≤ 2−𝑘𝜉}.

Observe that Λ𝑘 = ∅ for all 𝑘 > 𝑘* := ⌊log2 𝜉⌋, and consequently, we have that

ℐ𝐺(𝜉)𝑣 =
𝑘*∑︁

𝑘=0

𝛿𝑘

(︁ ∑︁
𝑠∈Λ𝑘

∆𝐼
𝑠

)︁
𝑣 =

𝑘*∑︁
𝑘=0

𝛿𝑘𝐼Λ𝑘
𝑣. (3.22)

Since the sequence (𝜎2;𝑠)𝑠∈F is increasing, Λ𝑘 are downward closed sets, and consequently, the sequence
{︀

Λ𝑘

}︀𝑘*

𝑘=0
is nested in the inverse order, i.e., Λ𝑘′ ⊂ Λ𝑘 if 𝑘′ > 𝑘, and Λ0 is the largest and Λ𝑘* = {0F}. Therefore, from
the unconditional convergence of the series (3.4) to 𝑣, (3.22) and (3.21) we derive that

ℐ𝐺(𝜉)𝑣 =
𝑘*∑︁

𝑘=0

∑︁
𝑠∈Λ𝑘

𝛿𝑘(𝑣𝑠)𝐻𝑠 +
𝑘*∑︁

𝑘=0

∑︁
�̸�∈Λ𝑘

𝛿𝑘(𝑣𝑠) 𝐼Λ𝑘∩𝑅𝑠
𝐻𝑠

= 𝒮𝐺(𝜉)𝑣 +
𝑘*∑︁

𝑘=0

∑︁
𝑠 ̸∈Λ𝑘

𝛿𝑘(𝑣𝑠) 𝐼Λ𝑘∩𝑅𝑠
𝐻𝑠.

This implies that

𝑣 − ℐ𝐺(𝜉)𝑣 = 𝑣 − 𝒮𝐺(𝜉)𝑣 −
𝑘*∑︁

𝑘=0

∑︁
𝑠 ̸∈Λ𝑘

𝛿𝑘(𝑣𝑠) 𝐼Λ𝑘∩𝑅𝑠
𝐻𝑠.

Hence, ⃦⃦
𝑣 − ℐ𝐺(𝜉)𝑣

⃦⃦
ℒ2(𝑋1)

≤
⃦⃦
𝑣 − 𝒮𝐺(𝜉)𝑣

⃦⃦
ℒ2(𝑋1)

+
∑︁

(𝑘,𝑠)̸∈𝐺(𝜉)

‖𝛿𝑘(𝑣𝑠)‖𝑋1

⃦⃦
𝐼Λ𝑘∩𝑅𝑠

𝐻𝑠

⃦⃦
𝐿2(R∞,𝛾)

. (3.23)
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Lemma 3.5 gives ⃦⃦⃦
𝑣 − 𝒮𝐺(𝜉)𝑢

⃦⃦⃦
ℒ2(𝑋1)

≤ 𝐶 𝜉−𝛼. (3.24)

Let us estimate the sum in the right-hand side of (3.23). We have that⃦⃦
𝐼Λ𝑘∩𝑅𝑠

𝐻𝑠

⃦⃦
𝐿2(R∞,𝛾)

≤
∑︁

𝑠′∈Λ𝑘∩𝑅𝑠

‖∆𝐼
𝑠′(𝐻𝑠)

⃦⃦
𝐿2(R∞,𝛾)

. (3.25)

We estimate the norm in the sum in the right-hand side. Assuming 𝑠 ∈ F to be such that supp(𝑠) ⊂ {1, . . . , 𝐽}, we
have ∆𝐼

𝑠′(𝐻𝑠) =
∏︀𝐽

𝑗=1 ∆𝐼
𝑠′𝑗

(𝐻𝑠𝑗
). Since ∆𝐼

𝑠′𝑗
(𝐻𝑠𝑗

) is a polynomial of degree ≤ 𝑠′𝑗 in variable 𝑦𝑗 , from Lemma 3.1
we obtain that

‖∆𝐼
𝑠′(𝐻𝑠)

⃦⃦
𝐿2(R∞,𝛾)

=
𝐽∏︁

𝑗=1

‖∆𝐼
𝑠′𝑗

(𝐻𝑠𝑗
)‖𝐿2(R,𝛾) =

𝐽∏︁
𝑗=1

‖∆𝐼
𝑠′𝑗

(𝐻𝑠𝑗
)
√
𝑔‖𝐿2(R)

≤ 𝑝𝑠′(𝜃, 𝜆)
𝐽∏︁

𝑗=1

‖∆𝐼
𝑠′𝑗

(𝐻𝑠𝑗
)
√
𝑔‖𝐿∞(R)

where 𝜃 = 1/4, 𝜆 := 𝐶2,∞ and 𝐶2,∞ is the constant in Lemma 3.1. Due to the assumption (3.15), we have by
Lemmata 3.7 and 3.2 that

‖∆𝐼
𝑠′𝑗

(𝐻𝑠𝑗
)
√
𝑔‖𝐿∞(R) ≤ (1 + 𝐶𝜀𝑠

′
𝑗)𝜏+𝜀 ‖𝐻𝑠𝑗

√
𝑔‖𝐿∞(R)

≤ (1 + 𝐶𝜀𝑠
′
𝑗)𝜏+𝜀(1 + 𝐶∞,2,2𝑠𝑗)1/4 ‖𝐻𝑠𝑗

√
𝑔‖𝐿2(R)

= (1 + 𝐶𝜀𝑠
′
𝑗)𝜏+𝜀(1 + 𝐶∞,2,2𝑠𝑗)1/4

and consequently,
‖∆𝐼

𝑠′(𝐻𝑠)
⃦⃦

𝐿2(R∞,𝛾)
≤ 𝑝𝑠′(𝜃, 𝜆) ≤ 𝑝𝑠(𝜃, 𝜆), (3.26)

where
𝜃 := 𝜏 + 𝜀+ 1/4, 𝜆 := max (𝐶∞,2, 𝐶2,∞, 𝐶𝜀) . (3.27)

Substituting ‖∆𝐼
𝑠′(𝐻𝑠)

⃦⃦
𝐿2(R∞,𝛾)

in (3.25) with the right-hand side of (3.26) gives that

⃦⃦
𝐼Λ𝑘∩𝑅𝑠

𝐻𝑠

⃦⃦
𝐿2(R∞,𝛾)

≤
∑︁

𝑠′∈Λ𝑘∩𝑅𝑠

𝑝𝑠(𝜃, 𝜆) ≤ |𝑅𝑠| 𝑝𝑠(𝜃, 𝜆) ≤ 𝑝𝑠(1, 1) 𝑝𝑠(𝜃, 𝜆),

where 𝜃 and 𝜆 are as in (3.27). Hence, ⃦⃦
𝐼Λ𝑘∩𝑅𝑠 𝐻𝑠

⃦⃦
𝐿2(R∞,𝛾)

≤ 𝑝𝑠(𝜃, 𝜆), (3.28)

where 𝜃 and 𝜆 are as in (3.18). Denote by Σ(𝜉) the sum in the right-hand side of (3.23). By using (3.28) and
(2.4) we estimate Σ(𝜉) as

Σ(𝜉) ≤ 𝐶
∑︁

(𝑘,𝑠)̸∈𝐺(𝜉)

2−𝛼𝑘𝑝𝑠(𝜃, 𝜆)‖𝑣𝑠‖𝑋2 = 𝐶
∑︁
𝑠∈F

𝑝𝑠(𝜃, 𝜆)‖𝑣𝑠‖𝑋2

∑︁
2𝑘>𝜉𝜎

−𝑞2
2;𝑠

2−𝛼𝑘

≤ 𝐶
∑︁
𝑠∈F

𝑝𝑠(𝜃, 𝜆)‖𝑣𝑠‖𝑋2 (𝜉𝜎−𝑞2
2;𝑠 )−𝛼 ≤ 𝐶𝜉−𝛼

∑︁
𝑠∈F

𝑝𝑠(𝜃, 𝜆)𝜎𝑞2𝛼
2;𝑠 ‖𝑣𝑠‖𝑋2 .
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By the inequalities 2(1− 𝑞2𝛼) ≥ 𝑞2 and 𝜎2;𝑠 > 1 and the assumptions we have that

∑︁
𝑠∈F

𝑝𝑠(𝜃, 𝜆)𝜎𝑞2𝛼
2;𝑠 ‖𝑣𝑠‖𝑋2 ≤

(︃∑︁
𝑠∈F

(𝜎2;𝑠‖𝑣𝑠‖𝑋2)2
)︃1/2(︃∑︁

𝑠∈F
𝑝2

𝑠(𝜃, 𝜆)𝜎−2(1−𝑞2𝛼)
2;𝑠

)︃1/2

≤

(︃∑︁
𝑠∈F

(𝜎2;𝑠‖𝑣𝑠‖𝑋2)2
)︃1/2(︃∑︁

𝑠∈F
𝑝𝑠(2𝜃, 𝜆)𝜎−𝑞2

2;𝑠

)︃1/2

= 𝐶 <∞.

Thus, we obtain the estimate

Σ(𝜉) :=
∑︁

(𝑘,𝑠)̸∈𝐺(𝜉)

‖𝛿𝑘(𝑣𝑠)‖𝑋1

⃦⃦
𝐼Λ𝑘∩𝑅𝑠 𝐻𝑠

⃦⃦
𝐿2(R∞,𝛾)

≤ 𝐶𝜉−𝛼.

This together with (3.23) and (3.24) implies that

‖𝑣 − ℐ𝐺(𝜉)𝑢‖ℒ2(𝑋1) ≤ 𝐶𝜉−𝛼.

Hence, similarly to (2.13)–(2.15), for each 𝑛 ∈ N we can find a number 𝜉𝑛 such that dim𝒱(𝐺(𝜉𝑛)) ≤ 𝑛 and

‖𝑣 − ℐ𝐺(𝜉𝑛)𝑣‖ℒ𝑝(𝑋1) ≤ 𝐶𝑛−𝛼, 𝛼 ≤ 1/𝑞2 − 1/2. (3.29)

We now consider the case 𝛼 > 1/𝑞2− 1/2. Observe that the unconditional convergence of the series (2.5) and
the uniform boundedness of the operators 𝑃𝑛 in 𝑋1 imply that

𝛿𝑘∆𝐼
𝑠𝑣 = ∆𝐼

𝑠𝛿𝑘𝑣 =
∑︁
𝑠′∈F

𝛿𝑘(𝑣𝑠′)∆𝐼
𝑠(𝐻𝑠′) (3.30)

and
𝑃𝑛𝑣 =

∑︁
𝑠∈F

𝑃𝑛(𝑣𝑠)𝐻𝑠

with convergence of the series in ℒ2(𝑋1). Put Λ(𝜉) :=
{︀
𝑠 ∈ F : 𝜎𝑞1

1;𝑠 ≤ 𝜉
}︀

and 𝐵(𝜉, 𝑠) :=
{︀
𝑘 ∈ N0 : 2𝑘 ≤

𝜎
−(𝛼+1/2)−1

2;𝑠 𝜉𝜗(𝛼+1/2)−1}︀
for 𝜉 > 0 with 𝜗 as in (3.6). By using of these equalities and the unconditional

convergence of the series (2.5) and (3.4), with 𝑁(𝜉, 𝑠) := 2
⌊︀

log2

(︀
𝜎
−(𝛼+1/2)−1

2;𝑠 𝜉𝜗(𝛼+1/2)−1
)︀⌋︀

we derive the equalities

ℐ𝐺(𝜉)𝑣 =
∑︁

(𝑘,𝑠)∈𝐺(𝜉)

𝛿𝑘∆𝐼
𝑠𝑣 =

∑︁
𝑠∈Λ(𝜉)

∆𝐼
𝑠

⎛⎝ ∑︁
𝑘∈𝐵(𝜉,𝑠)

𝛿𝑘𝑣

⎞⎠
=

∑︁
𝑠∈Λ(𝜉)

𝑃𝑁(𝜉,𝑠)(𝑣𝑠)𝐻𝑠 +
∑︁

𝑠 ̸∈Λ(𝜉)

𝑃𝑁(𝜉,𝑠)(𝑣𝑠)𝐼Λ(𝜉)∩𝑅𝑠
(𝐻𝑠)

=
∑︁

𝑠∈Λ(𝜉)

⎛⎝ ∑︁
𝑘∈𝐵(𝜉,𝑠)

𝛿𝑘𝑣

⎞⎠𝐻𝑠 +
∑︁

𝑠 ̸∈Λ(𝜉)

𝑃𝑁(𝜉,𝑠)(𝑣𝑠)𝐼Λ(𝜉)∩𝑅𝑠
(𝐻𝑠)

= 𝒮𝐺(𝜉)𝑣 +
∑︁

𝑠 ̸∈Λ(𝜉)

𝑃𝑁(𝜉,𝑠)(𝑣𝑠)𝐼Λ(𝜉)∩𝑅𝑠
(𝐻𝑠).
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Hence, ⃦⃦
𝑣 − ℐ𝐺(𝜉)𝑣

⃦⃦
ℒ2(𝑋1)

≤
⃦⃦
𝑣 − 𝒮𝐺(𝜉)𝑣

⃦⃦
ℒ2(𝑋1)

+
∑︁

𝑠 ̸∈Λ(𝜉)

‖𝑃𝑁(𝜉,𝑠)(𝑣𝑠)‖𝑋1

⃦⃦
𝐼Λ(𝜉)∩𝑅𝑠

𝐻𝑠

⃦⃦
𝐿2(R∞,𝛾)

. (3.31)

Lemma 3.5 gives ⃦⃦
𝑣 − 𝒮𝐺(𝜉)𝑣

⃦⃦
ℒ2(𝑋1)

≤ 𝐶𝜉−(1/𝑞1−1/2). (3.32)

The sum in the right-hand side of (3.31) can be estimated by∑︁
�̸�∈Λ(𝜉)

‖𝑃𝑁(𝜉,𝑠)(𝑣𝑠)‖𝑋1

⃦⃦
𝐼Λ(𝜉)∩𝑅𝑠

𝐻𝑠

⃦⃦
𝐿2(R∞,𝛾)

≤ 𝐶
∑︁

𝑠 ̸∈Λ(𝜉)

‖𝑣𝑠‖𝑋1

⃦⃦
𝐼Λ(𝜉)∩𝑅𝑠

𝐻𝑠

⃦⃦
𝐿2(R∞,𝛾)

.

Similarly to (3.28), we have ⃦⃦
𝐼Λ(𝜉)∩𝑅𝑠

𝐻𝑠

⃦⃦
𝐿2(R∞,𝛾)

≤ 𝑝𝑠(𝜃, 𝜆)

with the same 𝜃 and 𝜆 as in (3.18). This gives the estimate∑︁
𝑠 ̸∈Λ(𝜉)

‖𝑃𝑁(𝜉,𝑠)(𝑣𝑠)‖𝑋1

⃦⃦
𝐼Λ(𝜉)∩𝑅𝑠

𝐻𝑠

⃦⃦
𝐿2(R∞,𝛾)

≤ 𝐶
∑︁

𝑠 ̸∈Λ(𝜉)

‖𝑣𝑠‖𝑋1 𝑝𝑠(𝜃, 𝜆). (3.33)

We have by the Hölder inequality and the hypothesis of the theorem,

∑︁
𝑠 ̸∈Λ(𝜉)

‖𝑣𝑠‖𝑋1 𝑝𝑠(𝜃, 𝜆) ≤

⎛⎝ ∑︁
𝜎1;𝑠>𝜉1/𝑞1

(𝜎1;𝑠‖𝑣𝑠‖𝑋1)2

⎞⎠1/2⎛⎝ ∑︁
𝜎1;𝑠>𝜉1/𝑞1

𝑝2
𝑠(𝜃, 𝜆)𝜎−2

1;𝑠

⎞⎠1/2

≤ 𝐶

⎛⎝ ∑︁
𝜎1;𝑠>𝜉1/𝑞1

𝑝2
𝑠(𝜃, 𝜆)𝜎−𝑞1

1;𝑠 𝜎
−(2−𝑞1)
1;𝑠

⎞⎠1/2

≤ 𝐶𝜉−(1/𝑞1−1/2)

(︃∑︁
𝑠∈F

𝑝𝑠(2𝜃, 𝜆)𝜎−𝑞1
1;𝑠

)︃1/2

≤ 𝐶𝜉−(1/𝑞1−1/2).

(3.34)

Combining (3.31)–(3.34) leads to the estimate

‖𝑣 − ℐ𝐺(𝜉)𝑣‖ℒ2(𝑋1) ≤ 𝐶𝜉−(1/𝑞1−1/2). (3.35)

For the dimension of the space 𝒱(𝐺(𝜉)), with 𝑞 := (𝛼+ 1/2)𝑞2 > 1 and 1/𝑞′ + 1/𝑞 = 1 we have that

dim𝒱(𝐺(𝜉)) ≤
∑︁

(𝑘,𝑠)∈𝐺(𝜉)

dim𝑉2𝑘 ≤
∑︁

𝜎
𝑞1
1;𝑠≤𝜉

∑︁
2(𝛼+1/2)𝑘𝜎2;𝑠≤𝜉𝜗

2𝑘

≤ 2
∑︁

𝜎
𝑞1
1;𝑠≤𝜉

𝜉𝜗(𝛼+1/2)−1
𝜎
−(𝛼+1/2)−1

2;𝑠 ≤ 2𝜉𝜗(𝛼+1/2)−1

⎛⎝ ∑︁
𝜎

𝑞1
1;𝑠≤𝜉

𝜎−𝑞2
2;𝑠

⎞⎠1/𝑞⎛⎝ ∑︁
𝜎

𝑞1
1;𝑠≤𝜉

1

⎞⎠1/𝑞′

≤ 2𝜉𝜗(𝛼+1/2)−1

(︃∑︁
𝑠∈F

𝜎−𝑞2
2;𝑠

)︃1/𝑞 (︃∑︁
𝑠∈F

𝜉𝜎−𝑞1
1;𝑠

)︃1/𝑞′

= 𝑀𝜉𝜗(𝛼+1/2)−1+1/𝑞′ = 𝑀𝜉1+𝛿/𝛼,
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where 𝑀 := 2
⃦⃦(︀
𝜎−1

2;𝑠

)︀⃦⃦𝑞2/𝑞

ℓ𝑞2 (F)

⃦⃦(︀
𝜎−1

1;𝑠

)︀⃦⃦𝑞1/𝑞′

ℓ𝑞1 (F)
. For any 𝑛 ∈ N, letting 𝜉𝑛 be a number satisfying the inequalities

𝑀 𝜉1+𝛿/𝛼
𝑛 ≤ 𝑛 < 2𝑀 𝜉1+𝛿/𝛼

𝑛 , (3.36)

we derive that dim𝒱(𝐺(𝜉𝑛)) ≤ 𝑛. On the other hand, by (3.36),

𝜉−(1/𝑞1−1/2)
𝑛 ≤ (2𝑀)

𝛼
𝛼+𝛿 𝑛−(1/𝑞1−1/2) 𝛼

𝛼+𝛿 .

This together with (3.35) proves that

‖𝑣 − ℐ𝐺(𝜉𝑛)𝑣‖ℒ𝑝(𝑋1) ≤ 𝐶𝑛−𝛽 , 𝛼 > 1/𝑞2 − 1/2.

By combining the last estimate and (3.29) we derive (3.19).
�

Denote by Γ𝑠 and Γ(Λ) the set of interpolation points in the operators ∆𝐼
𝑠 and 𝐼Λ, respectively. We have that

Γ𝑠 = {𝑦𝑠−𝑒;𝑚 : 𝑒 ∈ E𝑠; 𝑚𝑗 = 0, . . . , 𝑠𝑗 − 𝑒𝑗 , 𝑗 ∈ N} and Γ(Λ) = ∪𝑠∈ΛΓ𝑠, where E𝑠 is the subset in F of all 𝑒
such that 𝑒𝑗 is 1 or 0 if 𝑠𝑗 > 0, and 𝑒𝑗 is 0 if 𝑠𝑗 = 0, and 𝑦𝑠;𝑚 := (𝑦𝑠𝑗 ;𝑚𝑗

)𝑗∈N.

Remark 3.9. (i) Observe that the operator ℐ𝐺(𝜉𝑛) in Theorem 3.8 can be represented in the form of a multilevel
approximation method with 𝑘𝑛 levels:

ℐ𝐺(𝜉𝑛) =
𝑘𝑛∑︁

𝑘=0

𝛿𝑘𝐼Λ𝑘(𝜉𝑛),

where 𝑘𝑛 := ⌊log2 𝜉𝑛⌋ and for 𝑘 ∈ N0 and 𝜉 > 0,

Λ𝑘(𝜉) :=

{︃{︀
𝑠 ∈ F : 𝜎𝑞2

2;𝑠 ≤ 2−𝑘𝜉
}︀

if 𝛼 ≤ 1/𝑞2 − 1/2;{︀
𝑠 ∈ F : 𝜎𝑞1

1;𝑠 ≤ 𝜉, 𝜎2;𝑠 ≤ 2−(𝛼+1/2)𝑘𝜉𝜗
}︀

if 𝛼 > 1/𝑞2 − 1/2.

Moreover, Λ𝑘(𝜉𝑛) are downward closed sets, and consequently, the sequence
{︀

Λ𝑘(𝜉𝑛)
}︀𝑘𝑛

𝑘=0
is nested in the inverse

order, i.e., Λ𝑘′(𝜉𝑛) ⊂ Λ𝑘(𝜉𝑛) if 𝑘′ > 𝑘, and Λ0(𝜉𝑛) is the largest and Λ𝑘𝑛(𝜉𝑛) = {0F}.

(ii) Theorem 3.8 is a non-adaptive “collocation” extension of Theorem 3.1 in [1] for the lognormal case. The
approximant ℐ𝐺(𝜉𝑛)𝑣 belongs to the space 𝒱(𝐺(𝜉𝑛)) ⊂ 𝒱(𝑋2). The convergence rate min(𝛼, 𝛽) of the
approximation by ℐ𝐺(𝜉𝑛)𝑣 is given in terms of 𝑛 where the thresholding parameter 𝜉𝑛 is chosen such that
dim(𝒱(𝐺(𝜉𝑛)) ≤ 𝑛. This rate is the same as the rate of the approximation by the truncated Hermite gpc
expansion 𝒮𝐺(𝜉𝑛)𝑣. The fully discrete polynomial interpolation approximation of 𝑣 ∈ ℒℰ2 (𝑋2) by operators
ℐ𝐺(𝜉𝑛) is based on the finite point-wise information in 𝑦, more precisely, on |Γ(Λ0(𝜉𝑛))| of particular values
of 𝑣 at the interpolation points 𝑦 ∈ Γ(Λ0(𝜉𝑛)) and the approximations of 𝑣(𝑦), 𝑦 ∈ Γ(Λ0(𝜉𝑛)), by 𝑃2𝑘𝑣(𝑦)
for 𝑘 = 0, . . . , 𝑘𝑛. Moreover, we have that

|Γ(Λ0(𝑛))| ≤
∑︁

𝑠∈Λ0(𝑛)

𝑝𝑠(1, 2) = 𝒪(𝑛).

(iii) Under the assumptions of Theorem 3.8, by (3.30) we have that for every 𝑣 ∈ ℒ2(𝑋2) and every 𝐺 ⊂ N0×F,

ℐ𝐺𝑣 =
∑︁

(𝑘,𝑠)∈𝐺

∆𝐼
𝑠(𝛿𝑘𝑣).
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Theorem 3.10. Let 0 < 𝑝 ≤ 2. Let Assumption 2.1 hold for Hilbert spaces 𝑋1 and 𝑋2. Let 𝑣 ∈ ℒℰ2 (𝑋2) be
represented by the series (3.10). Assume that (𝑌𝑚)𝑚∈N0 is a sequence satisfying the condition (3.15) for some
positive numbers 𝜏 and 𝐶. Assume that for 𝑟 = 1, 2 there exist increasing sequences (𝜎𝑟;𝑠)𝑠∈Fev of numbers
strictly larger than 1 such that ∑︁

𝑠∈Fev

(𝜎𝑟;𝑠‖𝑣𝑠‖𝑋𝑟 )2 <∞

and (𝑝𝑠(2𝜃, 𝜆)𝜎−1
𝑟;𝑠)𝑠∈Fev ∈ ℓ𝑞𝑟 (Fev) for some 0 < 𝑞1 ≤ 𝑞2 <∞ with 𝑞1 < 2, where 𝜃 and 𝜆 are as in (3.18). For

𝜉 > 0, let 𝐺ev(𝜉) be the set defined as in (3.11).
Then for each 𝑛 ∈ N there exists a number 𝜉𝑛 such that for the interpolation operator ℐ𝐺ev(𝜉𝑛) : ℒℰ2 (𝑋2) →

𝒱(𝐺ev(𝜉𝑛)), we have that dim𝒱(𝐺ev(𝜉𝑛)) ≤ 𝑛 and

‖𝑣 − ℐ𝐺ev(𝜉𝑛)𝑣‖ℒ𝑝(𝑋1) ≤ 𝐶𝑛−min(𝛼,𝛽). (3.37)

The rate 𝛼 corresponds to the approximation of a single function in 𝑋2 as given by (2.3). The rate 𝛽 is given
by (3.20). The constant 𝐶 in (3.37) is independent of 𝑣 and 𝑛.

Proof. The proof of this theorem is similar to the proof of Theorem 3.8 with some modification. For example,
all the indices sets are taken from the sets Fev and N0 × Fev instead F and N0 × F; estimates similar to (3.24)
and (3.32) are given by Lemma 3.6 instead Lemma 3.5.

�

Corollary 3.11. Let 0 < 𝑝 ≤ 2. Let 𝑣 ∈ ℒℰ2 (𝑋) be represented by the series (2.2) for a Hilbert space 𝑋. Assume
that (𝑌𝑚)𝑚∈N0 is a sequence satisfying the condition (3.15) for some positive numbers 𝜏 and 𝐶. Assume that
there exists an increasing sequence (𝜎𝑠)𝑠∈F of numbers strictly larger than 1 such that∑︁

𝑠∈F
(𝜎𝑠‖𝑣𝑠‖𝑋)2 <∞

and (𝑝𝑠(2𝜃,max(2, 𝜆))𝜎−1
𝑠 )𝑠∈F ∈ ℓ𝑞(F) for some 0 < 𝑞 < 2, where 𝜃 and 𝜆 are as in (3.18). For 𝜉 > 0, define

Λ(𝜉) := {𝑠 ∈ F : 𝜎𝑞
𝑠 ≤ 𝜉}. (3.38)

Then for each 𝑛 ∈ N there exists a number 𝜉𝑛 such that |Γ(Λ(𝜉𝑛))| ≤ 𝑛 and

‖𝑣 − 𝐼Λ(𝜉𝑛)𝑣‖ℒ𝑝(𝑋) ≤ 𝐶𝑛−(1/𝑞−1/2). (3.39)

The constant 𝐶 in (3.39) is independent of 𝑣 and 𝑛.

Proof. Similarly to the proof of Theorem 3.8 it is sufficient to prove (3.39) for 𝑝 = 2. In the same way as in
proving (3.31), we can show that⃦⃦

𝑣 − 𝐼Λ(𝜉)𝑣
⃦⃦
ℒ2(𝑋1)

≤
⃦⃦
𝑣 − 𝑆Λ(𝜉)𝑣

⃦⃦
ℒ2(𝑋1)

+
∑︁

𝑠 ̸∈Λ(𝜉)

‖𝑣𝑠‖𝑋1

⃦⃦
𝐼Λ(𝜉)∩𝑅𝑠

𝐻𝑠

⃦⃦
𝐿2(R∞,𝛾)

,

where
𝑆Λ(𝜉)𝑣 :=

∑︁
𝑠∈Λ(𝜉)

𝑣𝑠𝐻𝑠.

By estimating
⃦⃦
𝑣 − 𝑆Λ(𝜉)𝑣

⃦⃦
ℒ2(𝑋1)

and
∑︀

𝑠 ̸∈Λ(𝜉) ‖𝑣𝑠‖𝑋1

⃦⃦
𝐼Λ(𝜉)∩𝑅𝑠

𝐻𝑠

⃦⃦
𝐿2(R∞,𝛾)

similarly to (2.16), (3.33) and
(3.34), respectively, we derive ⃦⃦

𝑣 − 𝐼Λ(𝜉)𝑣
⃦⃦
ℒ2(𝑋1)

≤ 𝐶𝜉−(1/𝑞−1/2).
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Since |Γ𝑠| ≤
∏︀

𝑗∈N(2𝑠𝑗 + 1) = 𝑝𝑠(1, 2), we have from the definition

|Γ(Λ(𝜉))| ≤
∑︁

𝑠∈Λ(𝜉)

|Γ𝑠| ≤
∑︁

𝜉𝜎−𝑞
𝑠 ≥1

𝑝𝑠(1, 2) ≤𝑀𝜉, (3.40)

where 𝑀 :=
∑︀

𝑠∈F 𝑝𝑠(1, 2)𝜎−𝑞
𝑠 <∞ by the assumption. For any 𝑛 ∈ N, by choosing a number 𝜉𝑛 satisfying the

inequalities 𝑀𝜉𝑛 ≤ 𝑛 < 2𝑀𝜉𝑛, we derive (3.39). �

Similarly to Corollary 3.11 we have the following

Corollary 3.12. Let 𝑣 ∈ ℒℰ2 (𝑋) be represented by the series (3.10) for a Hilbert space 𝑋. Assume that
(𝑌𝑚)𝑚∈N0 is a sequence satisfying the condition (3.15) for some positive numbers 𝜏 and 𝐶. Assume that there
exists an increasing sequence (𝜎𝑠)𝑠∈Fev of numbers strictly larger than 1 such that∑︁

𝑠∈Fev

(𝜎𝑠‖𝑣𝑠‖𝑋)2 <∞

and (𝑝𝑠(2𝜃,max(2, 𝜆))𝜎−1
𝑠 )𝑠∈Fev ∈ ℓ𝑞(Fev) for some 0 < 𝑞 < 2, where 𝜃 and 𝜆 are as in (3.18). For 𝜉 > 0, define

Λev(𝜉) := Λ(𝜉) ∩ Fev = {𝑠 ∈ Fev : 𝜎𝑞
𝑠 ≤ 𝜉}. (3.41)

Then for each 𝑚 ∈ N there exists a number 𝜉𝑛 such that |Γ(Λev(𝜉𝑛))| ≤ 𝑛 and

‖𝑣 − 𝐼Λev(𝜉𝑛)𝑣‖ℒ𝑝(𝑋) ≤ 𝐶𝑛−(1/𝑞−1/2). (3.42)

The constant 𝐶 in (3.42) is independent of 𝑣 and 𝑛.

Remark 3.13. (i) Theorem 3.10 and Corollary 3.12 will be applied in proving the convergence rates of fully
and non-fully discrete integration in the next section.

(ii) The bound ‖𝑣 − 𝐼Λ𝑛
𝑣‖𝐿2(R∞,ℋ,𝛾) ≤ 𝐶𝑛−(1/𝑞−1/2) has been obtained in Theorem 3.14 of [18] for a Hilbert

space ℋ, where Λ𝑛 is the set of 𝑠 corresponding to the 𝑛 largest elements of an ℓ𝑞-summable majorant of
the sequence (𝜎−1

𝑠 𝑝𝑠(𝜃, 𝜆))𝑠∈F.
(iii) The operators 𝐼Λ(𝜉) and 𝐼Λev(𝜉) represent non-adaptive collocation methods of approximation of 𝑣 ∈ 𝑋1

based on the particular values 𝑣(𝑦) at the points 𝑦 in the grids Γ(Λ(𝜉)) and Γ(Λev(𝜉)), respectively.
Moreover, the sparsity of Γ(Λev(𝜉)) is much higher than that of Γ(Λ(𝜉)): the generating set Λev(𝜉) contains
only even indices of Λ(𝜉). This remarkable property, in particular, plays an important role in improving
the rate of quadrature of the solution to the parametrized elliptic PDEs with lognormal inputs (1.1), see
Corollary 5.11 and its proof as well as Remark 5.12.

4. Integration

In this section, we construct general linear fully discrete methods for integration of functions taking values
in 𝑋2 and having a weighted ℓ2-summability of Hermite expansion coefficients for Hilbert spaces 𝑋1 and 𝑋2

satisfying a certain “spatial” approximation property, and their bounded linear functionals. In particular, we
give convergence rates for these methods of integration which are derived from results on convergence rate of
polynomial interpolation approximation in 𝒱1(𝑋1) in Theorem 3.10. We also briefly consider linear non-fully
discrete methods for integration.

If 𝑣 is a function defined on R taking values in a Hilbert space 𝑋, the function 𝐼𝑚(𝑣) in (3.14) generates the
quadrature formula defined as

𝑄𝑚(𝑣) :=
∫︁

R
𝐼𝑚(𝑣)(𝑦) d𝛾(𝑦) =

𝑚∑︁
𝑘=0

𝜔𝑚;𝑘 𝑣(𝑦𝑚;𝑘),
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where
𝜔𝑚;𝑘 :=

∫︁
R
ℓ𝑚;𝑘(𝑦) d𝛾(𝑦).

Notice that
𝑄𝑚(𝜙) =

∫︁
R
𝜙(𝑦) d𝛾(𝑦)

for every polynomial 𝜙 of degree ≤ 𝑚, due to the identity 𝐼𝑚(𝜙) = 𝜙.
For integration purpose, we additionally assume that the sequence 𝑌𝑚 as in (3.13) is symmetric for every

𝑚 ∈ N0, i.e., 𝑦𝑚;𝑚−𝑘 = 𝑦𝑚;𝑘 for 𝑘 = 0, . . . ,𝑚. The sequences 𝑌 *𝑚 of the of the roots of the Hermite polynomials
𝐻𝑚+1 and their modifications 𝑌 *𝑚 are symmetric. Also, for the sequence 𝑌 *𝑚, it is well-known that

𝜔𝑚;𝑘 =
1

(𝑚+ 1)𝐻2
𝑚(𝑦*𝑚;𝑘)

·

For a given sequence (𝑌𝑚)∞𝑚=0, we define the univariate operator ∆𝑄
𝑚 for 𝑚 ∈ N0 by

∆𝑄
𝑚 := 𝑄𝑚 −𝑄𝑚−1,

with the convention 𝑄−1 := 0.
For a function 𝑣 ∈ ℒℰ2 (𝑋), we introduce the interpolation operator ∆𝑄

𝑠 defined for 𝑠 ∈ F by

∆𝑄
𝑠 (𝑣) :=

⨂︁
𝑗∈N

∆𝑄
𝑠𝑗

(𝑣),

where the univariate operator ∆𝑄
𝑠𝑗

is applied to the univariate function 𝑣 by considering 𝑣 as a function of
variable 𝑦𝑖 with the other variables held fixed. As ∆𝐼

𝑠, the operators ∆𝑄
𝑠 are well-defined for all 𝑠 ∈ F. For a

finite set Λ ⊂ F, we introduce the quadrature operator 𝑄Λ which is generated by the interpolation operator 𝐼Λ
as follows

𝑄Λ𝑣 :=
∑︁
𝑠∈Λ

∆𝑄
𝑠 (𝑣) =

∫︁
R∞

𝐼Λ𝑣(𝑦) d𝛾(𝑦).

Further, if 𝜑 ∈ 𝑋 ′ is a bounded linear functional on 𝑋, denote by ⟨𝜑, 𝑣⟩ the value of 𝜑 in 𝑣. For a finite set
Λ ⊂ F, the quadrature formula 𝑄Λ𝑣 generates the quadrature formula 𝑄Λ⟨𝜑, 𝑣⟩ for integration of ⟨𝜑, 𝑣⟩ by

𝑄Λ⟨𝜑, 𝑣⟩ := ⟨𝜑,𝑄Λ⟩ =
∫︁

R∞
⟨𝜑, 𝐼Λ𝑣(𝑦)⟩d𝛾(𝑦).

Let Assumption 2.1 hold for Hilbert spaces 𝑋1 and 𝑋2, and 𝑣 ∈ ℒℰ2 (𝑋2). For a finite set 𝐺 ⊂ N0 × F, we
introduce the quadrature operator 𝒬𝐺 which is generated by the interpolation operator ℐ𝐺 : ℒℰ2 (𝑋2) → 𝒱(𝐺),
and which is defined for 𝑣 by

𝒬𝐺𝑣 :=
∑︁

(𝑘,𝑠)∈𝐺

𝛿𝑘∆𝑄
𝑠 (𝑣) =

∫︁
R∞

ℐ𝐺𝑣(𝑦) d𝛾(𝑦). (4.1)

Further, if 𝜑 ∈ (𝑋1)′ is a bounded linear functional on 𝑋1, for a finite set 𝐺 ⊂ N0 × F, the quadrature formula
𝒬𝐺𝑣 generates the quadrature formula 𝒬𝐺⟨𝜑, 𝑣⟩ for integration of ⟨𝜑, 𝑣⟩ by

𝒬𝐺⟨𝜑, 𝑣⟩ := ⟨𝜑,𝒬𝐺𝑣⟩ =
∫︁

R∞
⟨𝜑, ℐ𝐺𝑣(𝑦)⟩d𝛾(𝑦).

For a function 𝑣 ∈ ℒℰ2 (𝑋) and is represented by the series (2.2), consider the function 𝑣ev ∈ ℒℰ2 (𝑋) defined
by

𝑣ev :=
∑︁

𝑠∈Fev

𝑣𝑠𝐻𝑠.
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From the obvious equality
∫︀

R 𝑣(𝑦) d𝛾(𝑦) = 0 for every odd function 𝑣, we have that∫︁
R∞

𝐻𝑠(𝑦) d𝛾(𝑦) = 0, 𝑠 /∈ Fev,

and hence, ∫︁
R∞

𝑣(𝑦) d𝛾(𝑦) =
∫︁

R∞
𝑣ev(𝑦) d𝛾(𝑦). (4.2)

Moreover, if 𝑌𝑚 is symmetric for every 𝑚 ∈ N0,

∆𝑄
𝑠′𝐻𝑠(𝑦) = 0, 𝑠 /∈ Fev, 𝑠′ ∈ F. (4.3)

The equalities (4.2) and (4.3) allow us to remove redundant non-even parametric points in the grid Γ(Λ) for
polynomial interpolation and use instead it the grid Γ(Λev) with higher sparsity for constructing a quadrature
formula, where Λev := Λ∩Fev, see Theorem 4.1 and Corollary 4.2 and their proofs below. This reduces the cost
of computation in numerical implementation.

Theorem 4.1. Under the hypothesis of Theorem 3.8, assume additionally that the sequences 𝑌𝑚, 𝑚 ∈ N0, are
symmetric. For 𝜉 > 0, let 𝐺ev(𝜉) be the set defined as in (3.11). Then for the quadrature operator 𝒬𝐺ev(𝜉)

generated by the interpolation operator ℐ𝐺ev(𝜉) : ℒℰ2 (𝑋2) → 𝒱(𝐺ev(𝜉)), we have the following.

(i) For each 𝑛 ∈ N there exists a number 𝜉𝑛 such that dim𝒱(𝐺ev(𝜉𝑛)) ≤ 𝑛 and⃦⃦⃦⃦∫︁
R∞

𝑣(𝑦) d𝛾(𝑦)−𝒬𝐺ev(𝜉𝑛)𝑣

⃦⃦⃦⃦
𝑋1

≤ 𝐶𝑛−min(𝛼,𝛽). (4.4)

(ii) Let 𝜑 ∈ (𝑋1)′ be a bounded linear functional on 𝑋1. Then for each 𝑛 ∈ N there exists a number 𝜉𝑛 such
that dim𝒱(𝐺ev(𝜉𝑛)) ≤ 𝑛 and⃒⃒⃒⃒∫︁

R∞
⟨𝜑, 𝑣(𝑦)⟩d𝛾(𝑦)−𝒬𝐺ev(𝜉𝑛)⟨𝜑, 𝑣⟩

⃒⃒⃒⃒
≤ 𝐶𝑛−min(𝛼,𝛽). (4.5)

The rate 𝛼 corresponds to the approximation of a single function in 𝑋2 as given by (2.3). The rate 𝛽 is given
by (3.20). The constants 𝐶 in (4.4) and (4.5) are independent of 𝑣 and 𝑛.

Proof. For a given 𝑛 ∈ N, we approximate the integral in the right-hand side of (4.2) by 𝒬𝐺ev(𝜉𝑛) where 𝜉𝑛
is as in Theorem 3.10. By Lemmata 3.3 and 3.4 the series (2.5) and (3.4) converge absolutely, and therefore,
unconditionally in the Hilbert space ℒ2(𝑋1) to 𝑣. Hence, by (4.3) we derive that 𝒬𝐺ev(𝜉𝑛)𝑣 = 𝒬𝐺ev(𝜉𝑛)𝑣ev. Due
to (4.1) and (4.2) there holds the equality∫︁

R∞
𝑣(𝑦) d𝛾(𝑦)−𝒬𝐺ev(𝜉𝑛)𝑣 =

∫︁
R∞

(︀
𝑣ev(𝑦)− ℐ𝐺ev(𝜉𝑛)𝑣ev(𝑦)

)︀
d𝛾(𝑦). (4.6)

Hence, applying (3.37) in Theorem 3.10 for 𝑝 = 1, we obtain (i):⃦⃦⃦⃦∫︁
R∞

𝑣(𝑦) d𝛾(𝑦)−𝒬𝐺ev(𝜉𝑛)𝑣

⃦⃦⃦⃦
𝑋1

≤
⃦⃦
𝑣ev − ℐ𝐺ev(𝜉𝑛)𝑣ev

⃦⃦
ℒ1(𝑋1)

≤ 𝐶𝑛−min(𝛼,𝛽).

For a given 𝑛 ∈ N, we approximate the integral
∫︀

R∞⟨𝜑, 𝑣(𝑦)⟩ d𝛾(𝑦) by 𝒬Λev(𝜉𝑛)⟨𝜑, 𝑣⟩ where 𝜉𝑛 is as in
Corollary 3.12. Similarly to (4.6), there holds the equality∫︁

R∞
⟨𝜑, 𝑣ev(𝑦)⟩ d𝛾(𝑦)−𝒬𝐺ev(𝜉𝑛)⟨𝜑, 𝑣ev(𝑦)⟩ =

∫︁
R∞
⟨𝜑, 𝑣ev(𝑦)− ℐ𝐺ev(𝜉𝑛)𝑣ev(𝑦)⟩d𝛾(𝑦).
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Hence, applying (3.37) in Theorem 3.10 for 𝑝 = 1, we prove (ii):⃒⃒⃒⃒∫︁
R∞
⟨𝜑, 𝑣ev(𝑦)⟩ d𝛾(𝑦)−𝒬𝐺ev(𝜉𝑛)⟨𝜑, 𝑣⟩

⃒⃒⃒⃒
≤
∫︁

R∞

⃒⃒
⟨𝜑, 𝑣ev(𝑦)− ℐ𝐺ev(𝜉𝑛)𝑣ev(𝑦)⟩

⃒⃒
d𝛾(𝑦)

≤
∫︁

R∞
‖𝜑‖(𝑋1)′‖𝑣ev(𝑦)− ℐ𝐺ev(𝜉𝑛)𝑣ev(𝑦)‖𝑋1 d𝛾(𝑦)

≤ 𝐶‖𝑣ev − ℐ𝐺ev(𝜉𝑛)𝑣ev‖ℒ1(𝑋1) ≤ 𝐶𝑛−min(𝛼,𝛽).

�

Similarly to the proof of Theorem 4.1, applying (3.42) in Corollary 3.12 for 𝑝 = 1, we can derive the following

Corollary 4.2. Under the hypothesis of Corollary 3.11, assume additionally that the sequences 𝑌𝑚, 𝑚 ∈ N0,
are symmetric. For 𝜉 > 0, let Λev(𝜉) be the set defined as in (3.41).Then we have the following.

(i) For each 𝑛 ∈ N there exists a number 𝜉𝑛 such that |Γ(Λev(𝜉𝑛))| ≤ 𝑛 and⃦⃦⃦⃦∫︁
R∞

𝑣(𝑦) d𝛾(𝑦)−𝑄Λev(𝜉𝑛)𝑣

⃦⃦⃦⃦
𝑋

≤ 𝐶𝑛−(1/𝑞−1/2). (4.7)

(ii) Let 𝜑 ∈ 𝑋 ′ be a bounded linear functional on 𝑋. Then for each 𝑛 ∈ N there exists a number 𝜉𝑛 such that
|Γ(Λev(𝜉𝑛))| ≤ 𝑛 and ⃒⃒⃒⃒∫︁

R∞
⟨𝜑, 𝑣(𝑦)⟩ d𝛾(𝑦)−𝑄Λev(𝜉𝑛)⟨𝜑, 𝑣⟩

⃒⃒⃒⃒
≤ 𝐶𝑛−(1/𝑞−1/2). (4.8)

The constants 𝐶 in (4.7) and (4.8) are independent of 𝑣 and 𝑛.

5. Elliptic PDEs with lognormal inputs

In this section, we apply the results in Sections 2–4 to Hermite gpc expansion and polynomial interpolation
approximations as well as integration for the parametrized diffusion elliptic equation (1.2) with lognormal inputs
(1.3).

We approximate the solution 𝑢(𝑦) to this equation by truncation of the Hermite series

𝑢(𝑦) =
∑︁
𝑠∈F

𝑢𝑠𝐻𝑠(𝑦), 𝑢𝑠 ∈ 𝑉.

For convenience, we introduce the conventions: 𝑊 1 := 𝑉 ; 𝑊 2 := 𝑊 ; 𝐻0(𝐷) := 𝐿2(𝐷); 𝑊 0,∞(𝐷) := 𝐿∞(𝐷).
Constructions of fully discrete approximations and integration are based on the approximation property (1.5)
in Assumption 1.1 and the weighted ℓ2-summability of the series (‖𝑢𝑠‖𝑊 𝑟 )𝑠∈F, 𝑟 = 1, 2 in the following lemma
which has been proven in [3] for 𝑟 = 1 and in [1] for 𝑟 = 2.

Lemma 5.1. Let 𝑟 = 1, 2. Assume that the right side 𝑓 in (1.2) belongs to 𝐻𝑟−2(𝐷), that the domain 𝐷 has
𝐶𝑟−2,1 smoothness, that all functions 𝜓𝑗 belong to 𝑊 𝑟−1,∞(𝐷). Assume that there exist a number 0 < 𝑞𝑟 <∞
and a sequence 𝜌𝑟 = (𝜌𝑟;𝑗)𝑗∈N of positive numbers such that (𝜌−1

𝑟;𝑗 )𝑗∈N ∈ ℓ𝑞𝑟 (N) and

sup
|𝛼|≤𝑟−1

⃦⃦⃦⃦
⃦⃦∑︁

𝑗∈N
𝜌𝑟;𝑗 |𝐷𝛼𝜓𝑗 |

⃦⃦⃦⃦
⃦⃦

𝐿∞(𝐷)

<∞ .



1188 D. DŨNG

Then we have that for any 𝜂 ∈ N,

∑︁
𝑠∈F

(𝜎𝑟;𝑠‖𝑢𝑠‖𝑊 𝑟 )2 <∞ 𝑤𝑖𝑡ℎ 𝜎2
𝑟;𝑠 :=

∑︁
‖𝑠′‖ℓ∞(F)≤𝜂

(︂
𝑠

𝑠′

)︂
𝜌2𝑠′

𝑟 . (5.1)

We need two auxiliary lemmata.

Lemma 5.2. Let the assumptions of Lemma 5.1 hold for the space 𝑊 1 with 0 < 𝑞1 < 2. Then the solution map
𝑦 ↦→ 𝑢(𝑦) is 𝛾-measurable and 𝑢 ∈ ℒ2(𝑊 1). Moreover, 𝑢 ∈ ℒℰ2 (𝑊 1) where

ℰ :=
{︂

𝑦 ∈ R∞ : sup
𝑗∈N

𝜌−1
1;𝑗 |𝑦𝑗 | <∞

}︂
having 𝛾(ℰ) = 1 and containing all 𝑦 ∈ R∞ with |𝑦|0 <∞.

Proof. The proof of this lemma already is in [3]. Indeed, under the assumptions of Lemma 5.1 for the space 𝑊 1

with 0 < 𝑞1 < 2, by Remark 2.5 of [3] Assumption A in Page 349 of [3] holds for the sequence 𝜌1 = (𝜌1;𝑗)𝑗∈N.
Hence, by Corollary 2.3 of [3] the solution map 𝑦 ↦→ 𝑢(𝑦) is 𝛾-measurable and 𝑢 ∈ ℒ2(𝑊 1). Moreover, 𝛾(ℰ) = 1
(2.23) of [3] and, obviously, ℰ contains all 𝑦 ∈ R∞ with |𝑦|0 < ∞. For a point 𝑦 ∈ R∞, by the Lax–Milgram
lemma the solution 𝑢(𝑦) is well-defined if 𝑏(𝑦) ∈ 𝐿∞(𝐷). This inclusion holds true if 𝑦 ∈ ℰ (2.26) of [3]. This
means that 𝑢 ∈ ℒℰ2 (𝑊 1). �

We make use the following notation: for 𝜈 ∈ N,

F𝜈 := {𝑠 ∈ F : 𝑠𝑗 ∈ N0,𝜈 , 𝑗 ∈ N}; N0,𝜈 := {𝑛 ∈ N0 : 𝑛 = 0, 𝜈, 𝜈 + 1, . . .}.

The set F𝜈 has been introduced in [33]. The set F2 plays an important role in establishing improved convergence
rates for sparse-grid Smolyak quadrature in [33,34].

The following lemma is a generalization of Lemma 5.1 in [3].

Lemma 5.3. Let 0 < 𝑞 < ∞, 𝜂 ∈ N, 𝜌 = (𝜌𝑗)𝑗∈N of positive numbers such the sequence (𝜌−1
𝑗 )𝑗∈N belongs

to ℓ𝑞(N). Let 𝜃, 𝜆 be arbitrary positive numbers and (𝑝𝑠(𝜃, 𝜆))𝑠∈F the sequence given in (3.3). Let for numbers
𝜂 ∈ N the sequence (𝜎𝑠)𝑠∈F be defined by

𝜎2
𝑠 :=

∑︁
‖𝑠′‖ℓ∞(F)≤𝜂

(︂
𝑠

𝑠′

)︂
𝜌2𝑠′ .

Then for any 𝜂 > 2𝜈(𝜃+1)
𝑞 , we have ∑︁

𝑠∈F𝜈

𝑝𝑠(𝜃, 𝜆)𝜎−𝑞/𝜈
𝑠 <∞.

Proof. With 𝜃′ := 2𝜃𝜈/𝑞, we have that

∑︁
𝑠∈F𝜈

𝑝𝑠(𝜃, 𝜆)𝜎−𝑞/𝜈
𝑠 =

∑︁
𝑠∈F𝜈

∏︁
𝑗∈N

(︃
𝜂∑︁

𝑘=0

(︂
𝑠𝑗

𝑘

)︂
(1 + 𝜆𝑠𝑗)𝜃′𝜌2𝑘

𝑗

)︃−𝑞/2𝜈

=
∏︁
𝑗∈N

∑︁
𝑛∈N0,𝜈

(︃
𝜂∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
(1 + 𝜆𝑛)𝜃′𝜌2𝑘

𝑗

)︃−𝑞/2𝜈

=:
∏︁
𝑗∈N

𝐵𝑗 ,
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and

𝐵𝑗 ≤
∑︁

𝑛∈N0,𝜈

(︂(︂
𝑛

min(𝑛, 𝜂)

)︂
(1 + 𝜆𝑛)𝜃′𝜌

2 min(𝑛,𝜂)
𝑗

)︂−𝑞/2𝜈

≤
∑︁

𝑛∈N0,𝜈 , 𝑛<𝜂

(︂(︂
𝑛

𝑛

)︂
(1 + 𝜆𝑛)𝜃′𝜌2𝑛

𝑗

)︂−𝑞/2𝜈

+
∑︁
𝑛≥𝜂

(︁
(1 + 𝜆𝑛)𝜃′𝜌2𝜂

𝑗

)︁−𝑞/2𝜈

≤
∑︁

𝑛∈N0,𝜈 , 𝑛<𝜂

(1 + 𝜆𝑛)𝜃𝜌
−𝑛𝑞/𝜈
𝑗 + 𝜌

−𝜂𝑞/𝜈
𝑗

∑︁
𝑛≥𝜂

(︂
𝑛

𝜂

)︂−𝑞/2𝜈

(1 + 𝜆𝑛)𝜃 =: 𝐵𝑗,1 +𝐵𝑗,2.

We estimate 𝐵𝑗,1 and 𝐵𝑗,2. We have

𝐵𝑗,1 ≤ 1 +
𝜂−1∑︁
𝑛=𝜈

(1 + 𝜆𝑛)𝜃𝜌
−𝑛𝑞/𝜈
𝑗 ≤ 1 + (1 + (𝜂 − 1)𝜆)𝜃

𝜂−1∑︁
𝑛=𝜈

𝜌
−𝑛𝑞/𝜈
𝑗 .

From the inequalities
(︁

𝑛
𝜂

)︁𝜂

≤
(︀
𝑛
𝜂

)︀
and 𝜂𝑞/2𝜈 − 𝜃 > 1 we derive that

𝐵𝑗,2 ≤ 𝜌
−𝜂𝑞/𝜈
𝑗

∑︁
𝑛≥𝜂

(︂
𝑛

𝜂

)︂−𝜂𝑞/2𝜈

(1 + 𝜆𝑛)𝜃 ≤ 𝐶𝜌
−𝜂𝑞/𝜈
𝑗

∑︁
𝑛≥𝜂

𝑛−(𝜂𝑞/2𝜈−𝜃) ≤ 𝐶𝜌
−𝜂𝑞/𝜈
𝑗 .

Summing up we obtain that

𝐵𝑗 ≤ 𝐵𝑗,1 +𝐵𝑗,2 ≤ 1 + 𝐶

𝜂∑︁
𝑛=𝜈

𝜌
−𝑛𝑞/𝜈
𝑗 .

Since the sequence (𝜌−1
𝑗 )𝑗∈N belongs to ℓ𝑞(N), there exists 𝑗* large enough such that 𝜌𝑗 > 1 for all 𝑗 ≥ 𝑗*.

Hence, there exists a constant 𝐶 independent of 𝑗 such that 𝐵𝑗 ≤ 1 + 𝐶𝜌−𝑞
𝑗 for all 𝑗 ∈ N, and consequently,∑︁

𝑠∈F𝜈

𝑝𝑠(𝜃, 𝜆)𝜎−𝑞/2𝜈
𝑠 ≤

∏︁
𝑗∈N

𝐵𝑗 ≤
∏︁
𝑗∈N

(1 + 𝐶𝜌−𝑞
𝑗 ) ≤ exp

(︁∑︁
𝑗∈N

𝐶𝜌−𝑞
𝑗

)︁
<∞.

�
In the present paper, as noticed in Introduction we want to show possibilities of non-adaptive approxima-

tion methods and convergence rates of approximation by such methods for the parametrized diffusion elliptic
equation (1.2) with lognormal inputs. Here we do not consider Galerkin approximations. To treat fully discrete
approximations we assume that 𝑓 ∈ 𝐿2(𝐷) and that it holds the approximation property (1.5) in Assump-
tion 1.1 for all 𝑣 ∈𝑊 , see, for instance, Theorem 3.2.1 of [8] for the case when 𝐷 is a polygonal set. Notice that
classical error estimates yield the convergence rate 𝛼 = 1/𝑑 by using Lagrange finite elements of order at least
1 on quasi-uniform partitions. Also, the spaces 𝑊 do not always coincide with 𝐻2(𝐷). For example, for 𝑑 = 2,
we know that 𝑊 is strictly larger than 𝐻2(𝐷) when 𝐷 is a polygon with re-entrant corner. In this case, it is
well known that the optimal rate 𝛼 = 1/2 is yet attained, when using spaces 𝑉𝑛 associated to meshes (𝒯𝑛)𝑛>0

with proper refinement near the re-entrant corners where the functions 𝑣 ∈𝑊 might have singularities.

Theorem 5.4. Let 0 < 𝑝 ≤ 2. Let Assumption 1.1 hold. Let the assumptions of Lemma 5.1 hold for the spaces
𝑊 1 = 𝑉 and 𝑊 2 = 𝑊 with some 0 < 𝑞1 ≤ 𝑞2 < ∞. For 𝜉 > 0, let 𝐺(𝜉) be the set defined by (2.7) for 𝜎𝑟;𝑠 as
in (5.1), 𝑟 = 1, 2.

Then for each 𝑛 ∈ N there exists a number 𝜉𝑛 such that dim(𝒱(𝐺(𝜉𝑛)) ≤ 𝑛 and

‖𝑢− 𝒮𝐺(𝜉𝑛)𝑢‖ℒ𝑝(𝑉 ) ≤ 𝐶𝑛−min(𝛼,𝛽). (5.2)

The rate 𝛼 corresponds to the spatial approximation of a single function in 𝑊 as given by (1.5), and the rate 𝛽
is given by (2.9). The constant 𝐶 in (5.2) is independent of 𝑢 and 𝑛.
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Proof. To prove the theorem it is sufficient to notice that the assumptions of Theorem 2.3 are satisfied for
𝑋1 = 𝑉 and 𝑋2 = 𝑊 . This can be done by using Lemmata 5.1–5.3. (By multiplying the sequences 𝜌𝑟 in
Lemma 5.1 with a positive constant we can get 𝜎𝑟;𝑠 > 1 for 𝑠 ∈ F.) �

Remark 5.5. (i) The rate min(𝛼, 𝛽) in (5.2) is the rate of best adaptive 𝑛-term Hermite gpc expansion approx-
imation in ℒ2(𝑉 ) based on ℓ𝑝1-summability of (‖𝑢𝑠‖𝑉 )𝑠∈F and ℓ𝑝2-summability of (‖𝑢𝑠‖𝑊 )𝑠∈F proven in [1],
where 1/𝑝𝑟 = 1/𝑞𝑟 + 1/2 for 𝑟 = 1, 2.

(ii) Observe that 𝒮𝐺(𝜉𝑛) can be represented in the form of a multilevel approximation method with 𝑘𝑛 levels:

𝒮𝐺(𝜉𝑛) =
𝑘𝑛∑︁

𝑘=0

𝛿𝑘𝑆Λ𝑘(𝜉𝑛),

where 𝑆Λ𝑢 :=
∑︀

𝑠∈Λ 𝑢𝑠 for Λ ⊂ F, 𝑘𝑛 := ⌊log2 𝜉𝑛⌋ and for 𝑘 ∈ N0 and 𝜉 > 1,

Λ𝑘(𝜉) :=

{︃{︀
𝑠 ∈ F : 𝜎𝑞2

2;𝑠 ≤ 2−𝑘𝜉
}︀

if 𝛼 ≤ 1/𝑞2;{︀
𝑠 ∈ F : 𝜎𝑞1

1;𝑠 ≤ 𝜉, 𝜎𝑞1
2;𝑠 ≤ 2−𝛼𝑞1𝑘𝜉

}︀
if 𝛼 > 1/𝑞2.

(5.3)

Remark 5.6. Since the index set 𝐺(𝜉) defined as in (2.7) plays a key role in determining the operator 𝒮𝐺(𝜉), we
give an algorithm for constructing it, for instance, for the case 𝛼 > 1/𝑞2. The case 𝛼 ≤ 1/𝑞2 can be done similarly.
We additionally assume that the sequences 𝜌𝑟;𝑠, 𝑟 = 1, 2, are monotonically increasing. This assumption yields
that if 𝑠 ∈ F and 𝑖 < 𝑗 are such that 𝑠𝑖 = 𝑠𝑗 = 0, than 𝜎𝑟;𝑠+𝑒𝑖 ≤ 𝜎𝑟;𝑠+𝑒𝑗 , 𝑟 = 1, 2, where 𝑒𝑗 := (𝛿𝑖,𝑗)𝑖∈N ∈ F.
Observe that

𝐺(𝜉) =
𝑘𝜉⋃︁

𝑘=0

{︀
(𝑘, 𝑠) ∈ N0 × F : 𝑠 ∈ Λ𝑘(𝜉)

}︀
,

where 𝑘𝜉 :=
⌊︀

1
𝛼𝑞1

log2 𝜉
⌋︀

and Λ𝑘(𝜉) is defined as in (5.3), 𝜉 > 1. Moreover, Λ𝑘(𝜉) are downward closed sets, and

consequently, the sequence
{︀

Λ𝑘(𝜉)
}︀𝑘𝜉

𝑘=0
is nested in the inverse order, i.e., Λ𝑘′(𝜉) ⊂ Λ𝑘(𝜉) if 𝑘′ > 𝑘, and Λ0(𝜉)

is the largest and Λ𝑘𝜉
(𝜉) is the smallest. Hence, the index set 𝐺(𝜉) can be constructed as in Algorithm 1.

Let us estimate the computational complexity of Algorithm 1, by using some results from Lemmata 3.1.12
and 3.1.13 of [32]. Each from 1st to 5th lines and 10th to 21st lines in this algorithm is executed at most
4|Λ0(𝜉)| + 1 times. For every multiindex 𝑠 ∈ Λ0(𝜉) we store {(𝑗, 𝑠𝑗) : 𝑠𝑗 ̸= 0}. Each multiindex therefore
occupies a memory of size 𝒪(𝑑(Λ0(𝜉))), where 𝑑(Λ) := sup𝑠∈Λ | supp 𝑠|. Assuming elementary operations such
as multiplications and divisions to be of complexity 𝒪(1), we can deduce that the computational complexity
executing each from 1st to 5th lines and 10th to 21st lines in Algorithm 1 is bounded by 𝒪(𝑚(Λ0(𝜉))+𝑑(Λ0(𝜉))),
where 𝑚(Λ) := sup𝑠∈Λ |

∑︀
𝑗∈N 𝑠𝑗 |. Algorithm 1 terminates and gives 𝐺(𝜉) before 𝑘 > 𝑘𝜉. Hence the overall

computational complexity and memory consumption of Algorithm 1 behave like

𝒪
(︀
𝑘𝜉|Λ0(𝜉)|(𝑚(Λ0(𝜉)) + 𝑑(Λ0(𝜉)))

)︀
= 𝒪

(︃
log2 𝜉

∑︁
𝑠∈Λ0(𝜉)

𝑝𝑠(1, 1)

)︃
= 𝒪(𝜉 log2 𝜉).

In the last step we used the equality
∑︀

𝜎1,𝑠≤𝜉1/𝑞1 = 𝒪(𝜉) which follows from the inequality
∑︀

𝑠∈F 𝑝𝑠(1, 1)𝜎−𝑞1
1,𝑠 <

∞ (cf. (3.40)).

We now consider the problem of sparse-grid interpolation approximation and intergration of the solution 𝑢(𝑦)
to the parametrized diffusion elliptic equation (1.2) with lognormal inputs. By using Lemmata 5.1–5.3, in the
same way as the proof of Theorem 5.4, from Theorems 2.3 and 3.8 and Corollary 3.11 we derive the following
two theorems and two corollaries.
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Algorithm 1: Constructing 𝐺(𝜉).
1 𝑠 = 0
2 𝐺(𝜉) = ∅
3 if 𝜎1,𝑠 ≤ 𝜉1/𝑞1 and 𝜎2,𝑠 ≤ 𝜉1/q1 then
4 𝐺(𝜉)← {(0, 𝑠)}
5 𝑘 ← 1

6 while 𝜎2,𝑠 ≤ 2−𝛼𝑘𝜉1/𝑞1 do
7 𝐺(𝜉)← 𝐺(𝜉) ∪ {(𝑘, 𝑠)}
8 𝑘 ← 𝑘 + 1

9 while True do
10 𝑑← 1

11 while 𝜎1,𝑠+𝑒𝑑 > 𝜉1/𝑞1 or 𝜎2,𝑠+𝑒d > 𝜉1/q1 do
12 if 𝑠𝑑 ̸= 0 then
13 𝑠𝑑 ← 0
14 𝑑← 𝑑 + 1

15 else if 𝑠 ̸= 0 then
16 𝑑 = min{𝑗 ∈ N : 𝑠𝑗 ̸= 0}
17 else
18 break

19 𝑠← 𝑠+ 𝑒𝑑

20 𝐺(𝜉)← 𝐺(𝜉) ∪ {(0, 𝑠)}
21 𝑘 ← 1

22 while 𝜎2,𝑠 ≤ 2−𝛼𝑘𝜉1/𝑞1 do
23 𝐺(𝜉)← 𝐺(𝜉) ∪ {(𝑘, 𝑠)}
24 𝑘 ← 𝑘 + 1

25 return 𝐺(𝜉)

Theorem 5.7. Let 0 < 𝑝 ≤ 2. Let Assumption 1.1 hold. Let the assumptions of Lemma 5.1 hold for the spaces
𝑊 1 = 𝑉 and 𝑊 2 = 𝑊 with some 0 < 𝑞1 ≤ 𝑞2 <∞ with 𝑞1 < 2. Assume that (𝑌𝑚)𝑚∈N0 is a sequence satisfying
the condition (3.15) for some positive numbers 𝜏 and 𝐶. For 𝜉 > 0, let 𝐺(𝜉) be the set defined by (3.5) for 𝜎𝑟;𝑠

as in (5.1), 𝑟 = 1, 2.
Then for each 𝑛 ∈ N there exists a number 𝜉𝑛 such that for the interpolation operator ℐ𝐺(𝜉𝑛) : ℒℰ2 (𝑊 ) →

𝒱(𝐺(𝜉𝑛)), we have that dim𝒱(𝐺(𝜉𝑛)) ≤ 𝑛 and

‖𝑢− ℐ𝐺(𝜉𝑛)𝑢‖ℒ𝑝(𝑉 ) ≤ 𝐶𝑛−min(𝛼,𝛽). (5.4)

The rate 𝛼 corresponds to the spatial approximation of a single function in 𝑊 as given by (1.5). The rate 𝛽 is
given by (3.20). The constant 𝐶 in (5.4) is independent of 𝑢 and 𝑛.

Remark 5.8. (i) Observe that ℐ𝐺(𝜉𝑛) can be represented in the form of a multilevel approximation method,
see Remark 3.9(i) for details.

(ii) The fully discrete polynomial interpolation approximation by operators ℐ𝐺(𝜉𝑛) is a collocation approximation
based on the finite number |Γ(Λ0(𝜉𝑛))| ≤

∑︀
𝑠∈Λ0(𝜉𝑛) 𝑝𝑠(1, 2) of the particular solvers 𝑢(𝑦), 𝑦 ∈ Γ(Λ0(𝜉𝑛)),

where, we recall, Γ(Λ0(𝜉𝑛)) = ∪𝑠∈Λ0(𝜉𝑛)Γ𝑠 and Γ𝑠 = {𝑦𝑠−𝑒;𝑚 : 𝑒 ∈ E𝑠; 𝑚𝑗 = 0, . . . , 𝑠𝑗 − 𝑒𝑗 , 𝑗 ∈ N}. (E𝑠

denotes the subset in F of all 𝑒 such that 𝑒𝑗 is 1 or 0 if 𝑠𝑗 > 0, and 𝑒𝑗 is 0 if 𝑠𝑗 = 0, and 𝑦𝑠;𝑚 := (𝑦𝑠𝑗 ;𝑚𝑗
)𝑗∈N.)

Corollary 5.9. Let 0 < 𝑝 ≤ 2. Under the hypothesis of Lemma 5.1 for the spaces 𝑊 1 = 𝑉 with some 0 < 𝑞1 =
𝑞 < 2. For 𝜉 > 0, let Λ(𝜉) be the set defined by (3.38) for 𝜎𝑠 = 𝜎1;𝑠 as in (5.1). Then for each 𝑛 ∈ N there
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exists a number 𝜉𝑛 such that |Γ(Λ(𝜉𝑛))| ≤ 𝑛 and

‖𝑢− 𝐼Λ(𝜉𝑛)𝑢‖ℒ𝑝(𝑉 ) ≤ 𝐶𝑛−(1/𝑞−1/2). (5.5)

The constant 𝐶 in (5.5) is independent of 𝑢 and 𝑛.

The rate 1/𝑞 − 1/2 in Corollary 5.9 is much better than the rate 1
2 (1/𝑞 − 1/2) which has been obtained in

Theorem 3.18 of [18] for a similar approximation in ℒ2(𝑉 ).
Similarly to ℐ𝐺(𝜉𝑛), the approximation to 𝑢 by the operator 𝐼Λ(𝜉𝑛), is a collocation approximation based on

the finite number |Γ(Λ(𝜉𝑛))| ≤
∑︀

𝑠∈Λ(𝜉𝑛) 𝑝𝑠(1, 2) of the particular solvers 𝑢(𝑦), 𝑦 ∈ Γ(Λ(𝜉𝑛)).

Theorem 5.10. Let Assumption 1.1 hold. Let the assumptions of Lemma 5.1 hold for the spaces 𝑊 1 = 𝑉 and
𝑊 2 = 𝑊 with some 0 < 𝑞1 ≤ 𝑞2 <∞ with 𝑞1 < 4. Assume that (𝑌𝑚)𝑚∈N0 is a sequence satisfying the condition
(3.15) for some positive numbers 𝜏 and 𝐶, and such that 𝑌𝑚 is summetric for every 𝑚 ∈ N0. For 𝜉 > 0, let
𝐺ev(𝜉) be the set defined by (3.11) for 𝜎𝑟;𝑠 as in (5.1), 𝑟 = 1, 2. Then for the quadrature operator 𝒬𝐺ev(𝜉)

generated by the interpolation operator ℐ𝐺ev(𝜉) : ℒℰ2 (𝑊 ) → 𝒱(𝐺ev(𝜉)), we have the following.

(i) For each 𝑛 ∈ N there exists a number 𝜉𝑛 such that dim𝒱(𝐺ev(𝜉𝑛)) ≤ 𝑛 and⃦⃦⃦⃦∫︁
R∞

𝑣(𝑦) d𝛾(𝑦)−𝒬𝐺ev(𝜉𝑛)𝑣

⃦⃦⃦⃦
𝑉

≤ 𝐶𝑛−min(𝛼,𝛽). (5.6)

(ii) Let 𝜑 ∈ 𝑉 ′ be a bounded linear functional on 𝑉 . Then for each 𝑛 ∈ N there exists a number 𝜉𝑛 such that
dim𝒱(𝐺ev(𝜉𝑛)) ≤ 𝑛 and ⃒⃒⃒⃒∫︁

R∞
⟨𝜑, 𝑣(𝑦)⟩d𝛾(𝑦)−𝒬𝐺ev(𝜉𝑛)⟨𝜑, 𝑣⟩

⃒⃒⃒⃒
≤ 𝐶𝑛−min(𝛼,𝛽). (5.7)

The rate 𝛼 corresponds to the spatial approximation of a single function in 𝑊 as given by (1.5). The rate 𝛽
is given by

𝛽 :=
(︂

2
𝑞1
− 1

2

)︂
𝛼

𝛼+ 𝛿
, 𝛿 :=

2
𝑞1
− 2
𝑞2
·

The constants 𝐶 in (5.6) and (5.7) are independent of 𝑢 and 𝑛.

Proof. Observe that Fev ⊂ F2. From Lemmata 5.1 and 5.3 we can see that the assumptions of Theorem 3.8
hold for 𝑋1 = 𝑉 and 𝑋2 = 𝑊 with 0 < 𝑞1/2 ≤ 𝑞2/2 < ∞ and 𝑞1/2 < 2. Hence, by applying Theorem 4.1 we
prove the theorem. �

Observe that the rate in (5.6) and (5.7) can be improved as min(𝛼, 2
𝑞1

𝛼
𝛼+𝛿 ) if the sequences (‖𝑢𝑠‖𝑉 )𝑠∈F

and (‖𝑢𝑠‖𝑊 𝑟 )𝑠∈F have ℓ𝑝1- and ℓ𝑝𝑟 -summable majorant sequences, respectively, where 1/𝑝1 = 1/𝑞1 + 1/2 and
1/𝑝𝑟 = 1/𝑞𝑟 + 1/2. Similarly to ℐ𝐺(𝜉𝑛), the quadrature operator 𝒬𝐺ev(𝜉𝑛) can be represented in the form of a
multilevel integration method with 𝑘𝑛 levels:

𝒬𝐺ev(𝜉𝑛) =
𝑘𝑛∑︁

𝑘=0

𝛿𝑘𝑄Λev;𝑘(𝜉𝑛),

where 𝑘𝑛 := ⌊log2 𝜉𝑛⌋ and for 𝑘 ∈ N0 and 𝜉 > 0,

Λev;𝑘(𝜉) :=

{︃{︀
𝑠 ∈ Fev : 𝜎𝑞2

2;𝑠 ≤ 2−𝑘𝜉
}︀

if 𝛼 ≤ 1/𝑞2 − 1/2;{︀
𝑠 ∈ Fev : 𝜎𝑞1

1;𝑠 ≤ 𝜉, 𝜎2;𝑠 ≤ 2−(𝛼+1/2)𝑘𝜉𝜗
}︀

if 𝛼 > 1/𝑞2 − 1/2.

In the same way, from Corollary 4.2 we derive the following
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Corollary 5.11. Let the assumptions of Lemma 5.1 hold for the spaces 𝑊 1 = 𝑉 with some 0 < 𝑞1 = 𝑞 < 4.
Assume that (𝑌𝑚)𝑚∈N0 is a sequence satisfying the condition (3.15) for some positive numbers 𝜏 and 𝐶, and
such that 𝑌𝑚 is summetric for every 𝑚 ∈ N0. For 𝜉 > 0, let Λev(𝜉) be the set defined by (3.41) for 𝜎𝑠 = 𝜎1;𝑠 as
in (5.1). Then we have the following.

(i) For each 𝑛 ∈ N there exists a number 𝜉𝑛 such that |Γ(Λev(𝜉𝑛))| ≤ 𝑛 and⃦⃦⃦⃦∫︁
R∞

𝑢(𝑦) d𝛾(𝑦)−𝑄Λev(𝜉𝑛)𝑢

⃦⃦⃦⃦
𝑉

≤ 𝐶𝑛−(2/𝑞−1/2). (5.8)

(ii) Let 𝜑 ∈ 𝑉 ′ a bounded linear functional on 𝑉 . For each 𝑛 ∈ N there exists a number 𝜉𝑛 such that
|Γ(Λev(𝜉𝑛))| ≤ 𝑛 and ⃒⃒⃒⃒∫︁

R∞
⟨𝜑, 𝑢(𝑦)⟩ d𝛾(𝑦)−𝑄Λev(𝜉𝑛)⟨𝜑, 𝑢⟩

⃒⃒⃒⃒
≤ 𝐶𝑛−(2/𝑞−1/2). (5.9)

The constants 𝐶 in (5.8) and (5.9) are independent of 𝑢 and 𝑛.

Remark 5.12. (i) As noticed in Section 4, the sparsity of the grids Γ(Λev;0(𝜉)) and Γ(Λev(𝜉)) of the evaluation
points in the quadrature operators 𝒬𝐺ev(𝜉) and 𝑄Λev(𝜉) are much higher than the sparsity of the grids Γ(Λ0(𝜉))
and Γ(Λ(𝜉)) of the evaluation points in the generating interpolation operators ℐ𝐺(𝜉) and 𝐼Λ(𝜉).

(ii) The rate 2/𝑞 − 1/2 in Corollary 5.11 is a significant improvement of the rate 1
2 (1/𝑞 − 1/2) which has been

recently obtained in Corollary 3.12 of [4].
(iii) Since the use and analysis of non-adaptive construction methods for sparse-grid interpolation are important,

let us compare in details our methods in Corollary 5.11 with those which has been also discussed in [4]. To
construct a quadrature of the form 𝑄Λ, the author of the last work used the set Λ𝑚 ⊂ F of all indices 𝑠
(including non-even) corresponding to the 𝑚 smallest values of 𝜎𝑠. The number 𝑛 = 𝑛(𝑚) of quadrature
points in Λ𝑚 ⊂ F is estimated as 𝑛 ≤ 𝐶𝑚2 Proposition 3.16 of [18]. This lead to the rate 1

2 (1/𝑞 − 1/2).
In the present paper, we used the set Λev(𝜉) ⊂ Fev of all only even indices 𝑠 by thresholding 𝜎𝑠 ≤ 𝜉1/𝑞.
Formally, this is similar to choosing all even indices 𝑠 corresponding to the smallest values of 𝜎𝑠 satisfying
𝜎𝑠 ≤ 𝜉1/𝑞. Then for a given 𝑛 ∈ N, we selected a number 𝜉𝑛 such that the number of quadrature points
in the grid Γ(Λev(𝜉𝑛)) does not exceed 𝑛. Hence, due to the evenness of the indices in the set Λev(𝜉𝑛) we
obtained the improved rate 2/𝑞 − 1/2 and that the sparsity of Λev(𝜉𝑛) is much higher then that of Λ𝑚(𝑛).

6. Elliptic PDEs with affine inputs

The theory of non-adaptive approximation and integration of functions in Bochner spaces with infinite tensor
product Gaussian measure in Sections 2–4 can be generalized and extended to other situations. In this section,
we present some results on similar problems for the parametrized diffusion elliptic equation (1.2) with the affine
inputs (1.4).

In the affine case, for given 𝑎, 𝑏 > −1, we consider the orthogonal Jacobi expansion of the solution 𝑢(𝑦) of
the form ∑︁

𝑠∈F
𝑢𝑠𝐽𝑠(𝑦), 𝐽𝑠(𝑦) =

⨂︁
𝑗∈N

𝐽𝑠𝑗
(𝑦𝑗), 𝑢𝑠 :=

∫︁
I
𝑢(𝑦)𝐽𝑠(𝑦)d𝜈𝑎,𝑏(𝑦),

where
d𝜈𝑎,𝑏(𝑦) :=

⨂︁
𝑗∈N

𝛿𝑎,𝑏(𝑦𝑗) d𝑦𝑗 ,

𝛿𝑎,𝑏(𝑦) := 𝑐𝑎,𝑏(1− 𝑦)𝑎(1 + 𝑦)𝑏, 𝑐𝑎,𝑏 :=
Γ(𝑎+ 𝑏+ 2)

2𝑎+𝑏+1Γ(𝑎+ 1)Γ(𝑏+ 1)
,
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and (𝐽𝑘)𝑘≥0 is the sequence of Jacobi polynomials on I := [−1, 1] normalized with respect to the Jacobi
probability measure

∫︀
I |𝐽𝑘(𝑦)|2𝛿𝑎,𝑏(𝑦)d𝑦 = 1. One has the Rodrigues’ formula

𝐽𝑘(𝑦) =
𝑐𝑎,𝑏
𝑘

𝑘!2𝑘
(1− 𝑦)−𝑎(1 + 𝑦)−𝑏 d𝑘

d𝑦𝑘

(︀
(𝑦2 − 1)𝑘(1− 𝑦)𝑎(1 + 𝑦)𝑏

)︀
,

where 𝑐𝑎,𝑏
0 := 1 and

𝑐𝑎,𝑏
𝑘 :=

√︃
(2𝑘 + 𝑎+ 𝑏+ 1)𝑘!Γ(𝑘 + 𝑎+ 𝑏+ 1)Γ(𝑎+ 1)Γ(𝑏+ 1)

Γ(𝑘 + 𝑎+ 1)Γ(𝑘 + 𝑏+ 1)Γ(𝑎+ 𝑏+ 2)
, 𝑘 ∈ N.

Examples corresponding to the values 𝑎 = 𝑏 = 0 is the family of the Legendre polynomials, and to the values
𝑎 = 𝑏 = −1/2 the family of the Chebyshev polynomials.

We introduce the space 𝑊 𝑟 := {𝑣 ∈ 𝑉 : ∆𝑣 ∈ 𝐻𝑟−2(𝐷)} for 𝑟 ≥ 2 with the convention 𝑊 1 := 𝑉 . This space
is equipped with the norm ‖𝑣‖𝑊 𝑟 := ‖∆𝑣‖𝐻𝑟−2(𝐷), and coincides with the Sobolev space 𝑉 ∩ 𝐻𝑟−2(𝐷) with
equivalent norms if the domain 𝐷 has 𝐶𝑟−1,1 smoothness, see Theorem 2.5.1.1 of [19]. The following lemma has
been proven in [2] for 𝑟 = 1 and in [1] for 𝑟 > 1.

Lemma 6.1. For a given 𝑟 ∈ N, assume that �̄� ∈ 𝐿∞(𝐷) is such that ess inf �̄� > 0, and that there exists a
sequence 𝜌𝑟 = (𝜌𝑟;𝑗)𝑗∈N of positive numbers such that⃦⃦⃦⃦∑︀

𝑗∈N 𝜌1;𝑗 |𝜓𝑗 |
�̄�

⃦⃦⃦⃦
𝐿∞(𝐷)

< 1 .

Assume that the right side 𝑓 in (1.2) belongs to 𝐻𝑟−2(𝐷), that the domain 𝐷 has 𝐶𝑟−2,1 smoothness, that �̄�
and all functions 𝜓𝑗 belong to 𝑊 𝑟−1,∞(𝐷) and that

sup
|𝛼|≤𝑟−1

⃦⃦⃦⃦
⃦⃦∑︁

𝑗∈N
𝜌𝑟;𝑗 |𝐷𝛼𝜓𝑗 |

⃦⃦⃦⃦
⃦⃦

𝐿∞(𝐷)

<∞ .

Then ∑︁
𝑠∈F

(𝜎𝑟;𝑠‖𝑢𝑠‖𝑊 𝑟 )2 <∞, 𝛽𝑟;𝑠 := 𝜌𝑠
𝑟

∏︁
𝑗∈N

𝑐𝑎,𝑏
𝑠𝑗
. (6.1)

Lemma 6.2. Let 0 < 𝑞 < ∞, 𝜌 = (𝜌𝑗)𝑗∈N of numbers larger than 1 such the sequence (𝜌−1
𝑗 )𝑗∈N belongs to

ℓ𝑞(N), (𝑝𝑠(𝜃, 𝜆))𝑠∈F is a sequence of the form (3.3) with arbitrary nonnegative 𝜃, 𝜆. Then for every 𝜈 ∈ N0, we
have ∑︁

𝑠∈F𝜈

𝑝𝑠(𝜃, 𝜆)(𝜌−𝑠)𝑞/𝜈 <∞.

Proof. We have ∑︁
𝑠∈F𝜈

𝑝𝑠(𝜃, 𝜆)(𝜌−𝑠)𝑞/𝜈 =
∏︁
𝑗∈N

∑︁
𝑠𝑗∈N0,𝜈

𝜌
−𝑠𝑗𝑞/𝜈
𝑗 (1 + 𝜆𝑠𝑗)𝜃 =:

∏︁
𝑗∈N

𝐴𝑗 .

Since 𝜌 = (𝜌𝑗)𝑗∈N of numbers larger than one, and such the sequens (𝜌−1
𝑗 )𝑗∈N belongs to ℓ𝑞(N), we have

min𝑗∈N 𝜌𝑗 > 1. Hence, there exists a constant 𝐶 independent of 𝑗 such that

𝐴𝑗 = 1 +
∞∑︁

𝑘=𝜈

𝜌
−𝑘𝑞/𝜈
𝑗 (1 + 𝜆𝑘)𝜃 ≤ 1 + 𝐶𝜌−𝑞

𝑗 ,

and consequently, ∑︁
𝑠∈F𝜈

𝑝𝑠(𝜃, 𝜆)(𝜌−𝑠)𝑞/𝜈 ≤
∏︁
𝑗∈N

(1 + 𝐶𝜌−𝑞
𝑗 ) ≤ exp

(︁∑︁
𝑗∈N

𝐶𝜌−𝑞
𝑗

)︁
<∞.

�
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We assume that there holds the following approximation property for 𝑉 and 𝑊 𝑟 with 𝑟 > 1.

Assumption 6.3. There are a sequence (𝑉𝑛)𝑛∈N0 of subspaces 𝑉𝑛 ⊂ 𝑉 of dimension ≤ 𝑛, and a sequence
(𝑃𝑛)𝑛∈N0 of linear operators from 𝑉 into 𝑉𝑛, and a number 𝛼 > 0 such that

‖𝑃𝑛(𝑣)‖𝑉 ≤ 𝐶‖𝑣‖𝑉 , ‖𝑣 − 𝑃𝑛(𝑣)‖𝑉 ≤ 𝐶𝑛−𝛼‖𝑣‖𝑊 𝑟 , ∀𝑛 ∈ N0, ∀𝑣 ∈𝑊 𝑟. (6.2)

In this section, we make use the abbreviations: ℒ𝑝(𝑉 ) := 𝐿𝑝(I∞, 𝑉, 𝜈𝑎,𝑏) and ℒ𝑝(𝑊 𝑟) := 𝐿𝑝(I∞,𝑊 𝑟, 𝜈𝑎,𝑏)
and assume that 𝑟 > 1. From Lemmata 6.1 and 6.2 we can prove the following results on non-adaptive fully
and non-fully discrete Jacobi gpc expansion and polynomial interpolation approximations and integration for
the affine case.

Theorem 6.4. Let 0 < 𝑝 ≤ 2. Let Assumption 6.3 hold. Let the assumptions of Lemma 6.1 hold for the spaces
𝑊 1 = 𝑉 and 𝑊 𝑟 with some 0 < 𝑞1 ≤ 𝑞𝑟 < ∞. For 𝜉 > 0, let 𝐺(𝜉) be the set defined by (2.7) for 𝜎1;𝑠 := 𝛽1;𝑠

and 𝜎2;𝑠 := 𝛽𝑟;𝑠 as in (6.1). Then for each 𝑛 ∈ N there exists a number 𝜉𝑛 such that dim(𝒱(𝐺(𝜉𝑛)) ≤ 𝑛 and

‖𝑢− 𝒮𝐺(𝜉𝑛)𝑢‖ℒ𝑝(𝑉 ) ≤ 𝐶𝑛−min(𝛼,𝛽). (6.3)

The rate 𝛼 corresponds to the spatial approximation of a single function in 𝑊 𝑟 as given by (6.2), and the rate
𝛽 is given by (2.9). The constant 𝐶 in (6.3) is independent of 𝑢 and 𝑛.

The rate min(𝛼, 𝛽) in (6.3) is the same rate of fully discrete best adaptive 𝑛-term approximation in ℒ2(𝑉 )
based on ℓ𝑝1-summability of (‖𝑢𝑠‖𝑉 )𝑠∈F and ℓ𝑝𝑟 -summability of (‖𝑢𝑠‖𝑊 𝑟 )𝑠∈F proven in [1], where 1/𝑝1 =
1/𝑞1 +1/2 and 1/𝑝𝑟 = 1/𝑞𝑟 +1/2. This rate can be achieved by linear fully discrete non-adaptive approximation
when (‖𝑢𝑠‖𝑉 )𝑠∈F and (‖𝑢𝑠‖𝑊 𝑟 )𝑠∈F have ℓ𝑝1-summable and ℓ𝑝𝑟

-summable majorant sequences, respectively [34].

Theorem 6.5. Let 1 ≤ 𝑝 ≤ ∞. Let Assumption 6.3 hold. Let the assumptions of Lemma 6.1 hold for the
spaces 𝑊 1 = 𝑉 and 𝑊 𝑟 with some 0 < 𝑞1 ≤ 𝑞𝑟 < ∞ with 𝑞1 < 2. For 𝜉 > 0, let 𝐺(𝜉) be the set defined by
in (3.5) for 𝜎1;𝑠 := 𝛽1;𝑠 and 𝜎2;𝑠 := 𝛽𝑟;𝑠 as in (6.1). Then for each 𝑛 ∈ N there exists a number 𝜉𝑛 such that
dim(𝒱(𝐺(𝜉𝑛)) ≤ 𝑛 and

‖𝑢− 𝒮𝐺(𝜉𝑛)𝑢‖ℒ𝑝(𝑉 ) ≤ 𝐶𝑛−min(𝛼,𝛽). (6.4)

The rate 𝛼 corresponds to the spatial approximation of a single function in 𝑊 𝑟 as given by (6.2). The rate 𝛽 is
given by (3.20). The constant 𝐶 in (6.4) is independent of 𝑢 and 𝑛.

For polynomial interpolation approximation and integration, we keep all definitions and notations in Section 3
with a proper modification for the affine case. For example, for univariate interpolation and integration we take
a sequence of points 𝑌𝑚 = (𝑦𝑚;𝑘)𝑚

𝑘=0 in I such that

−∞ < 𝑦𝑚;0 < · · · < 𝑦𝑚;𝑚−1 < 𝑦𝑚;𝑚 < +∞; 𝑦0;0 = 0.

Sequences of points 𝑌𝑚 = (𝑦𝑚;𝑘)𝑚
𝑘=0 satisfying the inequality (3.15), are the symmetric sequences of the

Chebyshev points, the symmetric sequences of the Gauss–Lobatto (Clenshaw–Curtis) points and the nested
sequence of the ℜ-Leja points, see [9] for details.

Theorem 6.6. Let 1 ≤ 𝑝 ≤ ∞. Let Assumption 6.3 hold. Let the assumptions of Lemma 6.1 hold for the spaces
𝑊 1 = 𝑉 and 𝑊 𝑟 with some 0 < 𝑞1 ≤ 𝑞𝑟 < ∞ with 𝑞1 < 2. Assume that (𝑌𝑚)𝑚∈N0 is a sequence satisfying
the condition (3.15) for some positive numbers 𝜏 and 𝐶. For 𝜉 > 0, let 𝐺(𝜉) be the set defined by (3.5) for
𝜎1;𝑠 := 𝛽1;𝑠 and 𝜎2;𝑠 := 𝛽𝑟;𝑠 as in (6.1). Then for each 𝑛 ∈ N there exists a number 𝜉𝑛 such that for the
interpolation operator ℐ𝐺(𝜉𝑛) : ℒ2(𝑊 𝑟) → 𝒱(𝐺(𝜉𝑛), we have that dim𝒱(𝐺(𝜉𝑛)) ≤ 𝑛 and

‖𝑢− ℐ𝐺(𝜉𝑛)𝑢‖ℒ𝑝(𝑉 ) ≤ 𝐶𝑛−min(𝛼,𝛽). (6.5)

The rate 𝛼 corresponds to the spatial approximation of a single function in 𝑊 𝑟 as given by (6.2). The rate 𝛽 is
given by (3.20). The constant 𝐶 in (6.5) is independent of 𝑢 and 𝑛.



1196 D. DŨNG

The rates in (6.3)–(6.5) for some non-adaptive approximations have been proven in the case when (‖𝑢𝑠‖𝑉 )𝑠∈F
and (‖𝑢𝑠‖𝑊 𝑟 )𝑠∈F have ℓ𝑝1-summable and ℓ𝑝𝑟

-summable majorant sequences, respectively, which are derived from
the analyticity of the solution 𝑢, where 1/𝑝1 = 1/𝑞1 + 1/2 and 1/𝑝𝑟 = 1/𝑞𝑟 + 1/2, see [34].

Theorem 6.7. Let Assumption 6.3 hold. Let 𝑎 = 𝑏 for the Jacobi probability measure 𝜈𝑎,𝑏(𝑦), and the assump-
tions of Lemma 6.1 hold for the spaces 𝑊 1 = 𝑉 and 𝑊 𝑟 with some 0 < 𝑞1 ≤ 𝑞𝑟 < ∞ with 𝑞1 < 4. Assume
that (𝑌𝑚)𝑚∈N0 is a sequence satisfying the condition (3.15) for some positive numbers 𝜏 and 𝐶, and such
that 𝑌𝑚 is summetric for every 𝑚 ∈ N0. For 𝜉 > 0, let 𝐺ev(𝜉) be the set defined by (3.11) for 𝜎1;𝑠 := 𝛽1;𝑠

and 𝜎2;𝑠 := 𝛽𝑟;𝑠 as in (6.1). Then for the quadrature operator 𝒬𝐺ev(𝜉) generated by the interpolation operator
ℐ𝐺ev(𝜉) : ℒ2(𝑊 𝑟) → 𝒱(𝐺ev(𝜉)), we have the following.

(i) For each 𝑛 ∈ N there exists a number 𝜉𝑛 such that dim𝒱(𝐺ev(𝜉𝑛)) ≤ 𝑛 and⃦⃦⃦⃦∫︁
I∞
𝑢(𝑦) d𝜈𝑎,𝑏(𝑦)−𝒬𝐺ev(𝜉𝑛)𝑢

⃦⃦⃦⃦
𝑉

≤ 𝐶𝑛−min(𝛼,𝛽). (6.6)

(ii) Let 𝜑 ∈ 𝑉 ′ be a bounded linear functional on 𝑉 . For each 𝑛 ∈ N there exists a number 𝜉𝑛 such that
dim𝒱(𝐺ev(𝜉𝑛)) ≤ 𝑛 and ⃒⃒⃒⃒∫︁

I∞
⟨𝜑, 𝑢(𝑦)⟩d𝜈𝑎,𝑏(𝑦)−𝒬𝐺ev(𝜉𝑛)⟨𝜑, 𝑢⟩

⃒⃒⃒⃒
≤ 𝐶𝑛−min(𝛼,𝛽). (6.7)

The rate 𝛼 corresponds to the spatial approximation of a single function in 𝑊 𝑟 as given by (6.2). The rate 𝛽 is
given by

𝛽 :=
(︂

2
𝑞1
− 1

2

)︂
𝛼

𝛼+ 𝛿
, 𝛿 :=

2
𝑞1
− 2
𝑞𝑟
·

The constants 𝐶 in (6.6) and (6.7) are independent of 𝑢 and 𝑛.

The rate in (6.6) and (6.7) can be improved as min
(︁
𝛼, 2

𝑞1

𝛼
𝛼+𝛿

)︁
if (‖𝑢𝑠‖𝑉 )𝑠∈F and (‖𝑢𝑠‖𝑊 𝑟 )𝑠∈F have ℓ𝑝1- and

ℓ𝑝𝑟
-summable majorant sequences, respectively, where 1/𝑝1 = 1/𝑞1 + 1/2 and 1/𝑝𝑟 = 1/𝑞𝑟 + 1/2, see [34].

Corollary 6.8. Let 𝑎 = 𝑏 for the Jacobi probability measure 𝜈𝑎,𝑏(𝑦), and the assumptions of Lemma 6.1 hold
for the spaces 𝑊 1 = 𝑉 with some 0 < 𝑞1 = 𝑞 < 4. Assume that (𝑌𝑚)𝑚∈N0 is a sequence satisfying the condition
(3.15) for some positive numbers 𝜏 and 𝐶, and such that 𝑌𝑚 is symmetric for every 𝑚 ∈ N0. For 𝜉 > 0, let
Λev(𝜉) be the set defined by (3.41) for 𝜎𝑠 := 𝛽1;𝑠 as in (6.1). Then we have the following.

(i) For each 𝑛 ∈ N there exists a number 𝜉𝑛 such that |Γ(Λev(𝜉𝑛))| ≤ 𝑛 and⃦⃦⃦⃦∫︁
I∞
𝑢(𝑦) d𝜈𝑎,𝑏(𝑦)−𝑄Λev(𝜉𝑛)𝑢

⃦⃦⃦⃦
𝑉

≤ 𝐶𝑛−(2/𝑞−1/2). (6.8)

(ii) Let 𝜑 ∈ 𝑉 ′ be a bounded linear functional on 𝑉 . For each 𝑛 ∈ N there exists a number 𝜉𝑛 such that
|Γ(Λev(𝜉𝑛))| ≤ 𝑛 and ⃒⃒⃒⃒∫︁

I∞
⟨𝜑, 𝑢(𝑦)⟩ d𝜈𝑎,𝑏(𝑦)−𝑄Λev(𝜉𝑛)⟨𝜑, 𝑢⟩

⃒⃒⃒⃒
≤ 𝐶𝑛−(2/𝑞−1/2). (6.9)

The constants 𝐶 in (6.8) and (6.9) are independent of 𝑢 and 𝑛.

The rate 2/𝑞 − 1/2 in (6.8) in Corollary 6.8 improves the rate 2/𝑞 − 1/2− 𝜀 with arbitrary 𝜀 > 0, which has
been obtained in Corollary 3.13 of [33].
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[14] D. Dũng, Linear collective collocation and Galerkin approximations for parametric and stochastic elliptic PDEs. Preprint
arXiv:1511.03377v5 [math.NA] (2015).
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[31] G. Szegö, Orthogonal Polynomials. In: Vol. 23 of American Mathematical Society Colloquium Publications. American Mathe-
matical Society, Providence, RI (1939).

[32] J. Zech, Sparse-grid approximation of high-dimensional parametric PDEs, Dissertation 25683, ETH Zurich (2018).

[33] J. Zech and C. Schwab, Convergence rates of high dimensional Smolyak quadrature. ESAIM: M2AN 54 (2020) 1259–1307.
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