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INTRODUCTION: Physical Laws and Regions

Computational science begins with the simulation of physical laws.

These laws often involve an integral operator applied to a function
f (x) over some integration region Ω.

Physical spaces are typically 2D or 3D, so Ω can make our life
difficult because of its

shape (polyhedral or curved boundaries)

embedding (on the surface of a sphere, say).

but not high dimensionality!
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INTRODUCTION: Physical Laws and Regions
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INTRODUCTION: Nonphysical Laws and Regions

Mathematical metaphor creates nonphysical spaces.

A point p in a 10-dimensional space may represent the values of 10
physical parameters that affect an output quantity g(p).

If these values p vary over a space Ω, perhaps with a weighting
function w(ω), we extend the idea of the integral to this
nonphysical integration region, expressing the expected value as:

g(p) =

∫

Ω g(p(ω)) w(ω) dω
∫

Ω w(ω) dω
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INTRODUCTION: Nonphysical Laws and Regions

Mathematical metaphor treats physical and nonphysical problems
the same way.

The metaphor ignores some characteristic features of nonphysical
integrals. Computationally, these features cannot be ignored!

smoothness of f (x) is more likely;

geometry of the integration region is simpler;

but the dimensionality is free to explode!

This is especially true in probabilistic and stochastic settings.
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INTRODUCTION: The High Dimensional Challenge

The mere fact of high dimensionality can guarantee that
approximate integration in a given region is difficult or impossible.

We will discuss how computational approaches to multidimensional
quadrature either break down, or are unable to produce accurate
results, when the dimension becomes too high.

We will show that, for a particular kind of integrand and
integration region, sparse grids can reach far into high
dimensional space and extract the information we want.

We will discuss some software that is publicly available and
(we hope) both useful and usable.
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HIGH DIMENSIONAL PROBLEMS

Computational scientists are setting up high dimensional problems
(and claim to be solving them, as well!).

Financial mathematics: 30D or 360D

ANOVA decompositions: 10D or 20D

Evolutionary biology (integration over evolutionary trees)

Signal processing

Queue simulation (expected average wait)

Stochastic differential equations: 10D, 20D, 50D

Particle transport (repeated emission/absorption)

Light transport (scattering)

Path integrals over a Wiener measure (Brownian motion)

Quantum properties (Feynman path integral)
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HIGH DIMENSIONAL PROBLEMS: Biology

Peter Beerli’s MIGRATE program:

Suppose we have observed sample data D, representing distinct
but related populations, such as frogs on neighboring islands.

We assume the population dynamics depend on parameters P such
as initial population sizes and migration rates,

The likelihood of a given set of values P can be computed as

L(P) = Prob(D|P) =

∫

G
Prob(D|G ) Prob(G |P) dG

Here G represents all possible genealogies!
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HIGH DIMENSIONAL PROBLEMS: Physics

Atomic properties:

In order to calculate a physical property P of an atom with 10
electrons, we must evaluate that property for every configuration
of the electrons, multiplied by the probability of that configuration.
Each electron has 3 spatial coordinates, so we are working in a
space of dimension 30.

This is a relatively small example, of course! There are elements
with as many as 100 electrons; more electrons (and other degrees
of freedom) must be modeled if we look at simple molecules.
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HIGH DIMENSIONAL PROBLEMS: Finance

Asian Option Pricing:

We estimate the price of an Asian option, with strike price K ,
volatility σ, risk free interest rate r and expiration date T .

A standard approach takes d equally spaced time intervals ∆t and
arrives at an integral over the d-dimensional space Cd

Price =

∫

Cd

e−rT f (x , r , σ, ∆t) dx

Money is at stake here, so accuracy is important,
the value of d can easily be 30 or higher.
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HIGH DIMENSIONAL PROBLEMS: Uncertainty

Stochastic Collocation Techniques for “Black Box” models:

UNCERTAIN INPUT X => SYSTEM => OUTPUT Y

the Yucca Mountain nuclear waste facility

the Airbus 380 wing

spacecraft reentering atmosphere

groundwater flow and pollutant transmission

We have a model for how the inputs become outputs, but we don’t
actually understand the complex system.

We need plausible statistical estimates for the outputs,
that is, the expected values and variances.

A single evaluation of y = f (x) can be very costly!
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HIGH DIMENSIONAL PROBLEMS: Uncertainty

Each input parameter xi may have its own probability distribution:
uniform, normal, Jacobi, Hermite, Laguerre or generalized
Laguerre distributions.

The integration region will have a dimension as great as the
number of interacting input parameters.

y =

∫

Θ
f (x) x(θ) dθ

If an input parameter is not a scalar but an uncertain field,
we must add even more dimensions to the integral!
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INTEGRATION RULES

When approximating multidimensional integrals, there are several
common techniques:

interpolatory product, integrating an interpolant;

Gaussian product, maximal 1D polynomial exactness;

minimal, minimal number of points for ND polynomial
exactness;

Monte Carlo, uncorrelated sample points;

quasi Monte Carlo, using a space filling sequence.
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INTEGRATION RULES: Issues

Common issues for a multidimensional quadrature rule:

Automation: can we easily generate variations of this rule, of
any order, dimension, region, weight function?

Accuracy: is the rule exact for some polynomial space? can
we estimate the error as we go?

Robustness: can it handle “misbehaving” f (x)?

Efficiency: how many points required versus the theoretical
minimum? Does the number explode with dimension?;

Reuse; if an estimate is unsatisfactory, and we saved the
function values, can we reuse them?
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INTEGRATION RULES: Product Rules

A product of 9 point and 5 point Clenshaw Curtis rules.
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INTEGRATION RULES: Minimal Rules

55 point Fekete rule, exact to degree 9 (55 x , y monomials).
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INTEGRATION RULES: Monte Carlo
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INTEGRATION RULES: Quasi Monte Carlo
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SMOLYAK QUADRATURE

Sergey Smolyak (1963) suggested sparse grids, an algebraic
combination of low order rules:

had the same polynomial accuracy as a product grid.

looks like a product grid with points missing;

formed by collecting lower order product grids.

used far fewer points than a product grid.
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SMOLYAK QUADRATURE: Construction

We have an indexed family of 1D quadrature rules U i .
We form dimension d rules, indexed by “level” q starting at d.
Here i = i1 + · · · + id .

A(q, d) =
∑

q−d+1≤|i|≤q

(−1)q−|i|

(

d − 1
q − |i|

)

(U i1 ⊗ · · · ⊗ U id )

Thus, the rule A(q, d) is a weighted sum of product rules.
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SMOLYAK QUADRATURE

The Smolyak construction rule can be interpreted to say:

Compute the integral estimate for each rule,
then compute the algebraic sum of these estimates.

but it can also be interpreted as:

Combine the component rules into a single quadrature rule,
the new abscissas are the set of the component abscissas;
the new weights are the component weights multiplied by the
sparse grid coefficient.
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SMOLYAK QUADRATURE

Under the second interpretation, we can see that in cases where an
abscissa is duplicated in the component rules, the combined rule
can use a single copy of the abscissa, with the sum of the weights
associated with the duplicates.

Duplication is a property inherited from the 1D rules.

Duplication is useful when computing a single sparse grid rule, but
also when computing a sequence of sparse grids of increasing level.
In some cases, all the values from the previous level can be reused.
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SMOLYAK QUADRATURE: Exactness

A common choice is 1D Clenshaw-Curtis rules U i , based on
interpolation at the extrema of the Chebyshev polynomials.

The rules are nested, with U i using mi = 2i−1 + 1 points.
U1 is the exception, using a single point.

Theorem

The Clenshaw-Curtis Smolyak formula A(q, d) is exact for all
polynomials of degree 2 ∗ (q − d) + 1 or less.

(Lowest rule has q = d , hence exactness 1.
Second rule has exactness 3, and so on.)
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SMOLYAK QUADRATURE: Asymptotic Error

Let n be the number of points used in the rule A(q, d),
let Id be the integral of f (x),
f (x) : [−1, 1]d → R|Dα continuous if αi ≤ r for all i ;

Then the error satisfies:

||Id − A(q, d)|| = O(n−r · (log n)(d−1)(r+1))

This behavior is near optimal; no family of rules could do better
than O(n−r ) for this general class of integrands.
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SMOLYAK QUADRATURE: Optimality

The space of d-dimensional polynomials of degree k or less has

dimension

(

k + d
d

)

≈ dk

k! .

For large d , Clenshaw-Curtis Smolyak uses about (2d)k

k! points.

Thus, if we are seeking exact integration of polynomials, the
Clenshaw-Curtis Smolyak rule uses an optimal number of points
(to within a factor 2k that is independent of d).
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SMOLYAK QUADRATURE

Number of points in a Clenshaw-Curtis Smolyak grid, for
dimensions 1 to 5, and 10, and 1D point counts 1, 3, 5, ...65.

Dim 1 2 3 4 5 10
1D Rule

1 1 1 1 1 1 1
3 3 5 7 9 11 21
5 5 13 25 41 61 221
9 9 29 69 137 241 1581

17 17 65 177 401 801 8801
33 33 145 441 1105 2433 41265
65 65 321 1073 2929 6993 171425
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SMOLYAK QUADRATURE

1D point count = 1D degree of precision.

Level 1D count 10D count 10D Accuracy

0 1 1 1
1 3 21 3
2 5 221 5
3 9 1581 7
4 17 8801 9
5 33 41265 11
6 65 171425 13

Multidimensional precision = 2 * LEVEL + 1.
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SMOLYAK QUADRATURE

To capture only “desirable” monomials, we essentially add product
grids which are sparse in one direction if dense in the other.

Because of nesting, the grids reuse many points.

The big savings comes from entirely eliminating most of the points
of the full product grid.

The improvement is greater as the dimension or level increases.
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SMOLYAK QUADRATURE: 2D Order 17 Product Rule

A 17x17 product grid (289 points).
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SMOLYAK QUADRATURE: 2D Level4 Smolyak Grid

An“equivalent” sparse grid (65 points).
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SMOLYAK QUADRATURE

A(6, 2) =
∑

6−2+1≤|i|≤6

(−1)6−|i|

(

2 − 1
6 − |i|

)

(U i1 ⊗ U i2)

= − U1 ⊗ U4 (1x9)

− U2 ⊗ U3 (3x5)

− U3 ⊗ U2 (5x3)

− U4 ⊗ U1 (9x1)

+ U1 ⊗ U5 (1x17)

+ U2 ⊗ U4 (3x9)

+ U3 ⊗ U3 (5x5)

+ U4 ⊗ U2 (9x3)

+ U5 ⊗ U1 (17x1)
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SMOLYAK QUADRATURE: 2D Level4 17x1 component
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SMOLYAK QUADRATURE: 2D Level4 9x3 component
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SMOLYAK QUADRATURE: 2D Level4 5x5 component
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SMOLYAK QUADRATURE: 2D Level4 3x9 component
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SMOLYAK QUADRATURE: 2D Level4 1x17 component
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SMOLYAK QUADRATURE: 3D Level5 Smolyak Grid

Sparse grid = 441 points; Product grid would have 35,937.
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SMOLYAK QUADRATURE

The orders of the 9 product rules forming A(6, 2) sum to 136
abscissas. But if we choose a nested family of rules, such as
Clenshaw Curtis, the non-duplicated total is 65.

If we are computing a series of estimates, and have already
calculated A(5, 2), then the 29 abscissas from that calculation are
included in A(6, 2) (although the function values are multiplied by
different weights) so we’d only have to evaluate the function at 36
new abscissas.

Economy in the number of abscissas can be vital when function
evaluations are expensive. f (x) might be available as a trivial
formula, or as the output of a lengthy simulation.
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SMOLYAK QUADRATURE

The careful observer will note that even if the product rules have
positive weights, this is not necessarily the case for the resulting
Smolyak rule.

In fact, it is common to have many negative weights in such a rule.

Among other issues, this means that it is possible for a Smolyak
rule to return a negative estimate for the integral of a uniformly
positive quantity!

We will see an example of this behavior when we (inappropriately)
try to integrate a discontinuous function.
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SMOLYAK QUADRATURE: 6D Sparse Grid

N Estimate Error

1 0.062500 0.573282
13 0.600000 0.0357818
85 0.631111 0.00467073

389 0.636364 0.000582152
1457 0.635831 0.0000492033
4865 0.635778 0.00000375410

∞ 0.635782 0.0000
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SMOLYAK QUADRATURE: Monte Carlo vs Sparse Grid

SG N SG Estimate — MC N MC Estimate

1 0.062500 — 1 0.796541
13 0.600000 — 16 0.652621
85 0.631111 — 256 0.637351

389 0.636364 — 4096 0.633428
1457 0.635831 — 65536 0.635926
4865 0.635778 — 1048576 0.635666

∞ 0.635782 — ∞ 0.635782
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A Few Words of Wisdom

”When good results are obtained in integrating a high-dimensional
function, we should conclude first of all that an especially tractable
integrand was tried and not that a generally successful method has
been found.

”A secondary conclusion is that we might have made a very
good choice in selecting an integration method to exploit
whatever features of f made it tractable.”

Art Owen, Stanford University.
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A Few Words of Wisdom

Art Owen’s words apply here. A sparse grid approach is the right
choice when the function to be integrated is known to be
polynomial, or to have bounded derivatives up to the order of the
rule we are applying.

In those cases, a sparse grid can extract extra information from the
function values, to provide an answer that is exact for polynomials,
and highly accurate for other smooth functions.

In order to ruin everything, however, we can simply suppose that
f(x) is a step function!

48 / 86



SPARSE GRIDS: High Dimensional Data => Information

1 Introduction

2 High Dimensional Problems

3 Integration Rules

4 Smolyak Quadrature

5 A Few Words of Wisdom

6 Degree and Precision

7 Smoothness

8 Software Implementation

9 Software Products

10 Conclusion

49 / 86



DEGREE & PRECISION

In multi-dimensions, what is the DEGREE of a monomial?

If we consider the component degree, (the maximum of the
degrees of the component variables) then monomials of component
degree 4 include x4 and x3y2 and even x4y4.

If we consider the total degree, we sum all the exponents. Then
monomials of total degree 4 are exactly

x4, x3y , x2y2, xy3, y4.

The asymptotic accuracy of a quadrature rule is determined by the
highest total degree N for which we can guarantee that all
monomials will be integrated exactly.

As soon as we miss one monomial of a given total degree,
our rule will have “run out of accuracy”.
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DEGREE & PRECISION

0 1
1 x y
2 x2 xy y2

3 x3 x2y xy2 y3

4 x4 x3y x2y2 xy3 y4

5 x4y x3y2 x2y3 xy4

6 x4y2 x3y3 x2y4

7 x4y3 x3y4

8 x4y4

Monomials up to 4th degree. Those below the line are not
needed ..they don’t help the asymptotic accuracy.
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DEGREE & PRECISION

As the dimension increases, the useless monomials predominate.

Suppose we take products of a 10 point with accuracy 9. In a
spatial dimension of N, how many monomials are there of total
degree 9 or less? If we estimate that we need 1 point for each such
monomial, how many points are we wasting?

Dim Points Good Useless Percentage

1D 10 10 0 0%
2D 100 55 45 45%
3D 1,000 220 780 78%
4D 10,000 715 9,285 92%
5D 100,000 2002 97,998 97%
6D 1,000,000 5005 994,995 99%

In 5D, there are only 2002 items to search for.
Can’t we find a quadrature rule of roughly that order?
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DEGREE & PRECISION

Another way to understand what the power of a quadrature rule
may be is to ask for its degree of precision.

A typical precision property states that a given quadrature rule will
produce the exact answer (zero error) when the integrand function
is a polynomial whose degree is no more than a given limit.

If a family of quadrature rules has a precision property (which
improves as you increase the order of the rule), you can assume the
rule will eventually“capture” the integral of any function that is
polynomial, and will “chase” (reliably drive down the error) the
integral of any function well approximated by polynomials
(bounded derivatives up to the degree of precision).

53 / 86



DEGREE & PRECISION

Monte Carlo rules have a (weak) precision property: every Monte
Carlo rule is exact for polynomials of degree 0...but for no higher
degree.

Interpolatory quadrature rules of order N typically have precision
up to degree N − 1 or N, and Gauss rules have precision of 2N − 1;
in both cases, this property extends naturally to product rules.

Sparse grids inherit a precision property based on the property of
the rules forming the underlying product grids. Because Gauss
rules generally don’t nest, a less precise but nested rule like
Clenshaw Curtis may be preferable if available.
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DEGREE & PRECISION: A Rule for 100D

As an extreme example, let us consider constructing quadrature
rules for the hypercube [−1,+1]100.

The family of product rules for such a region would start out with
a 1 point rule, followed immediately by a rule of order 2100 ≈ 1030.
The number of points is too large to store as a 32 bit integer on a
computer!

The sparse grid family also begins with a 1 point rule. The second
rule contains...201 points.
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DEGREE & PRECISION; A Rule for 100D

The 201 point sparse grid rule has a degree of precision of 3, so it
exactly integrates

any constant function

combinations of linear monomials, x1, x2, ...,x100

quadratic combinations such as x2
1 or x37x93;

cubic monomials such as x3
1 , x2

4x8 or x1x2x3;

This rule is precise for 1 + 100 + 10,000 + 1,000,000 integrands.
This is less amazing when we realize that linears and cubics
integrate to zero.

Nonetheless, there are 201 “interesting”integrands left,
and we get them all, efficiently and precisely.
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DEGREE & PRECISION

I’m not suggesting that integrating in 100D is a good idea.

However, I’ve shown that it’s easy to generate an extreme case for
which product rules cannot even be constructed, and for which
Monte Carlo rules cannot be run long enough to achieve any
accuracy, but for which sparse grids can pull out some information.

By the way, the next sparse grid rule for 100D is of size 20,201,
certainly a jump from 201 points, but not enormous. This rule
adds quartics and quintics to the precision.
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SMOOTHNESS

Interpolatory and Gauss-type rules provide improved answers by
increasing the order (number of points), thereby raising the degree
of interpolation, and leaving an error whose leading term involves
the derivatives of one higher degree.

This assumes all such derivatives exist and are bounded.

Sparse grids based on product rules of interpolatory or Gauss-type
rules inherit this limitation.

Integrands with badly behaved derivatives, singularities, or
discontinuities will poison the calculation.
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SMOOTHNESS: the 6D Sphere

In the region [−1,+1]6, define

f (x) =

{

1, if ‖x‖ ≤ 1;

0, if ‖x‖ > 1.

Apply (foolishly) Clenshaw Curtis sparse grids to this integrand.

The hypercube volume is 64;
the hypersphere volume is π

3

6 ≈ 5.16771.
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SMOOTHNESS: Sparse Grid Quadrature

N SG Estimate SG Error : MC Estimate MC Error

1 4.000 1.167 : ... ...
13 64.000 58.832 : ... ...
85 -42.667 -47.834 : ... ...

389 -118.519 -123.686 : ... ...
1457 148.250 143.082 : ... ...
4865 -24.682 -29.850 : ... ...

Do you remember why negative estimates are possible
even though the integrand is never negative?
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SMOOTHNESS: MC Quadrature

N SG Estimate SG Error : MC Estimate MC Error

1 4.000 1.167 : 0.00000 5.16771
13 64.000 58.832 : 0.00000 5.16771
85 -42.667 -47.834 : 3.01176 2.15595

389 -118.519 -123.686 : 4.77121 0.39650
1457 148.250 143.082 : 5.16771 0.01555
4865 -24.682 -29.850 : 5.41994 0.25226

Here, we make the Monte Carlo method look like a quadrature rule
with equal weights.
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SMOOTHNESS: MC Quadrature

So how far do we have to go to get 3 digits correct?

N MC Estimate MC Error

1 0.00000 5.16771
32 6.00000 0.83228

1,024 4.81250 0.35521
32,768 5.39063 0.22291

1,048,576 5.18042 0.01271
33,554,432 5.16849 0.00077

∞ 5.16771 0.00000

The function values are only 0 or 1
the spatial dimension is “only” 6D...

...but 3 digit accuracy requires 33 million evaluations!
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STOCHASTIC PROBLEMS: A Diffusion Equation

Consider a diffusion equation with a stochastic component in the
diffusion coefficient a(ω; x , y).

−∇ · (a(ω; x , y)∇u(ω; x , y)) = f (x , y)

Integrating over the probability space gives us expected value
information (or moments, and so on).

E (u(x , y)) =

∫

Ω
u(ω; x , y) pr(ω) dω

[Clayton Webster, Thesis, 2007]
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STOCHASTIC PROBLEMS: Monte Carlo
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STOCHASTIC PROBLEMS: Monte Carlo vs Smolyak
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Software Implementation: Sparse Grid Mixed Weight

Here is essentially the verbatim MATLAB code for computing the
weights of a sparse grid rule that uses a mixed set of 1D factors.

Many operations are handled by function calls.

The important thing is to try to see that Smolyak’s formula for
A(q, d) is being implemented here.

An additional concern is that we are trying to take advantage of
nesting. Thus, we have an array sparse unique index that helps
us with the bookkeeping to deal with duplicate points.
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Software Implementation: Sparse Grid Mixed Weight

f u n c t i o n s p a r s e w e i g h t = s p a r s e g r i d m i x e d w e i g h t ( dim num , l e v e l max , . . .
r u l e , a lpha , beta , po int num )

po i n t t o t a l n um = s p a r s e g r i d m i x e d s i z e t o t a l ( dim num , l e v e l max , r u l e ) ;

s p a r s e u n i q u e i n d e x = s p a r s e g r i d m i x e d u n i q u e i n d e x ( dim num , l e v e l max , . . .
r u l e , a lpha , beta , p o i n t t o t a l n um ) ;

s p a r s e w e i g h t ( 1 : po int num ) = 0 . 0 ;

p o i n t t o t a l = 0 ;

l e v e l m i n = max ( 0 , l e v e l ma x + 1 − dim num ) ;

f o r l e v e l = l e v e l m i n : l e v e l ma x

l e v e l 1 d = [ ] ;
mo r e g r i d s = 0 ;
h = 0 ;
t = 0 ;
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Software Implementation: Sparse Grid Mixed Weight

wh i l e ( 1 )

[ l e v e l 1 d , more g r i d s , h , t ] = comp next ( l e v e l , dim num , l e v e l 1 d , . . .
mo r e g r i d s , h , t ) ;

o r d e r 1d = l e v e l t o o r d e r ( dim num , l e v e l 1 d , r u l e ) ;

o r d e r nd = prod ( o r d e r 1d ( 1 : dim num ) ) ;

g r i d w e i g h t = p roduc t m i x ed we i gh t ( dim num , o rde r 1d , o rde r nd , . . .
r u l e , a lpha , beta ) ;

c o e f f = r8 mop ( l e v e l ma x − l e v e l ) . . .
∗ r 8 choo s e ( dim num − 1 , l e v e l ma x − l e v e l ) ;

f o r o r d e r = 1 : o r d e r nd

p o i n t t o t a l = p o i n t t o t a l + 1 ;

p o i n t u n i q u e = s p a r s e u n i q u e i n d e x ( p o i n t t o t a l ) ;

s p a r s e w e i g h t ( p o i n t u n i q u e ) = s p a r s e w e i g h t ( p o i n t u n i q u e ) . . .
+ c o e f f ∗ g r i d w e i g h t ( o r d e r ) ;

end
i f ( ˜ mo r e g r i d s )

break
end

end
end
r e tu rn

end
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SOFTWARE PRODUCTS

Smolyak’s definition of sparse grids is almost magical; but it can
take the novice a while to master the tricks. So it’s important to
bottle some of that magic in accessible tools!
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SOFTWARE PRODUCTS: Rule Generation

The simplest family of sparse quadrature rules is based on a single
1D rule, and each spatial dimension is treated the same.

The family of rules is indexed by L, the level, which starts at 0
with the 1 point rule.

The number of points N depends on L, the spatial dimension D,
and the nesting of the underlying rule.

For a given 1D rule (say laguerre), the routines available are:

sparse grid laguerre size returns the number of points

sparse grid laguerre index shows which 1D rule each
abscissa component comes from

sparse grid laguerre returns the weights and abscissas
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SOFTWARE PRODUCTS: Rule Generation

N = sparse_grid_laguerre_size ( D, L );

W = new double[N];

X = new double[D*N];

sparse_grid_laguerre ( D, L, N, W, X );

sum = 0;

for ( p = 0; p < N; p++ )

{

sum = sum + W[p] * f ( X+p*D );

}
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SOFTWARE PRODUCTS: File Format

A file format for quadrature rules means that software programs
can communicate;

Results can be precomputed.

File data can easily be checked, corrected, emailed, or otherwise
exploited.

The basic format uses 3 files:

R file, 2 lines, D columns, the “corners” of the region

W file, N lines, 1 column, the weight for each abscissa

X file, N lines, D columns, the abscissas
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SOFTWARE PRODUCTS: File Format

The ”columns” are simply numbers separated by blanks.

A single file could have been used, but it would have internal
structure.

To determine D and N, a program reads the X file and counts the
number of “words” on a line, and the number of lines.

No particular ordering for the abscissas is assumed, but each line of
the W and X files must correspond.

I have used this format for a 3x3 Clenshaw Curtis product rule
and a sparse grid rule for integration in 100D!
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SOFTWARE PRODUCTS: File Format

R file

---------

-1.0 -1.0

+1.0 +1.0

W file X file

------ -----------

0.111 -1.0 -1.0

0.444 -1.0 0.0

0.111 -1.0 +1.0

0.444 0.0 -1.0

1.777 0.0 0.0

0.444 0.0 +1.0

0.111 +1.0 -1.0

0.444 +1.0 0.0

0.111 +1.0 +1.0
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SOFTWARE PRODUCTS: File Format

Another advantage of exporting quadrature rules to a file is that it
is possible to precompute a desired family of rules and store them.

These files can be read in by a program written in another
computer language; they can be mailed to a researcher who does
not want to deal with the initial rule generation step.
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SOFTWARE PRODUCTS: Precision Testing

Once we have quadrature rules stored in files, we can easily run
degree of precision tests.

An executable program asks the user for the quadrature file names,
and M, the maximum polynomial degree to check.

The program determines the spatial dimension D implicitly from
the files, as well as N, the number of points.

It then generates every appropriate monomial, applies the
quadrature rule, and reports the error.
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SOFTWARE PRODUCTS: Precision Checking

23 October 2008 8:04:55.816 AM

NINT_EXACTNESS

C++ version

Investigate the polynomial exactness of a quadrature

rule by integrating all monomials of a given degree

over the [0,1] hypercube.

NINT_EXACTNESS: User input:

Quadrature rule X file = "ccgl_d2_o006_x.txt".

Quadrature rule W file = "ccgl_d2_o006_w.txt".

Quadrature rule R file = "ccgl_d2_o006_r.txt".

Maximum total degree to check = 4

Spatial dimension = 2

Number of points = 6
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SOFTWARE PRODUCTS: Precision Checking

Error Degree Exponents

0.0000000000000001 0 0 0

0.0000000000000002 1 1 0

0.0000000000000002 1 0 1

0.0000000000000002 2 2 0

0.0000000000000002 2 1 1

0.0000000000000002 2 0 2

0.0000000000000002 3 3 0

0.0000000000000002 3 2 1

0.0000000000000000 3 1 2

0.0000000000000001 3 0 3

0.0416666666666665 4 4 0

0.0000000000000001 4 3 1

0.0000000000000000 4 2 2

0.0000000000000001 4 1 3

0.0277777777777779 4 0 4
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CONCLUSION: A few observations

Sparse grids are based on product rules.

They achieve the accuracy of a high order product rule using a
combination of lower order rules.

Sparse grid rules are suitable for integrands with bounded mixed
derivatives.

Abstract probability integrals and polynomial chaos expansions are
examples of settings in which sparse grids may be useful.
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CONCLUSION: Software and Data

SMOLPACK, a C library by Knut Petras for sparse integration.

SPINTERP, ACM TOMS Algorithm 847, a MATLAB library by
Andreas Klimke for sparse grid interpolation.

http://people.sc.fsu.edu/∼burkardt...
.../cpp src/sparse grid mixed/sparse grid mixed.html C++
.../f src/sparse grid mixed/sparse grid mixed.html F90
.../m src/sparse grid mixed/sparse grid mixed.html MATLAB
.../datasets/sparse grid mixed/sparse grid mixed.html
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