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ABSTRACT In this paper, we investigate the sparse group feature selection problem, in which covariates

posses a grouping structure sparsity at the level of both features and groups simultaneously. We reformulate

the feature sparsity constraint as an equivalent weighted l1-norm constraint in the sparse group optimization

problem. To solve the reformulated problem, we first propose a weighted thresholding method based on

a dynamic programming algorithm. Then we improve the method to a weighted thresholding homotopy

algorithm using homotopy technique. We prove that the algorithm converges to an L-stationary point of

the original problem. Computational experiments on synthetic data show that the proposed algorithm is

competitive with some state-of-the-art algorithms.

INDEX TERMS Homotopy technique, weighted thresholding method, sparse group feature selection.

I. INTRODUCTION

In this paper, we are interested in sparse group feature selec-

tion, which simultaneously selects important groups as well

as important individual variables. More precisely, the sparse

group feature selection problem can be written as [1]:

min f (x)

s.t. ‖x‖0 ≤ sf

‖x‖G ≤ sg

l ≤ x ≤ u. (1)

In the problem, −∞ ≤ l ≤ 0 ≤ u ≤ +∞,

x = (x1, . . . , xn)
T is partitioned into |G| non-overlapping

groups {xGi , i = 1, 2, · · · , |G|}, and ‖x‖0 is the number of

nonzero elements of x. Let r = |G|. Without loss of gener-

ality, let x = (xTG1
, . . . , xTGr )

T and ‖x‖G =
∑r

i=1 I (‖xGi‖2 6=

0), where I (·) is the indicator function. (sf , sg) are the number

of features and the number of groups respectively. f (x) is a

continuously differentiable function, for which the gradient

is Lipschitz-continuous with Lipschitz constant Lf > 0.

Problem (1) has been applied in structured genome-

wide association studies [2], semantic concept detection for

high-level human interpretation of video contents [3], and

structure-aware spectrum estimation of frequency-hopping
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signals [4], etc. However, it is NP-hard and not approximable

within polynomial time, since sparse optimization with

L0-norm is hard to approximate unless P = NP [5].

During the last decade, many works have been devoted

to group sparse optimization, such as group Lasso [6], [7],

which uses an l2-regularization for each group. This kind of

methods is incapable of variable selection at the individual

level. To address problem (1) which selects important groups

and individual variables simultaneously, group Lasso has

been extended carefully for the problem. In [8], by extending

group Lasso the authors proposed a group bridge method,

which is the first penalized regularization method. This was

further improved in [9] to a general framework which is

capable of two-level selection. Based on a new class of

group penalties, the group exponential Lasso proposed in [10]

allows the penalty to decay exponentially for selecting indi-

vidual features.

Another approach to problem (1) is the iterative sparse

group hard thresholding algorithm proposed in [1], in which

f (x) is approximated by a proximal function. And then the

function is minimized over the constraints of problem (1),

which can be solved optimally by a dynamic programming

algorithm. However according to [11], it is restrictive to min-

imize a proximal function over individual variable sparsity

constraint directly. Hence it is interesting to improve the

iterative sparse group hard thresholding algorithm [1] for

problem (1) using the reformulation technique in [11].
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To achieve this purpose, we reformulate the sf -sparse indi-

vidual constraint in (1) by aweighted l1-norm strategy and get

a new problem, which is equivalent to problem (1). This refor-

mulation is similar to that in [11], which does not consider

the group sparsity constraint. To solve the reformulated prob-

lem, we penalize the side constraint and propose a weighted

thresholding method, which is based on a dynamic program-

ming algorithm. Moreover, to improve the performance of

the weighted thresholding method, we develop a weighted

thresholding homotopy method for the problem based on

the homotopy technique. Computational experiments on syn-

thetic data show that the proposed algorithm is competitive

with some state-of-the-art algorithms.

The rest of this paper is organized as follows. In Section 2,

we first give some notations. Then we develop a weighted

thresholding method for the sparse group feature selection

problem. In Section 3, we further improve the weighted

thresholding method with homotopy technique. Moreover,

we introduce the corresponding algorithm and give con-

vergence analysis. In Section 4, we conduct computational

experiments on synthetic data to show that the proposed

method is competitive with some state-of-the-art algorithms.

Finally, conclusions are presented in Section 5.

II. WEIGHTED THRESHOLDING METHOD

A. NOTATIONS

Unless otherwise stated, |·| denotesmodule and ‖·‖ represents

the Euclidean norm. The transpose of a vector x ∈ R
n is

denoted by xT . For an index set S ⊆ {1, . . . , n}, xS is the

subvector of components of x indexed by S. Given a weight

w, w ◦ x = (w1x1,w2x2, · · · ,wnxn)
T . The box constraint is

represented by B = {x ∈ Rn : l ≤ x ≤ u}. Let C be the set

of all s-sparse vectors, i.e.,

C = {x ∈ Rn : ‖x‖0 ≤ sf , ‖x‖G ≤ sg}.

Let 5C (y) be the projection of y ∈ R
n onto the set C , i.e.,

5C (y) = argmin {‖x − y‖2 : x ∈ C}.

B. EQUIVALENT FORMULATION

First, we introduce an equivalent formulation of the sparsity

constraint x ∈ Cf , where Cf = {x ∈ R
n : ‖x‖0 ≤ sf }.

Lemma 1 [11]: x ∈ Cf is equivalent to that there exists

w ∈ {0, 1}n such that
{

‖w ◦ x‖1 = 0

‖1− w‖0 ≤ sf .
(2)

By Lemma 1, problem (1) is equivalent to

min f (x)

s.t. ‖w ◦ x‖1 = 0

‖x‖G ≤ sg

‖1− w‖0 ≤ sf

w ∈ {0, 1}n

l ≤ x ≤ u. (3)

For the convenience of description, let � = {(x,w) :

‖x‖G ≤ sg, ‖1− w‖0 ≤ sf ,w ∈ {0, 1}
n, l ≤ x ≤ u}.

By penalizing the constraint ‖w ◦ x‖1 = 0 to the objective

function, we have the following problem:

min
(x,w)∈�

Fλ(x,w) = f (x)+ λ‖w ◦ x‖1, (4)

where λ ≥ 0. To tackle the above problem, we approximate

f (x) at the current solution xk by the second order Taylor

expansion, and get

H (x,w, xk )

= f (xk )+ 〈∇f (xk ), x − xk 〉 +
L

2
‖x − xk‖2 + λ‖w ◦ x‖1.

Then minimizing H (x,w, xk ) over (x,w) ∈ � is equivalent

to

min
(x,w)∈�

φ(x,w) = L
2
‖x − yk‖2 + λ‖w ◦ x‖1, (5)

where yk = xk − 1
L
∇f (xk ).

In problem (5), φ(x,w) is a separable function which can

be written as φ(x,w) =
∑n

i=1 φi(xi,wi), where

φi(xi,wi) =
L

2
|xi − y

k
i |
2 + λ|wixi|. (6)

Observing that the constraints in (5) contain group and

individual sparsity constraints, we will develop a dynamic

programming algorithm to solve problem (5) in the next

subsection.

C. DYNAMIC PROGRAMMING ALGORITHM

In this subsection, we propose a dynamic programming

algorithm to find an optimal solution of problem (5).

Let S = ∪il=1Gl . We consider a general form of problem (5):

min
L

2
‖(x − y)S‖

2 + λ‖(w ◦ x)S‖1

s.t. ‖(1− w)S‖0 ≤ m

wS ∈ {0, 1}
|S|

‖x‖S ≤ j

lS ≤ xS ≤ uS , (7)

where y = xk − 1
L
∇f (xk ), m ∈ {1, 2, . . . , sf }, j ∈ {1, 2,

. . . , sg}. Denote the problem by P(i, j,m), and let V (i, j,m)

be its minimum value.

This problem can be solved by considering the following

two cases:

1) If group Gi is not selected, then V (i, j,m) = V (i − 1,

j,m) + L
2
‖yGi‖

2, and the corresponding solution

(xGi ,wGi ) = (0, 1).

2) If group Gi is selected, then problem (7) can be divided

into two subproblems: P(i−1, j−1,m− t) and the following

problems

min
L

2
‖(x − y)Gi‖

2 + λ‖(w ◦ x)Gi‖1

s.t. ‖(1− w)Gi‖0 ≤ t

w ∈ {0, 1}|Gi|

lGi ≤ xGi ≤ uGi , (8)
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t = 1, 2, · · · ,min{m, |Gi|}. Then

V (i, j,m) = min
1≤t≤min{m,|Gi|}

V (i−1, j−1,m−t)+SH (i, t),

where SH (i, t) denotes the minimum value of problem (8).

Problem (8) has a closed form solution presented in

Lemma 2. For the convenience of description, we assume

without loss of generality that Gi = {1, 2, . . . , n} in this

lemma.

Lemma 2 [11]: Problem (8) has the closed form solution

(x∗,w∗):

(x∗i ,w
∗
i ) =

{

([5B(y)]i, 0), if i ∈ A;

([5B(soft(y))]i, 1), otherwise,
(9)

i = 1, · · · , n. In (9),

soft(y) = sign(y) ◦max{|y| − λ/L, 0}

is the soft thresholding operator [12], and A ⊆ {1, 2, . . . , n}

is the index set corresponding to the t largest values of

{vi}
n
i=1, where vi = φi([5B(soft(y))]i, 1) − φi([5B(y)]i, 0),

and φi(xi,wi) is defined in equation (6).

Thus, V (i, j, k) can be written in the following recursive

form:

V (i, j,m) = min{V (i− 1, j,m)+
L

2
‖yGi‖

2,

min
1≤t≤min{m,|Gi|}

V (i− 1, j− 1,m− t)+SH (i, t)}. (10)

The boundary condition for the above dynamic programming

equation is

V (i, j,m) = 0, if i = 0, or j = 0, or m = 0. (11)

Based on equations (10) and (11), we design a dynamic

programming algorithm (Algorithm 1) for problem (5) via the

standard bottom-up approach. In the algorithm, lines 2-7 pre-

compute the values of IH (i) and SH (i, t). Lines 8-21 are for

calculating the values of V (i, j,m) based on equation (10).

Here, V is a three dimensional array (0..|G|, 0..sg, 0..sf ). And

ID(0..|G|, 0..sg, 0..sf ) is a three dimensional array to record

the number of selected elements in each group, which is for

Algorithm 2 to construct the optimal solution of problem (5).

More specifically, ID(i, j,m) = 0 if group Gi is not selected

in computing V (i, j,m); otherwise

ID(i, j,m)=arg min
1≤t≤min{m,|Gi|}

V (i−1, j−1,m−t)+SH (i, t).

After computing the ID in Algorithm 1, Algorithm 2 is

a linear backtracking algorithm for computing the number

of selected elements in group Gi of the optimal solution of

problem (7), i.e., the t in problem (8). Then the optimal

solution can be reconstructed by the solution of problem (8),

which is in Lemma 2.

Next, we analyze the time complexity of the dynamic

programming algorithm and the backtracking algorithm.

For Algorithm 1, by Lemma 2, computing each SH (i, t)

Algorithm 1 Dynamic Programming Algorithm for Prob-

lem (8)

Input: G, sf , sg, x
k . // L > Lf ;

Output: V , ID.

1: initialization V ← 0, ID ← 0, yk = xk − 1
L
∇f (xk ),

r = |G|;

2: for i = 1 : r do

3: IH (i) = L
2
‖ykGi‖

2;

4: for t = 1 : |Gi| do

5: calculate SH (i, t);

6: end for

7: end for

8: for i = 1 : r do

9: for j = 1 : sg do

10: for m = 1 : sf do

11: V (i, j,m) = V (i− 1, j,m)+ IH (i);

12: for t = 1 : min{m, |Gi|} do

13: vp = V (i− 1, j− 1,m− t)+ SH (i, t);

14: if vp < V (i, j,m) then

15: V (i, j,m) = vp;

16: ID(i, j,m) = t;

17: end if

18: end for

19: end for

20: end for

21: end for

Algorithm 2 Backtracking Algorithm for Computing the

Number of Selected Elements in Each Group of the Optimal

Solution
Input: ID, sf , sg;

Output: cp.

1: initialization j = sg, m = sf ;

2: for i = |G| : 1 do

3: cp(i) = ID(i, j,m);

4: if cp(i) > 0 then

5: j = j− 1;

6: m = m− cp(i);

7: end if

8: end for

needs time O(|Gi| log(|Gi|)). Hence the time complexity of

lines 2-7 in Algorithm 1 is

O(

r
∑

i=1

|Gi| log(|Gi|)) = O(n log n).

For lines 9-20 in Algorithm 1, the time complexity is

O(sf sg|Gi|). Hence the time complexity of lines 9-20 is

O(

r
∑

i=1

sf sg|Gi|) = O(sf sgn).

Thus, the time complexity of Algorithm 1 is

O(sf sgn+ n log n).
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Moreover, it is obvious that Algorithm 2 needs time

O(|G|) to calculate optimal t for each group. Further, if the

solution of problem (8) for each t is stored while com-

puting SH (i, t) in lines 2-7 of Algorithm 1, then Algo-

rithm 2 still needs time O(|G|) to get the optimal solution of

problem (5).

Based on the dynamic programming algorithm, we present

a weighted thresholding method for problem (1) in the next

subsection.

D. WEIGHTED THRESHOLDING METHOD

Motivated by the weighted thresholding method for indi-

vidual variable sparsity constrained optimization [11] and

the ISTA with sparse group hard thresholding method [1],

we adopt the weighted thresholding framework and present

the following Algorithm 3 for problem (4). For the conve-

nience of description, we denote the solution in Algorithm 1

by WTλ,L(x
k ), then we propose the weighted thresholding

method for problem (4) in Algorithm 3.

Algorithm 3 Weighted Thresholding Method

Input: sf , sg, λ, L, x
0; //L > Lf

Output: x̂, ŵ.

1: initialization k ← 0;

2: repeat

3: (xk+1,wk+1)← WTλ,L(x
k );

4: k ← k + 1;

5: until termination condition is reached

6: x̂ ← xk , ŵ← wk .

In Algorithm 3, the Lipschitz constant Lf is generally

unknown, hence it might be hard to calculate directly a fixed

value of L in practice. We will use a line search strategy to

explore a feasible value of L in subsection IV-A in detail.

Similar to the proof in [11], Algorithm 3 has the following

convergence property.

Theorem 1: Let the sequence {xk} be generated by

Algorithm 3, η = L − Lf > 0. Then

(i) the sequence {Fλ(x
k ,wk )} is nonincreasing and satisfies

that

Fλ(x
k ,wk )− Fλ(x

k+1,wk+1) ≥
η

2
‖xk+1 − xk‖2; (12)

(ii) the sequence {xk} converges.

It must be remarked that, the proposed weighted thresh-

olding method for problem (4) has a penalty parameter λ.

Similar to the regularization methods [13]–[15], it is diffi-

cult to choose a proper value for λ. Fortunately, since our

approach is based on the penalty function method, we may

choose a sufficiently large value of λ during implementation.

However, if the value of λ is too large, then the solution

given by Algorithm 3 may be poor. In the next section,

we give a homotopy technique to improve the performance

of Algorithm 3.

III. WEIGHTED THRESHOLDING HOMOTOPY METHOD

A. WEIGHTED THRESHOLDING HOMOTOPY METHOD

Homotopy technique has been widely used for compressed

sensing in the l1-regularized least-squares problems [13],

[15]–[17]. By noting that problem (4) is a penalized version

of problem (3), the value of penalty parameter λ should be

increased sequentially to a target value. This could be viewed

as a kind of homotopy technique. Moreover, we also use the

homotopy idea on the sparsity level sf , and thus develop the

weighted thresholding homotopy method named as WTH.

To solve problem (1), the key idea of WTH is tracing the

path of solutions of problem (4) with varying (sf , λ), where

(sf , λ) starts from (0, λ0) and is gradually increased simulta-

neously, until target values of sparsity level sf and parameter

λ are reached. For each fixed sf = sk and λ = λk , we use

the weighted thresholding method (Algorithm 1) to solve

problem (4). The WTH algorithm is outlined in Algorithm 4.

Algorithm 4 Weighted Thresholding Homotopy Method

(WTH)

Input: L, sf , sg, x
0, λ0, N is a positive integer; // L > Lf

Output: x̂, ŵ.

1: initialize k ← 0, s0← 0, ρ ≥ 1, ǫ > 0, γ > 0,

1← ⌈sf /N⌉;

2: for k = 1 : N do

3: i← 0;

4: xk,i← xk−1;

5: sk ← min{sk−1 +1, sf };

6: λk ← ρλk−1;

7: repeat

8: (xk,i+1,wk,i+1)← WTλk ,L(x
k,i);

9: i← i+ 1;

10: until ‖xk,i − xk,i+1‖/max{‖xk,i‖, 10−6} < ǫ

11: xk ← xk,i, wk ← wk,i;

12: end for

13: x̂ ← xN , ŵ← wN .

Next, we prove convergence of Algorithm 4. By generaliz-

ing the definition of L-stationarity condition for sparsity con-

strained problems [18], we get the L-stationarity condition for

problem (1) as follows.

Definition 1 (L-Stationarity): Suppose that L > 0. A vec-

tor x ∈ C ∩ B is called an L-stationary point of problem (1)

if

x ∈ 5C∩B

(

x −
1

L
▽f (x)

)

. (13)

Theorem 2: Let {xk,i} be the sequence generated by

Algorithm 4. Then:

(i) the sequence {Fλk (x
k,i,wk,i)} is nonincreasing and

{xk,i} converges for any fixed k.

(ii) let limi→∞ xN ,i = x̂. If ‖ŵ ◦ x̂‖1 = 0, then x̂ is an

L-stationary point of problem (1).

Proof: (i) Since the inner loop of Algorithm 4 calls the

weighted thresholding method (Algorithm 1), by Theorem 1
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the sequence {Fλk (x
k,i,wk,i)} is nonincreasing and {xk,i} con-

verges for each fixed k .

(ii) If ‖ŵ ◦ x̂‖1 = 0, then by line 8 of Algorithm 4,

ŵ ∈ {0, 1}n and ‖1 − ŵ‖0 ≤ sf . Further, by Lemma 1,

‖x̂‖0 ≤ sf . Thus, combining l ≤ x̂ ≤ u with ‖x̂‖G ≤ sg, x̂

is a feasible solution of problem (1). Since limi→∞ xN ,i = x̂,

by line 8 of Algorithm 4 and Lemma 2, it is obvious that

x̂ ∈ argmin
(x,w)∈�

{
L

2
‖x − ŷ‖2 + λN‖w ◦ x‖1}, (14)

where ŷ = x̂ − 1
L
∇f (x̂) and � = {(x,w) : ‖x‖G ≤ sg,

‖1− w‖0 ≤ sf ,w ∈ {0, 1}
n, l ≤ x ≤ u}.

Next, we prove that x̂ is an L-stationary point of problem

(1). By Definition 1, we need to prove that

x̂ ∈ 5C∩B

(

x̂ −
1

L
∇f (x̂)

)

= 5C∩B(ŷ),

where5C∩B(ŷ) = argmin {‖x − ŷ‖2 : x ∈ C ∩ B}. That is, x̂

is the solution of problem

min{‖x − ŷ‖2 : ‖x‖G ≤ sg, ‖x‖0 ≤ sf , l ≤ x ≤ u}.

Suppose by contradiction that there exists x̃ such that

‖x̃ − ŷ‖2 < ‖x̂ − ŷ‖2, where ‖x̃‖0 ≤ sf and l ≤ x̃ ≤ u.

Since ‖x̃‖0 ≤ sf , we can assign the value of w̃ as
{

w̃i = 0, if x̃i = 1;

w̃i = 1, if x̃i 6= 0.

Then w̃ ∈ {0, 1}n and ‖1− w̃‖0 ≤ sf . So (x̃, w̃) ∈ �, and

L

2
‖x̃ − ŷ‖2 + λN‖w̃ ◦ x̃‖1 =

L

2
‖x̃ − ŷ‖2 + 0

<
L

2
‖x̂ − ŷ‖2 + 0 ≤

L

2
‖x̂ − ŷ‖2 + λN‖ŵ ◦ x̂‖1,

which contradicts Equation (14). Hence x̂ is an L-stationary

point of problem (1).

B. THE CHOICE OF λ0

If sf = 0, then wi = 1, i = 1, 2, . . . , n meet the constraints

of problem (4), and problem (4) becomes an l1-norm regular-

ization problem with a box constraint. That is, the problem






























min f (x)+ λ‖w ◦ x‖1

s.t. ‖1− w‖0 ≤ 0

w ∈ {0, 1}n

‖x‖G ≤ sg

l ≤ x ≤ u

is reduced to










min ψ(x) = f (x)+ λ‖x‖1

s.t. ‖x‖G ≤ sg

l ≤ x ≤ u.

(15)

Similar to the proof in [11], we can prove that, if f (x) is

a differentiable convex function, then for λ ≥ ‖∇f (0)‖∞,

x = 0 is the optimal solution of problem (15). Thus,

λ = ‖∇f (0)‖∞ is big enough such that (x,w) = (0, 1) is

the optimal solution of problem (4) with sf = 0. So we set

λ0 = ‖∇f (0)‖∞ in our computational experiments.

IV. COMPUTATIONAL EXPERIMENTS

In this section, we compare our algorithm with some state-

of-the-art algorithms by performing them on the same set of

test instances. All experiments were conducted on a personal

computer with an Intel(R) Core(TM) i3-6100 CPU(3.70GHz)

and 4.00GB memory. We set l = −∞, u = +∞.

Unless otherwise stated, all parameters were set as default

for the compared methods in the experiments. First, we pro-

pose a practical algorithm of Algorithm 4 in the following

subsection.

A. PRACTICAL ALGORITHM

In Algorithm 4, a fixed Lipschitz constant L is used through-

out all iterations. However, it is hard to calculate the value

for a general function [19]. Here, we adopt the line search

technique in [20] to update the value of L dynamically. The

practical weighted thresholding method (PWTH) is given as

Algorithm 5, in which the line search technique for updating

L is between lines 9 and 12.

Algorithm 5 {x̂, ŵ, L̂} ← PWTH (L1, λ0, x
0)

Input: L1, sf , sg, x
0, λ0, N is a positive integer;

// L1 ∈ [Lmin,Lmax]

Output: x̂, ŵ.

1: initialize k ← 0, s0 ← 0, 1 ← ⌈sf /N⌉, ρ ≥ 1, ǫ > 0,

γ > 1;

2: for k = 1 : N do

3: i← 0;

4: xk,i← xk−1;

5: sk ← min{sk−1 +1, sf };

6: λk ← ρλk−1;

7: repeat

8: (xk,i+1,wk,i+1)← Tλk ,Lk (x
k,i);

9: Lk,i← Lk ;

10: while f (xk,i+1) > f (xk,i) + ∇f (xk,i)
T
(xk,i+1 −

xk,i)+
Lk,i
2
‖xk,i+1 − xk,i‖2 do

11: Lk,i← min{γLk,i,Lmax};

(xk,i+1,wk,i+1)← Tλk ,Lk,i (x
k,i);

12: end while

13: Lk,i+1← Lk,i;

14: i← i+ 1;

15: until ‖xk,i − xk,i+1‖/max{‖xk,i‖, 10−6} < ǫ

16: xk ← xk,i, wk ← wk,i, Lk+1← Lk,i;

17: end for

18: x̂ ← xN , ŵ← wN , L̂ ← LN+1.

B. SYNTHETIC DATA

In this subsection, we compare the performance of PWTH

with several existing algorithms for problem (1). We make

comparisons with HT-ISTAL [1], grLasso [6], cMCP and
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TABLE 1. Indexes for comparisons.

gBridge [9], gel [10], and SGL [21]. Our aim is to find an

optimal solution of the following linear regression problem:

min
x∈Rn
{
1

2
‖Ax − b‖22 : ‖x‖0 ≤ sf , ‖x‖G ≤ sg}.

1) PARAMETER SETTINGS

Similar to that in [13], we set

L1 = max
1≤j≤n

‖Aj‖
2,

and γ = 2. In our algorithm, we initialize s as s0 = 0, and set

sk = min{sk−1 +1, s},

where 1 = ⌈s/N⌉ and k = 1, 2, . . . ,N . Thus, it will reach

the target sparsity level s when k = N .

Since 0 is the optimal solution of problem (4) with

λ = ‖∇f (0)‖∞ and s = 0, we set x0 = 0. Further, we use

‖xk+1 − xk‖

max{‖xk‖, 10−6}
≤ ǫ,

as the termination condition of Algorithm 5, where ǫ is a

small constant.

Then, we use some indexes in [9] for comparing the perfor-

mance of all the methods. These indexes are listed in Table 1.

To see the effect of the values of parameters ρ and N

on the performance of our PWTH method, we generated

10 instances and test the performance of our PWTH. In the

experiments, A (with size 300 × 1000) is the Gaussian

matrix, whose components obey the Gaussian distribution.

The 1000 features (columns) are partitioned into 100 groups

with equal size. The truth vector x∗ (with size n = 1000)

is drawn identically from the Gaussian distribution and pos-

sesses 30 nonzero groups. In addition, only 4 elements in

each nonzero group are nonzero. Then the observations can

be obtained by b = Ax∗ + z, where z follows the normal

distribution N (0, 0.52). Here, we set ǫ = 10−5.

The average values of the evaluation indexes are listed

in Table 2. From Table 2, we can observe that ρ has almost

no effect on the quality of the results including running times.

By observing Table 2, we can also find that the algorithm has

good performance when N = 10. Hence we just set N = 10

and ρ = 2 in the next experiments. Moreover, in order to

save running time, ǫ is allowed to be some bigger value in the

first N − 1 iterations of outer loop. More specifically, we set

ǫ = 10−5∗10⌊(N−k)/2⌋ (k = 1, 2, . . . ,N ) in the experiments.

2) COMPARISON WITH OTHER METHODS

We compare our PWTH with HT-ISTAL1 [1]. This exper-

iment was implemented in MATLAB R2016b. We gen-

erated a p × 1000 matrix A, whose components obey

the Gaussian distribution N (0, 1). The number of samples

p ∈ {500, 400, 350, 300, 250, 200}. The 1000 features

(columns) are partitioned into 100 groups with equal size.

The truth vector x∗ possesses 30 nonzero groups, and every

nonzero group has 10 nonzero elements which follow the

1Code for HT-ISTAL: https://github.com/coderxiang/MachLearnScripts.

TABLE 2. Results of PWTH with different ascent speeds (ρ) and outer loop numbers (N).
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TABLE 3. Average results of PWTH and HT-ISTAL.

TABLE 4. Average results of compared algorithms with respect to
different group sparsities.

normal distribution N (0, 1). Then the observations can be

obtained by b = Ax∗ + z, where z follows the distribution

N (0, 0.52).

Table 3 shows the average results of the 100 instances.

From Table 3, we can see that when the number of samples

p ≥ 350, our PWTH can correctly identify the underlying

groups and features. However, it is not the case until n = 650

on which HT-ISTAL gets a good solution. When p ≤ 250,

the results of indexes of PWTH are worse than those of

HT-ISTAL, but it is apparent that both the two algorithms

cannot identify the groups and features. Overall, PWTH out-

performs HT-ISTAL both in solution quality and running

time.

We also conducted experiments to compare the perfor-

mance of our PWTH with some state-of-the-art algorithms,

including gel [10], cMCP and gBridge [9], and grLasso [6].

The algorithms were implemented in R language.2

2Related code: https://cran.r-project.org/web/packages/grpreg/index.html.

TABLE 5. Average results of compared algorithms with respect to
different numbers of nonzero elements within a group.

Tuning parameters were set as the default values. We gener-

ated data with p = 300 and n = 1000 for all the experiments,

with varying numbers of group sparsity and nonzero elements

within a group.

Table 4 lists the average results with respect to a range of

group sparsities K2 ∈ {3, 6, 9, 12, 15}. Here, every nonzero

group has 10 nonzero elements. From Table 4, we can see

that grLasso and gel method select too many elements, while

gel is able to select groups. Contrarily, gBridge, cMCP and

PWTH all work well in the selection of features and groups.

In fact, Nos of PWTH are the same as true numbers of

features and groups of the tested instances. This is due to that

PWTH makes a full use of information about feature sparsity

and group sparsity. However, gBridge selects a little more

variables than the true number leading to high FN. Moreover,

besides PWTH, cMCP gives the best solution in terms of

solution quality and running time. So we compare PWTH

with cMCP in detail in the sequel.

When K2 = 3, the indexes (No, FN, FP) of cMCP are

(28.57,0.95,2.38), from which we can see that cMCP misses

two or three components on average. While the indexes (No,

FN, FP) of PWTH are (30,1.54,1.54), from which we can

see that PWTH misses one or two components on average.

So PWTH outperforms cMCP slightly in solution quality

when K1 = 2. Similarly, for other K2, we can draw the

same conclusion. Moreover, PWTH is the fastest among

all the compared methods. To sum up, PWTH outperforms

other algorithms in terms of solution quality and running

time.

Table 5 lists the average results with respect to

a range number of nonzero elements within a group

K1 ∈ {2, 4, 6, 8, 10}. Here, we set p = 300, n = 1000 and

sg = 10. Similar to the above analysis of Table 4, we can

argue that PWTH is the best among the compared algorithms

for any K1 ∈ {2, 4, 6, 8, 10}.
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V. CONCLUSION

By reformulating the l0-norm sparsity constraint as an equiv-

alent weighted l1-norm constraint, we have proposed a

weighted thresholding method for the sparse group feature

selection problem,which is based on a dynamic programming

algorithm. The weighted method was further improved using

the homotopy technique. Computational experiments on syn-

thetic data show that the proposed method is competitive with

some state-of-the-art algorithms for the sparse group feature

selection problem.
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