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Abstract

Traditional tensor decompositions such as
the CANDECOMP / PARAFAC (CP) and
Tucker decompositions yield higher-order
principal components that have been used to
understand tensor data in areas such as neu-
roimaging, microscopy, chemometrics, and
remote sensing. Sparsity in high-dimensional
matrix factorizations and principal compo-
nents has been well-studied exhibiting many
benefits; less attention has been given to
sparsity in tensor decompositions. We pro-
pose two novel tensor decompositions that in-
corporate sparsity: the Sparse Higher-Order
SVD and the Sparse CP Decomposition. The
latter solves an ¢1-norm penalized relaxation
of the single-factor CP optimization problem,
thereby automatically selecting relevant fea-
tures for each tensor factor. Through experi-
ments and a scientific data analysis example,
we demonstrate the utility of our methods for
dimension reduction, feature selection, sig-
nal recovery, and exploratory data analysis
of high-dimensional tensors.

1 Introduction

High-dimensional tensor or multi-modal data is be-
coming prevalent in areas such as neuroimaging,
microscopy, chemometrics, bibliometrics and remote
sensing. Often one tries to understand this large
quantity of data through dimension reduction or by
finding major patterns and modes of variation. To
this end, tensor decompositions such as the CAN-
DECOMP / PARAFAC (CP) (Harshman, 1970; Car-
roll and Chang, 1970) and the Tucker decomposi-
tion (Tucker, 1966) have been employed and used
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for higher-order principal components analysis (PCA)
(Kolda and Bader, 2009). While many have studied
these decompositions, relatively few have advocated
encouraging sparsity in the factors. In the context
of non-negative tensor factorizations, several have dis-
cussed sparsity (Hazan et al., 2005; Mgrup et al., 2008;
Liu et al., 2012), and a few have gone on to propose
sparsity in one of the tensor factors (Ruiters and Klein,
2009; Pang et al., 2011). In this paper, we are inter-
ested in mathematically developing a framework for
incorporating sparsity in each tensor factor that will
lead to computationally attractive algorithms for high-
dimensional tensors.

Sparsity in tensor decompositions and higher-order
PCA is desirable for many reasons. First, tensor de-
compositions are often used to compress large multi-
dimensional data sets (Kolda and Bader, 2009). Spar-
sity in the tensor factors compresses the data further
and is hence attractive from a data storage perspec-
tive. Second, in high-dimensional settings, many fea-
tures are often irrelevant. With neuroimaging data
such as functional MRIs, for example, there are of-
ten hundreds of thousands of voxels in each image and
many of these voxels are inactive for the entire length
of the scanning session. Sparsity gives one an auto-
matic tool for feature selection in high-dimensional
tensors.  Third, many have noted that PCA is
asymptotically inconsistent in high-dimensional set-
tings (Johnstone and Lu, 2009). As this is true for
matrix data, it is not hard to surmise that asymptotic
inconsistency of the factors holds for higher-order PCA
as well. Sparsity in PCA, however, has been shown to
yield consistent principal component directions (John-
stone and Lu, 2009; Amini and Wainwright, 2009).
Finally for high-dimensional tensors, visualizing and
interpreting the higher-order PC’s can be a challenge.
Sparsity limits the number of features and hence sim-
plifies visualization and interpretation of exploratory
data analysis results.

In this paper, we present two novel algorithms for
incorporating sparsity into tensor decompositions,
or higher-order principal components analysis: the
Sparse Higher-Order SVD and the Sparse CP Decom-
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position. A major theoretical contribution of our work
is proving that the latter solves a multi-way concave
relaxation of the CP optimization problem, thus pro-
viding the mathematical context for algorithms em-
ploying a similar structure. Through simulated exper-
iments and a scientific data analysis of tensor microar-
ray data, we demonstrate the effectiveness of our meth-
ods for dimension reduction, feature selection, and pat-
tern recognition.

We adopt the notation of Kolda and Bader (2009).
Tensors will be denoted as X', matrices as X, vectors
as x and scalars as x. As there are many types of
multiplication with tensors, the outer product will be
denoted by o: xoy = xy?’. Specific dimensions of the
tensor will be called modes and multiplication by a ma-
trix or vector along a tensor mode will be denoted as
x1; here, the subscript refers to the mode being multi-
plied using regular matrix multiplication. Sometimes
it is necessary to convert a tensor into a matrix, or ma-
tricize the tensor. This is denoted as X(;y where the
subscript denotes the mode along which the matriciza-
tion has occurred. For example, if X € R"*P*49 then
X (1) € R™*P4. The tensor Frobenius norm, || X'|[|F,

\/ 2o 2o 2k X?jk. For notational
simplicity, all results in this paper will be presented
for the three-mode tensor. Our methods can all be
trivially extended to multi-dimensional tensors.

refers to || X ||p =

2 A Sparse Higher-Order SVD

The Higher-Order SVD (HOSVD), or Tucker decom-
position, is a popular tool for computing higher-order
principal components (Tucker, 1966; De Lathauwer
et al., 2000). This decomposition models a three-mode
tensor, X € R™P*7 as X = Dx1Ux3V x3W
where the factors U € R»*K:r vV ¢ RPXKz and
W € R?*Ks are orthonormal and D € RE1xK2xKs
is the core tensor. The factors can be interpreted as
the principal components of each tensor mode.

Algorithm 1 Sparse (Truncated) Higher-Order SVD

1. U « First K sparse principal components of X1).
2. V « First K3 sparse principal components of X o).
3. W < First K3 sparse principal components of X(s).

4. D+ X x1Ux2V x3W.

A common method for computing the HOSVD is to
estimate each factor matrix by calculating the singu-
lar vectors of the tensor matricized along each mode
Tucker (1966); De Lathauwer et al. (2000). In other
words for a three-mode tensor, the HOSVD can be
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found by performing PCA three times on data matri-
cized along each of the three dimensions. This leads
to a simple strategy for obtaining a Sparse HOSVD:
Replace PCA with sparse PCA to obtain sparse fac-
tors for each tensor mode. This approach is outlined
in Algorithm 1. Many algorithms exist for performing
sparse PCA (Jolliffe et al., 2003; Zou et al., 2006; Shen
and Huang, 2008; Johnstone and Lu, 2009; Journée
et al., 2010), any of which can be used to calculate the
Sparse HOSVD. We also note that as sparse PC’s are
commonly not constrained to be orthonormal, the fac-
tors of the Sparse HOSVD are no longer orthonormal.

While the Sparse HOSVD is conceptually simple, it
is not ideal for several reasons. First, the algorithm
does not correspond to solving any optimization prob-
lem or minimizing a tensor loss function (Kolda and
Bader, 2009). Mathematically, this is less appealing.
Secondly in high-dimensional settings, matricizing the
tensor along each mode and performing sparse PCA is
computationally intensive and requires large amounts
of computer memory. Employing the sparse PCA
methods of Jolliffe et al. (2003); Zou et al. (2006) re-
quires forming and computing the leading sparse eigen-
values of n X n, p X p, and g X ¢ matrices, which
in high-dimensional settings are typically much larger
than the original data array. The methods of Shen and
Huang (2008); Journée et al. (2010) require comput-
ing the sparse singular vectors of n X pg, p X ng, and
q X mp, which corresponds to calculating several un-
necessary and extremely large singular vectors. Hence,
even though the Sparse HOSVD is simple, it is math-
ematically and computationally less desirable. To this
end, we introduce a novel Sparse CP decomposition in
the next section that directly addresses each of these
concerns.

3 A Sparse CANDECOMP /
PARAFAC Decomposition

The CP decomposition seeks to model a tensor as a
sum of rank one tensors: X = Z,Ile diug oV oWy,
where up, € R*, vip € R?, wi, € R? and di, > 0
(Harshman, 1970; Carroll and Chang, 1970). In this
section, we develop a novel Sparse CP decomposition
that directly optimizes a relaxation of the CP opti-
mization problem. Before introducing our Sparse CP
problem, however, we introduce the algorithmic frame-
work upon which this is based. Namely, we begin by
showing that the rank-one CP problem can be solved
using a novel algorithm, the Tensor Power Method.

3.1 Tensor Power Method

We introduce an alternative form of the CP optimiza-
tion problem and a corresponding algorithm that will
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form the foundation of our Sparse CP method. The
single-factor CP decomposition solves the following op-
timization problem (Kolda and Bader, 2009):

minimize ||X —duovow |3 (1)
u,v,w,d

subject to ulu=1,viv=1,wiw=1, &d>0.

Some algebra manipulation (see Kolda and Bader
(2009)) shows that an equivalent form to this opti-
mization problem is given by the following:

maximize X Xq{UXoV X3W

u,v,w

subject to uu=1,vIv=1 & wiw=1. (2)

As (2) is separable in the factors, we can optimize this
in an iterative block-wise manner:

Proposition 1 The block coordinate-wise solutions
for (2) are given by:
X XoV X3W X X1uXsw
H.)C'><2V><3W||27 |\X><1u><3w||2’
X><1u><2v
HX><111><2V||2'

a= v =

& w=

Proof 1 Consider optimizing (2) with respect to
u. The Lagrangian is given by L(u,y) =
(X xovxzw) x; u—y(ul'u-1). The Karush-Kuhn-
Tucker (KKT) conditions imply that u* = W
and v* is such that (u*)T u* = 1. Putting these to-
gether we have the desired result for u. The arguments

for v and w are analogous.

As each coordinate update increases the objective and
the objective is bounded above by d, convergence of
this scheme is assured. Note, however, that this ap-
proach only converges to a local optimum of (2), but
this is true of all other algorithmic approaches to solv-
ing the CP problem as well (Kolda and Bader, 2009).

To compute multiple CP factors, one could apply this
single-factor approach sequentially to the residuals re-
maining after subtracting out the previously computed
factors. This deflation approach is closely related in
structure to the power method for computing eigen-
vectors (Golub and Van Loan, 1996). We then call this
greedy method the Tensor Power Method and summa-
rize this in Algorithm 2.

Notice that the Tensor Power Method does not en-
force orthogonality in subsequently computed com-
ponents. The algorithm can be easily modi-
fied, however, to ensure orthogonality by employ-
ing a Graham-Schmidt scheme: If we define Uy =
[u; ...ug], then orthogonal updates for u; are given
by: up = (I(n) 7Uk_1 Ug—l) X X2 VE X3 Wi /H(I(n) —
Uk—l U{—l) X X9V X3 Wi ||2
for v and w are analogous.

Orthogonal updates
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Algorithm 2 Tensor Power Method

1. Initialize X = X.
2. Fork=1...K

(a) Repeat until converge:
1. uk(—.;VXQVk X3 Wk /||/'AY X9 Vi ><3Wk||2.
ii. vke)}:xluk X3 W /||.%' X1 Uk ><3Wk||2.
iii. wk<—X><1uk X2 Vi /||X X1 Uk ><2Vk||2.
(b) di < X X1 Uk X2 Vi X3 Wk

(c) X« X —dyupovyows.

Before moving on to our Sparse CP method, we pause
to discuss the Tensor Power Method and compare it
to more common algorithms to compute the CP de-
composition such as the Alternating Least Squares al-
gorithm (Harshman, 1970; Carroll and Chang, 1970).
As the Tensor Power Method is a greedy approach, the
first several factors computed will tend to explain the
most variance in the data. In contrast, the CP-ALS
algorithm seeks to maximize the set of d; for all K
factors simultaneously. Thus, the set of K CP-ALS
factors may explain as much variance as those of the
Tensor Power Algorithm, but the first several factors
typically explain much less. This is illustrated on the
tensor microarray data in Section 5. Also, while the
CP-ALS algorithm returns dj, in descending order, the
dr computed via the Tensor Power Method are not
necessarily ordered.

3.2 Sparse CP Decomposition

We introduce a novel Sparse CP decomposition that
incorporates sparsity by regularizing the factors with
an ¢1-norm penalty. Our method solves a direct relax-
ation of the CP optimization problem (2) and has a
computationally attractive solution.

3.2.1 Problem & Solution

Many have sought to encourage sparsity in principal
components analysis by solving ¢1-norm penalized op-
timization problems related the to SVD (Jolliffe et al.,
2003; Zou et al., 2006; Shen and Huang, 2008; Witten
et al., 2009; Lee et al., 2010; Journée et al., 2010; Allen
et al., 2011). We formulate our Sparse CP decomposi-
tion by placing ¢;-norm penalties on each of the tensor
factors and relaxing the alternative formulation of the
CP optimization problem, (2). Thus, we define our
single-factor Sparse CP decomposition as the solution
to the following problem:

maximize X Xi1u X2V XsW—pul||lulli —pv|| V] — pwl|| W]

u,v,w

subject to u<i,viv<l, & wiw<l. (3)

Here py, , pv and py are non-negative bandwidth pa-
rameters controlling the amount of sparsity in the ten-
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sor factors. Notice that we have relaxed the equality
constraints from (2) to inequality constraints in (3).
Relaxing the constraints greatly simplifies the opti-
mization problem, leading to a simple solution and
algorithmic approach. Notice that (3) is concave in
each factor with the other factors fixed. Thus, one
can optimize this problem by updating one factor at
a time and iterating until convergence. As each up-
date involves solving a concave optimization problem,
the objective monotonically increases, converging to a
local maximum of (3).

The update of each factor in our Sparse CP problem
has a simple analytical solution:

Theorem 1 The block coordinate-wise solutions to
the Sparse CP problem are given by:

S(X X2V X3W,pu)

= {'S(x cavawpallz |9 (X X2V X3 W, pu)[l2 >0

0 otherwise,

S(X X1 uXxX3wW,py)

o= {'S<XX1uX3w,pv>2 1S (X x1uxsw, py)|l2 >0

0 otherwise,

S(X X1 uX2V,pw)

G we d PR uavee IS (Xx1ux2v,pw)ll2 >0
0 otherwise,

where S(-,p) is the soft-thresholding operator:
S(p) = sign()(| [ = p)+-

Proof 2 The proof follows from an extension of re-
sults in Witten et al. (2009); Allen et al. (2011). In
short, consider optimizing (3) with respect to u. The
KKT conditions imply that X Xov x3w —p,'(u*) —
2v*u* = 0 and v*((u*)Tu* —1) = 0 where T'(u) is
the subgradient of ||u||1, and v is a Lagrange multi-
plier. Consider . = S(X X3V X3 W, py). Then, tak-
ing u* = u/||allz and v* = ||4]|]2/2 simultaneously
satisfies the KKT conditions. Since the problem is con-
vex in 4, the conditions are necessary and sufficient;
hence, the pair (u*,~*) are the optimal points.

Thus, even with the relaxed constraints in (3), our
solution for each factor is guaranteed to either have
norm one or be set to zero. Before presenting the al-
gorithm in full, we pause to note some major advan-
tages of our approach: (i) the scale of each factor is
directly constrained and thus degenerate solutions are
avoided, (ii) (3) is a tri-concave relaxation of (2), thus
assuring convergence to a local maximum, and (iii)
the coordinate-wise solutions have a simple analytical
form.

3.2.2 Algorithm

We employ a deflation approach similar to that of the
Tensor Power Method to calculate multiple factors of
our Sparse CP decomposition. Specifically, each factor
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is calculated by solving the single-factor CP problem,
(3), for the residuals from the previously computed
single-factor solutions. This approach is outlined in
Algorithm 3. Notice that we do not enforce orthog-

Algorithm 3 Sparse CP Decomposition

1. Initialize X = X.
2. Fork=1...K
(a) Repeat until converge:
. ap =S (i’ X2 Vi ><3wk,pu).

ur < d e/l[xll2 [[axll2 >0
. 0 otherwise.

ii. \A’k =5 (.i' X1 Uk ><3Wk,pv).

Vie/|[Vell2 |[Vell2 >0
(_
Vi 0 otherwise.
iii. VAVk =95 (X X1 Uk X Vk7pw).
Wi/|[Well2 [[Wk|[2 >0
%
W {O otherwise.

(b) dk (—;Y X1 Ug X2 VE X3 Wg.
(c) X« X —dyugovyows.

onality to the previously computed factors. In fact,
many have advocated against enforcing orthogonality
of sparse principal components (Zou et al., 2006; Shen
and Huang, 2008; Journée et al., 2010). For factors
with p = 0, however, if orthogonality is desired, this
can be accomplished by altering the factor updates as
described in Section 3.1.

3.2.3 Selecting Bandwidth Parameters

Our Sparse CP decomposition has three bandwidth
parameters that control the amount of sparsity in
the factors. Several methods exist for selecting these
bandwidth parameters in the sparse PCA literature
(Troyanskaya et al., 2001; Owen and Perry, 2009;
Shen and Huang, 2008; Lee et al., 2010). As cross-
validation can be slow to run for high-dimensional ten-
sors, we choose to select bandwidth parameters via the
Bayesian Information Criterion (BIC) (Allen et al.,
2011): py, = argmin, BIC(pu) where BIC(p,) =

log (X =tucvonlit) 4 lslwa) )|, where [{u}] is

npq pq
the number of non-zero elements of u. This BIC for-

mulation can be derived by considering that each up-
date in the Sparse CP Algorithm solves an ¢;-norm
penalized regression problem. Selection criteria for v
and w are analogous. Experimental results evaluating
the efficacy of this bandwidth selection method are
given in Section 4.
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3.2.4 Amount of Variance Explained

In principal components analysis, a critical quantity in
determining the fit of the SVD model is the amount of
variance explained by the rank- K matrix factorization.
The same can be used in our sparse higher-order PCA
models to determine the extent of dimension reduction
achieved. Consider the following result:

Theorem 2 Define P;CU) = U(UjUp)-tuy
where U, = [uy,...u;] and define PECV) and

P,(CW) analogously.  Then, the cumulative propor-
tion of wariance explained by the first k higher-
order PC’s or sparse higher-order PC’s is given by
1250 P <o P s PR |13/ 11 X |3

Proof 3 The proof is an extension of that in Shen and
Huang (2008). Recall that the cumulative proportion
of variance explained by the first k traditional principal
components can be written as the ratio of the squared
Frobenius norm of the data projected onto the first k
left and right singular vectors to the squared Frobenius
norm of the data (Jolliffe and MyiLibrary, 2002). No-
tice that P;CU), PECV) and P;W) are projection matrices
with exactly k eigenvalues equal to one. Therefore,
Vi is an extension of the definition of cumulative pro-
portion of variance explained to the tensor framework.
Namely, the numerator is simply the projection of the
tensor onto the subspace spanned by the first k higher-
order PCA factors.

This result requires some further comments and expla-
nation. One familiar with the PCA literature may in-
quire as to why we cannot simply sum the first &k eigen-
values of the covariance matrix or the first k£ squared
singular values of the data matrix. For matrix data,
the set of singular vectors form a complete basis and
hence can be used to recover the data matrix exactly.
The same is not true of tensor decompositions. That
is, common tensor factorizations cannot be written in
the form of a set of orthonormal basis vectors along
each mode multiplied by a diagonal tensor core that
recover the tensor exactly (Kolda and Bader, 2009).
Because of this, summing di does not give the cumu-
lative proportion of variance explained by the tensor
decomposition. Instead, one must project the tensor
onto the first k£ factors to compute this quantity.

3.3 Extensions

As our Sparse CP decomposition directly solves a well
defined optimization problem, there are many possible
extensions of our methodology. We briefly outline two
of these here, omitting formal proofs and details.
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3.3.1 Regularized CP Decomposition with
General Penalties

In certain applications, one may wish to regularize ten-
sor factors with a penalty other than an ¢;-norm. Con-
sider the following optimization problem which incor-
porates general penalties, P,(), Py() and Py():

maximize X X1Uu X2V X3W
u,v,w
— PaPalW) = pyPu(v) = o Por(w)
subject to wu<i,viv<l, & wiw<l. (4)

An extension of a result in Allen et al. (2011) reveals
that one may solve this optimization problem for gen-
eral penalties that are convex and order one by solving
penalized regression problems:

Theorem 3 Let P,(), Py() and Pg() be con-
ver and homogeneous or order one. Consider
the following penalized regression problems: w =
argming{ L[| X xov x3 W — ul2 + puPu(u)}, v =
argminy{3]| X x4 x3W—v |3+ py Py (v)}, and w =
argmine{3|| X x10 X2V — W |3 + pwPw(w)}. Then,
the block coordinate-wise solutions for (4) are given by:

ut = [lafl2 ||U.||2>0 - [1¥]]2 ||V||2>0
0 0

T
andw*:{‘fvllz [[wl2 >0

. ) . )
otherwise otherwise

0 otherwise

An example of a possible penalty type of interest in
many tensor applications is the group lasso, which en-
courages sparsity in groups of variables (Yuan and Lin,
2006).

3.3.2 Sparse Non-negative CP
Decomposition

Much attention in the literature has been given to the
non-negative and sparse non-negative tensor decompo-
sitions (Hazan et al., 2005; Shashua and Hazan, 2005;
Mgrup et al., 2008; Cichocki et al., 2009; Liu et al.,
2012). These techniques have been used for multi-way
clustering of tensor data. A simple modification of
Theorem 1 allows us to solve (3) when non-negativity
constraints are added for each factor: Replace the soft-
thresholding function S(z, p) = sign(x)(|z| — p)+ with
the positive-thresholding function P(z,p) = (z — p)+
(Allen and Maleti¢-Savatié, 2011). This, then, is a
computationally attractive alternative to estimating
sparse non-negative tensor factors.

4 Experiments

We evaluate the performance of our Sparse HOSVD
and Sparse CP algorithms on simulated data sets. All
data is simulated from the following model: X =
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Scenario1:u, Scenario2: u,
o i)
w =
o o
w w
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Figure 1: Mean ROC curves for each of the four simulation scenarios.

K
Zk:l drugoviowy + &, where the factors ug, vg,
. jid
and wy, are random, dj, is fixed and &; ;; X N(0,1).
Four scenarios are simulated and summarized below:

e Scenario 1: 100 x 100 x 100 with U sparse.

e Scenario 2: 1000 x 20 x 20 with U sparse.

e Scenario 3: 100 x 100 x 100 with U, V and W sparse.
e Scenario 4: 1000 x 20 x 20 with U, V and W sparse.

Sparse factors are simulated with 50% randomly se-
lected elements set to zero and non-zero values are i.i.d.
N(0,1). Non-sparse factors are simulated as the first
K left and right singular vectors of a data matrix with
iid. N(0,1) entries. In simulations where K = 1,
dy = 100. In simulations where K = 2, d; = 200 and
de = 100.

First, we test the accuracy of our methods in selecting
the correct non-zero features. Mean receiver-operator
curves over ten replicates computed by varying the
bandwidth parameters are given for each of the four
scenarios in Figure 1. The Sparse HOSVD (using the
Sparse PCA method of (Shen and Huang, 2008)) and
Sparse CP are compared to taking the CP-ALS solu-
tion and hard-thresholding the factor elements. From
these comparisons, we see that the Sparse HOSVD
and Sparse CP methods perform equally well at re-
covering the true relevant features in the tensor. The
Sparse HOSVD method performs slightly better than
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the Sparse CP method for scenario 3 where the di-
mensions are equal. The Sparse CP method performs
better when there are dimensions of unequal sizes.

Next, we assess the performance of our methods for a
fixed value of p, set to the optimal value as estimated
via BIC. The accuracy in terms of true and false posi-
tives as well as signal recovery of the tensor measured
by the mean squared error is given in Table 1. Simula-
tions were repeated 50 times and the results averaged.
Sparse HOSVD and Sparse CP perform comparably
for scenarios where only the factor associated with the
first mode is sparse. Sparse HOSVD, however, selects
less false positives for the scenarios where all factors
are sparse, although Sparse CP has better error rates
for the second components. Both sparse higher-order
PCA methods perform much better than the CP de-
composition in terms of signal recovery.

Finally, we compare the average time until convergence
of ten replicates of the Sparse HOSVD and Sparse CP
methods in Table 2. Data was simulated according to
the model described above with all factors sparse and
all bandwidth parameters set to one. Timings were
carried out on a Intel Xeon X5680 3.33Ghz proces-
sor and methods were coded as single-thread processes
run in Matlab utilizing the Tensor Toolbox (Bader and
Kolda, 2010). These results indicate that the Sparse
CP method is much faster than the Sparse HOSVD
method, especially for tensors in which one dimension
is large.
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Scenario 1 Scenario 2
Cp Sparse HOSVD Sparse CP CP Sparse HOSVD Sparse CP
TP / FP u - 0.9428 / 0.0512 | 0.9512 / 0.0808 - 0.8278 / 0.0430 | 0.8387 / 0.0717
TP / FP uy - 0.8460 / 0.0544 | 0.8920 / 0.0812 - 0.6530 / 0.0467 | 0.6665 / 0.0584
Signal Recovery X | 1.0076 0.0499 0.0503 1.0109 0.1240 0.1247
Scenario 3 Scenario 4
Cp Sparse HOSVD Sparse CP Cp Sparse HOSVD Sparse CP
TP / FP wy - 0.9344 / 0.0424 | 0.9592 / 0.1944 - 0.8268 / 0.0447 | 0.8562 / 0.1416
TP / FP uy - 0.8476 / 0.0660 | 0.9260/ 0.2564 - 0.6570 / 0.0468 | 0.7158 / 0.1310
TP / FP vy - 0.9440 / 0.0404 | 0.9628 / 0.2088 - 0.9680 / 0.0500 | 0.9720 / 0.1480
TP / FP vy - 0.8456 / 0.0580 | 0.9292 / 0.2548 - 0.9380 / 0.1500 | 0.9580 / 0.1440
TP / FP w; - 0.9308 / 0.0540 | 0.9560 / 0.2112 - 0.9800 / 0.0680 | 0.9800 / 0.1160
TP / FP wy - 0.8556 / 0.0544 | 0.9348 / 0.2636 - 0.9600 / 0.1820 | 0.9680 / 0.1600
Signal Recovery X | 1.0084 0.0495 0.0502 1.0115 0.1238 0.1254

Table 1: True and false positives and signal recovery measured in mean squared error for the four simulation scenarios.

100 x 100 x 100 \ 1000 x 20 x 20 \ 2000 x 20 x 20
K=1
Sparse CP 0.181 0.084 0.200
Sparse HOSVD 7.915 6.097 23.911
K=2
Sparse CP 0.521 0.154 1.437
Sparse HOSVD 16.525 12.456 49.082

Table 2:  Average time in seconds.

Overall, our experiments indicate that both the Sparse
HOSVD and Sparse CP methods perform well at se-
lecting the relevant features and in signal recovery. As
the Sparse CP is computationally much more efficient,
this is then our preferred method for data analysis.

5 Scientific Data Analysis: AGEMAP
Microarray Data

We use Sparse HOPCA to understand the multi-way
AGEMAP microarray data. This data consists of gene
expression measurements for 8,932 genes measured for
16 tissue types on 40 mice of ages 1, 6, 16, or 24 months
(Zahn et al., 2007). As measurements for several mice
are missing for various tissues, we eliminate any tensor
slices that are entirely missing, yielding a data array of
dimension 8932 x 16 x 22. Scientists seek to discover
relationships between tissue types of aging mice and
the subset of genomic patterns that contribute to these
relationships. These patterns in each tensor mode can-
not be found by simply applying PCA or Sparse PCA
to the flattened tensor.

The Tensor Power Method, CP decomposition, and
Sparse CP decomposition were applied to this data to
reduce the dimension and understand patterns among
tissues and genes. In Figure 2, the cumulative pro-
portion of variance explained by the first eight com-
ponents is given. Notice that both the CP-ALS and
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Figure 2: Cumulative proportion of variance explained by
higher-order principal components computed via the CP-
ALS, Tensor Power Method, and Sparse CP methods for
the AGEMAP microarray data.

Tensor Power Method explain roughly the same pro-
portion of variance with eight components, but the
Tensor Power Method explains much more initial vari-
ance. As often scientists are only interested in the
first couple principal components, this illustrates an
important advantage of our approaches in the analysis
of real data: The Tensor Power Method and Sparse CP
methods achieve greater initial dimension reduction.

In Figure 3, we explore patterns found in the
AGEMAP data via sparse higher-order PCA. The re-
sults were computed using the Sparse CP method plac-
ing a penalty on the gene mode with the BIC used to
select bandwidth parameters. In the top panel, we
show scatterplots of the first eight principal compo-
nents for the tissue mode. We see many clusters of
tissue types for the various pairs of principal compo-
nents. For example, adrenal, gonads and bones often
cluster together.

As only a subset of genes are selected by each of the
principal components, we can analyze the genetic pat-
terns further for each tissue type. Gonads has a higher
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Figure 3: Analysis of AGEMAP Microarray data via Sparse Higher-Order PCA. (Top Panel) Scatterplots of the first
eight principal components for the 16 tissue types. (Lower Left) A cluster heatmap labeled by gender of the genes selected
by sparse PC' 3 for the tissue Gonads. (Lower Right) A cluster heatmap labeled by age in months of the genes selected by

sparse PC' 8 for the tissue Heart.

value for the second principal component, for exam-
ple, so we display a cluster heatmap of the 1,439 genes
selected in PC2 for this tissue type in the lower left
panel of Figure 3. Note that Ward linkage with Eu-
clidean distance is used to compute the dendograms.
We see that the genes selected by this sparse PC per-
fectly separate the male and female mice. As liver has
a lower PC value for the third component, we display
the cluster heatmap for the 514 genes selected by this
component for liver in the lower right panel of Figure
3. Again, we see that this component clusters the mice
well according to their ages. Further plots and analysis
of this type reveals subsets of important genes associ-
ated with various tissues and mice ages and gender.

This scientific data analysis has illustrated the
strengths of our Sparse CP method for dimension re-
duction and finding relevant features and patterns in
high-dimensional tensor data.

6 Discussion

In this paper, we have introduced novel methods
for incorporating sparsity into tensor decompositions
and higher-order PCA. The Sparse HOSVD performs
sparse PCA on matricized tensors. While this method
is conceptually simple and performs well, it is slower
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computationally and less desirable mathematically as
it does not minimize a loss function. The Sparse CP
decomposition, on the other hand, directly maximizes
an ¢1-norm penalized optimization problem related to
the CP decomposition. This method performs nearly
as well as the Sparse HOSVD and is computationally
much faster.

We have presented our methods for three-mode ten-
sors for notational convenience, but all of our methods
can be trivially extended to tensors of higher-order.
There are many other aspects of our work that require
further investigation. The Tensor Power Algorithm
appears to be an attractive alternative to the CP-ALS
algorithm. Further comparisons of timings, conver-
gence rate, variance explained, and signal recovery are
needed. Also, the extensions of our methods outlined
in Section 3.3 can be further developed and formally
compared to existing methods in the literature. Fi-
nally, there are possibly many other ways to formulate
sparse tensor decompositions based on existing algo-
rithms for the CP and Tucker decompositions.

In conclusion, we have developed methods to perform
sparse higher-order principal components analysis that
open many new possibilities both methodologically
and in applications to high-dimensional tensor data.
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