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Abstract. Scanning electron microscopes (SEMs) are used in neuroscience and materials sci-

ence to image centimeters of sample area at nanometer scales. Since imaging rates are in large

part SNR-limited, large collections can lead to weeks of around-the-clock imaging time. To in-

crease data collection speed, we propose and demonstrate on an operational SEM a fast method

to sparsely sample and reconstruct smooth images. To accurately localize the electron probe

position at fast scan rates, we model the dynamics of the scan coils, and use the model to

rapidly and accurately visit a randomly selected subset of pixel locations. Images are recon-

structed from the undersampled data by compressed sensing inversion using image smoothness

as a prior. We report image fidelity as a function of acquisition speed by comparing tradi-

tional raster to sparse imaging modes. Our approach is equally applicable to other domains of

nanometer microscopy in which the time to position a probe is a limiting factor (e.g., atomic

force microscopy), or in which excessive electron doses might otherwise alter the sample being

observed (e.g., scanning transmission electron microscopy).
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1 INTRODUCTION

Electron microscopes are used in neuroscience, microbiology and materials science for high-

resolution imaging and subsequent structural or compositional analysis. In particular, many

applications that utilize a scanning electron microscope (SEM) require imaging millimeters or

even centimeters of material at nanometer resolutions, leading inevitably to semi-autonomous

operation of a SEM, months of around-the-clock collection time [1, 2], and vast quantities of

data.

Many recent efforts have addressed the problem of collecting large mosaics of a speci-

men [3–5]. Engineering advances (for example, [6]) have allowed greater throughput by allow-

ing very wide field-of-view images to reduce image tile overlap and stage movement, and by

providing high scan rates. Nevertheless, even these well-engineered systems are still physically

constrained—due to the single-detector arrangement, the electron probe visits each pixel loca-

tion in raster-scan order and dwells for a time proportional to the desired SNR. Thus, high-SNR,

nm-resolution images taken over large mosaics can lead to prohibitively long data collection

times.

In this paper, we propose and demonstrate on an operational SEM a sparse imaging method

for smooth images, in which the electron probe measures only a subset of locations on the

specimen. The approach is inspired by compressed sensing theory to guarantee that the smooth

image can be recovered from undersampled data. Since the number of measurements is roughly
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proportional to the data collection time, we can increase imaging throughput while maintaining

image quality. Importantly, the imaging speedup provided by this approach is in series with

speedups obtained via technological and engineering advances.

Our proposed method is applicable to other domains of nanometer microscopy in which

speed is a limiting factor, such as atomic force microscopy (AFM). In [7], the authors ap-

ply compressed sensing for video-rate AFM and demonstrate results on a working instrument.

Their goal for video-rate imaging is aided by a fixed, deterministic scan pattern that permits

fast image reconstruction, but includes appreciable gaps that precludes universality [7]. Hu et

al. recently addressed high-throughput image acquisition for neural circuitry by acquiring a few

low resolution tomographic slices of tissue, then reconstructing a super-resolved 3D image by

using 3D dictionary atoms learned from a high-resolution training set [8]. Recently, Binev et al.

investigated the applicability of compressed sensing to scanning transmission electron micro-

scopes (STEMs) to reduce electron dose rates that might otherwise structurally alter or destroy

the sample being observed [9]. We note that the dose rate motivation is equally applicable to

the SEM case, in which certain biological or dielectric materials may exhibit charging artifacts

if the dose rate is too high. In [9], concepts are validated via numerical simulations of a STEM.

The chief contribution of this paper is a demonstration of sparse sampling and compressed

sensing image recovery using an operational SEM. A fast recovery method is derived using the

split Bregman formulation [10]. In order to implement our method on an operational tool, we

account for nontrivial dynamics of the SEM scan coils through modeling and prediction.

In Section 2 we review pertinent elements of electron microscopy. In Section 3, we intro-

duce a sparse sampling and exact recovery method, motivated by foundational work in com-

pressed sensing, and show simulated reconstruction performance for smooth images. Hardware

implementation and results from our experiments are discussed in Section 4. We conclude with

a summary of our work in Section 5.

Throughout the paper boldface variable in capital letters such as F, U will denote matrices.

The lowercase boldface variables, such as x, or y denote vectors, while non-boldface both

lower-case and upper case, such as M and δ denote scalars.

2 BACKGROUND

SEMs are often a tool of choice for imaging biological, geological or material science speci-

mens. Electron microscopes provide much higher magnifications than do optical microscopes.

Fundamentally, the diffraction limit in electron microscopes is about 103 better than optical mi-

croscopes, down to sub-nanometer levels for typical electron energies. In addition, SEMs have

a large depth of field, allowing a specimen to be in focus even when its topography exhibits

high variability.

A SEM acquires images by raster scanning a focused beam of electrons across the sample,

typically in raster-order. At each location, electrons in the incident beam interact with sample,

producing various signals about the composition or topography of the sample’s surface. These

signals may be detected and digitally assigned to the image pixel value at the corresponding

sample location. The electron probe is then repositioned via electromagnetic or electrostatic

deflection to the subsequent pixel location. Typically, the electron probe is much smaller than

the distance between pixel locations.

Backscatter electron (BSE) emissions are high-energy electrons that originate in the elec-

tron beam and are reflected back out of the interaction volume on the sample via elastic scat-

tering. Materials composed of heavy elements provide more opportunities for elastic scattering

than do lighter elements, so that images created from BSE emissions provide sharp contrast at

boundaries of different chemical composition. Secondary electrons (SE) are much lower-energy

electrons that are dislodged from orbitals of specimen atoms through inelastic scattering with

electrons in the incident beam. Due to their low energies, only SE emissions within the first



few nanometers of the sample surface radiate into the chamber. Thus SE images are primarily

topographical.

Detectors have been designed to detect BSE and SE emissions separately. BSE detectors

may be made from semiconductor materials and are positioned to leverage the higher energies

of BSE emissions, which essentially travel in line-of-sight trajectories inside the chamber. In

contrast, SE emissions are often detected by an Everhart-Thornley (E-T) detector, which at-

tracts SEs to an electrically biased grid via a positive voltage bias which does not significantly

deflect BSE emission trajectories. (However an E-T detector will respond to BSEs in its di-

rect line of sight.) Secondary electrons attracted through the biased grid are further accelerated

to a scintillator, which emits photons that are transported outside the SEM chamber. Using a

photomultiplier tube, the photons are subsequently amplified to an intensity that can be readily

captured. Sources of noise in the SE detection process include SE emissions originating from

locations not illuminated by the electron probe (e.g., from backscatter electrons interacting with

the chamber), line of sight BSEs, and detector noise introduced in one of the several stages of

E-T detection. Noise for both BSE and SE images is multiplicative (Poisson-like), wherein the

noise power is proportional to the signal intensity.

In order to produce high-quality SEM images, long (on the order of microseconds) inte-

gration times per pixel (alternatively, many digital samples per pixel) are required to reduce

noise. In the best case with independent measurements, one could expect SNR improvement

that grows like
√
n; however, non-trivial detector response times and other factors necessitate

longer integration times. In sum, well-engineered systems are SNR-limited in their data ac-

quisition speed, and can require months to collect millimeters or centimeters of data for some

applications.

One engineering challenge that often limits SEM speed is that the scanning coils, used

to deflect the incident beam to the desired pixel location on the sample, have non-negligible

dynamics. In most SEMs, the deflection is done with two or more sets of electromagnetic

coils (at least one for each scan direction). A current is driven through these coils, which

creates a magnetic field that deflects the moving electrons as they travel down the column. In

addition to the inductance in the coils, stray capacitance and wire resistance creates a dynamic

system which cannot respond instantaneously to changes in current. Additionally, the amplifiers

used to drive the coils exhibit a non-negligible dynamic response. The combination of these

systems creates a non-trivial dynamic system that can affect signals with frequency content as

low as tens or hundreds of kHz. As a result, the actual location of the beam is often not the

same as the commanded location, which creates image distortion unless some compensation is

done. To mitigate these effects, SEMs are carefully calibrated at a variety of magnifications and

speeds to compensate for coil dynamics and generally operate in a raster scan mode where the

beam always moves at a constant speed in the same direction when an image is being taken, as

opposed to a “meander” scan where the beam is driven back and forth which can create image

artifacts that appear hysteretic. Beam dynamics are more problematic when a non-trivial beam

motion is used to sample the data, such as when varying speeds or directions are used. The

dynamical response of the electron probe scan coils is investigated further in Section 4.

3 SPARSE SAMPLING

The degrees of freedom of typical electron microscope images are many fewer than the number

of image pixels. Foundational contributions in compressed sensing guarantee that an N -pixel

image x—which can be described by K coefficients in some compression basis Ψ—can be

exactly recovered in only M = O(K log N
K
) linear measurements of the form y = Φx. The

tightest guarantee to date holds when A = ΦΨ satisfies the restricted isometry property (see

[11]), which guarantees recovery using basis pursuit:

min
x

‖ΨTx‖1 s.t. Φx = y.



Fig. 1. (left) An excised 512× 512 block from a SEM monograph of Amorphophallus titanum

pollen; (center) simulated 50% random undersampling; (right) reconstruction using our method

with block-DCT as a sparsifying basis (PSNR is 36 dB).
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Fig. 2. The sparsity of Dartmouth public SEM images, where sparsity is measured by counting

the number of block-DCT coefficients K that account for at least 99.75% of the image energy.

The average sparsity is 17%, with half of all images less than 15% sparse, and three-quarters

less than 20% sparse.

It should be noted that for arbitrary A, certifying that the restricted isometry property holds

is combinatoric in M . Although mutual coherence µ(Φ,Ψ) provides a looser guarantee on

reconstruction from M = O(µK logN) measurements, it is trivial to compute [12].

Electron microscope images are smooth and are often compressed via block-DCT or wavelet

compression schemes using JPEG or JPEG-2000 standards, respectively, while still maintaining

high image fidelity. To assess image sparsity of typical electron microscopy images, we gath-

ered 1022 electron microscopy images (SEM, TEM and E-SEM) from the Dartmouth public

domain gallery at http://www.dartmouth.edu/˜emlab/gallery. The images are

of a variety of different specimens in biology, geology and materials, and over a wide range of

magnifications and image sizes. To standardize analysis, we excised the center 512 × 512 of

each image to remove banners and rescaled images to [0, 1] grayscale values. For each 512×512
image, we computed the sparsity K by counting the number of large coefficients in the block-

DCT domain (32× 32 blocks) that accounted for at least 99.75% of the total coefficient energy.

A histogram of the results is shown in Figure 2.

3.1 Split Bregman Interpolation

In this section we outline a fast recovery/interpolation method for sparsely sampled images.

Given sparsely sampled measurements y = Φx+ n, where Φ is a subset of rows of identity I



and n is noise with power σ2, we reconstruct the image by solving regularized basis pursuit:

min
x

‖ΨTx‖1 + ‖∇x‖1 (1)

s.t. ‖y −Φx‖ ≤ σ2.

Motivated by good JPEG compressibility of SEM images, and by the low mutual coherence

between the DCT basis and image-domain sampling, we choose Ψ to be a block-DCT basis with

32× 32 pixel blocks. The total variation regularizer ‖∇x‖1 =
∑

i

√

|(∇hx)i|
2
+ |(∇vx)i|

2
in

(1) is included for denoising and to promote smooth boundaries between blocks.

Equation (1) can be solved efficiently using the split Bregman method [10], which recasts

the constrained problem in (1) into an unconstrained problem of the form

min
x

‖ΨTx‖1 + ‖∇x‖1 +
µ

2
‖y −Φx‖.

We follow the compressed sensing MRI derivation in [10], noting that our problem structure

differs since we collect image-domain samples rather than Fourier-domain samples. Letting

w = ΨTx, u = ∇ux (horizontal gradient), v = ∇vx (vertical gradient) and shorthand

‖(u,v)‖2 =
∑

i

√

|ui|2 + |vi|2, apply the split Bregman formulation so that the problem can

be solved iteratively to arbitrary precision. In particular, at the kth iteration, solve

min
x,u,v,w

‖w‖1 + ‖(u,v)‖2 +
µ

2
‖Φx− y‖22

+
λ

2
‖u−∇ux− bk

u‖22 +
λ

2
‖v −∇vx− bk

v‖22 +
γ

2
‖w −ΨTx− bk

w‖22, (2)

and then update the so-called Bregman parameters bk
u, bk

v and bk
w via

bk+1
u = bk

u +
(

∇ux
k+1 − uk+1

)

(3)

bk+1
v = bk

v +
(

∇vx
k+1 − vk+1

)

(4)

bk+1
w = bk

w +
(

ΨTxk+1 −wk+1
)

. (5)

The merit in the “split” Bregman formulation is that the ℓ1 and ℓ2 portions of (2) have been

decoupled, allowing a simple solution via alternating minimizations. The variables involving

ℓ1 norms are solved efficiently via element-wise shrinkage:

uk+1

i =
max

(

ski − 1

λ
, 0
)

ski

((

∇ux
k
)

i
+ bk

u,i

)

(6)

vk+1

i =
max

(

ski − 1

λ
, 0
)

ski

((

∇vx
k
)

i
+ bk

v,i

)

(7)

wk+1

i = shrink

(

(

ΨTxk+1
)

i
+ bk

w,i,
1

γ

)

(8)

where

ski =

√

∣

∣(∇uxk)i + uk
i

∣

∣

2
+
∣

∣(∇vxk)i + vk
i

∣

∣

2

and

shrink (x, ρ) = sgn (x)max (|x| − ρ, 0) .

Solving (2) for x yields

(

µΦTΦ− λ∆+ γI
)

xk+1 = (9)

µΦTy+λ∇T
u

(

uk − bu

)

+ λ∇T
v

(

vk − bv

)

+ γΨ
(

wk − bw

)

,



where we have assumed that ΨTΨ = I, and used ∆ = −∇T∇ to represent the discrete

Laplacian operator. Note that unlike the MRI example introduced in [10], the system in (9) is

not circulant since ΦTΦ is non-constant along its main diagonal. Therefore, the system cannot

be diagonalized by the discrete Fourier transform to arrive at an exact solution. Nevertheless,

as noted in [10], an approximate solution to xk at each iteration suffices, since extra precision

is wasted in the Bregman parameter update step. A few steps of the conjugate gradient method

may suffice for arbitrary Φ, but for the special case in which Φ is a subset of the rows of identity,

we utilized a more efficient approach. Indeed, we have found that our algorithm converges when

approximating ΦTΦ as the nearest circulant matrix C, where nearness is measured in terms of

the Frobenius norm ‖ΦTΦ − C‖F . This results in ΦTΦ ≈ C = aI, where a is the average

of the elements along the main diagonal of ΦTΦ. The approximation error is bounded by

‖ΦTΦ − aI‖F =
√
N/2 at M = N/2. Employing the circulant approximation allows (9) to

be solved efficiently using Fourier diagonalization.

In summary, our application of the split Bregman formulation for basis pursuit interpolation

consists of an inner loop that solves (2) via (6)–(8) and a circulant approximation to (9), and an

outer loop that updates the Bregman parameters via (3)–(5). For typical images on the interval

[0, 1], we found that µ = λ = 1 and γ = 10−2 are reasonable values for reconstruction. In

our implementation, we use two iterations of the inner loop, and 150 iterations of the outer

loop for noiseless data, though 20–50 iterations are typically sufficient to produce high-quality

reconstructions. An example reconstruction from M = N/2 randomly selected samples is

shown in Figure 1.

3.2 Simulations and Results

Using the proposed recovery method in Equation (1), we simulated reconstruction of the pub-

lic domain Dartmouth images from sparse samples. For each 512 × 512 excised and stan-

dardized image x, we simulated sparse sampling by choosing M pixels at random from the

image, where M/N is swept from 10% to 100%. Then, we reconstructed the image using

the approach described in Section 3.1. The reconstructed image x̂ is deemed a “success” if

‖x − x̂‖22/‖x‖22 ≤ 0.25%, that is, if the reconstruction accounts for at least 99.75% of the

image energy. Reconstruction results are shown in Figure 3.

We wondered whether simple linear interpolation could be used for successful recovery,

since it is both simple and very efficient. (For the reconstruction in Figure 1, our method took

18 seconds for 50 iterations using non-optimized MATLAB code with a 2.66 GHz Intel Xeon

processor, whereas a similar reconstruction using MATLAB’s griddata for linear interpola-

tion took only 2 seconds.) Indeed, for noiseless measurements, linear interpolation performs

nearly as well as our proposed method, with only ≈5% less area of the curve in Figure 3.

However, linear interpolation is brittle, performing significantly worse in the presence of only a

small amount of noise. Figure 3 shows ≈50% less area under the curve than our method using

the same noisy measurements. (Noise was multiplicative: for pixel intensity η, we added zero-

mean white Gaussian noise with variance η/100). Thus, linear interpolation may be attractive

as a “quick-look” option, but the proposed method is preferred for high-quality reconstruction.

4 EXPERIMENTS

In this section, we demonstrate on an operational SEM our sparse sampling and recovery

method for fast electron microscopy. The experiments were conducted using a commercially

available SEM column with custom electronics to drive the beam location and sample the de-

tector. A Zeiss GmbH (Oberkocken, Germany) column was used with a Schottky thermal field

emission source and GeminiTM optics. A nominal beam energy of 10 keV was used with a 10

µm aperture, resulting in a beam current of approximately 200 pA.
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Fig. 3. Reconstruction phase transitions using the Dartmouth images whose sparsity histogram

is shown in Figure 2. The shading indicates how frequently an image with a given sparsity

K/N was “successfully” reconstructed (accounted for at least 99.75% of the image energy) at

a given undersampling rate M/N ; the shading ranges from 0% (black) to 100% (white). For

noiseless measurements (top row), linear interpolation (right) is only slightly worse than our

method (left) in terms of area under the curve, but is significantly worse when a small amount

of measurement noise is included (bottom row).

The incident beam was deflected onto the sample using the standard scanning coils and

current amplifiers in the column. However, custom electronics were used to set the desired

beam location using an external scan mode. The magnification (and consequently the field of

view) was set using the standard column controls. Once this was determined, pixels in the field

of view can be visited by driving a voltage of -10 V to +10 V, which is converted to a current

in the coil amplifiers. For example, in the horizontal direction, driving -10 V would place the

beam at the far left of the field of view and +10 V would place the beam at the far right. The

same is true in the vertical direction. A digital to analog converter (DAC) was used to drive the

desired voltages. The detector was sampled using an analog to digital converter (A/D) that was

synchronized to the DAC. The A/D and DAC were implemented using a National Instruments

(Austin, TX) PCI-6110 multi-function data acquisition system. This system has a maximum

frequency of 2.5 MHz with two analog outputs, an output resolution of 16 bits per sample and

an input resolution of 12 bits per sample.

We achieve variable dwell time by digitally averaging multiple samples at the same pixel

location. A basic dwell time of 400 ns using one sample per pixel results in low-SNR images,

while a high-SNR dwell time of 6.4 µs achieved by averaging 16 samples per pixel. A high-

SNR image of the surface of a Gibeon meteorite collected in the manner just described is shown

in Figure 4, along with simulated sparse sampling and subsequent image recovery.

It should be noted that on an operational SEM, nontrivial dynamics of the electron probe

scanning system create a mismatch between the desired and actual measurement locations on



the sample. The effect is less pronounced in typical raster-scan mode in which the electron

probe follows the same trajectory during each scan line, leading only to a nonlinear stretch

of the image. However, in our sparse imaging embodiment, the interval between randomly-

selected pixel locations within a scan line is highly variable, so that the effect of the dynamics

is pronounced, and the measured location differs from the desired location. Therefore, we

investigate scan coil dynamics and mitigation in the following subsections.

4.1 Scan coil dynamics

In order to characterize the dynamics of the amplifiers and scan coils, we commanded a step-

wise jump in position from one extreme of the beam’s scanning range to the other over a calibra-

tion sample. While the electron beam was in transit, we recorded the output of the secondary

electron detector. This step-scanning method produced a smeared scan of the sample. Com-

paring this with a very slow raster scan of the same sample allowed us to plot the transit as a

function of time. (See Figure 6.)

We found the dynamics of the beam to be slow compared to the sampling period (400 ns).

The 90% rise time was approximately 12 µs, the 99% rise time about 32 µs, and the 99.9% rise

time approximately 1/4 ms, or more than 600 samples. Note that the 99.9% rise time is relevant;

when making scans of several thousand pixels per line, an error of 0.1% corresponds to several

pixels.

The lowest order linear model to fit the data points well was fifth-order of the form

d5x(t)

dt5
= a0(x̂(t)− x(t))− a1

dx(t)

dt
− a2

d2x(t)

dt2
− a3

d3x(t)

dt3
− a4

d4x(t)

dt4
, (10)

where x(t) is the true one-dimensional probe position (in pixels) at time t, x̂(t) is the desired

position, and the best-fit parameters {a0, . . . , a4} are listed in Table 1. The same dynamical

model was used for both horizontal and vertical beam deflection.

parameter value

a0 4.42 ×10−4

a1 8.20 ×10−3

a2 5.49 ×10−2

a3 2.46 ×10−1

a4 4.60 ×10−1

Table 1. Parameters for the best fit fifth-order model of scan coil dynamics in Equation (10).

4.2 Sparse Sampling Demonstration

We demonstrated the proposed sparse sampling method in an operational SEM. Mirroring Fig-

ure 4, we commanded the electron probe to visit 10%, 30% and 50% of the sample locations

(chosen at random) in vertical-raster order, and to dwell for 6.4 µs (16 samples per pixel) at

each location. We used a 4/5 Runge-Kutta method to solve Equation (10) in order to predict

the actual location of the electron probe. The result is that the 16 samples per pixel are actu-

ally distributed across multiple pixel locations as the electron probe is in transit, as shown in

Figure 5.

We image a portion of the Gibeon meteorite sample at 800× magnification at a working

distance of 4.7 mm. Due to the close working distance, we collected samples with an in-lens

SE detector. Brightness and contrast for each sparse sampling collection is fixed at 76% and

41%, collectively.

Results for the sparse sampling collection and reconstruction are shown in Figure 5. For

M/N = 10%, the reconstruction exhibits some smearing along the vertical path of the electron



Fig. 4. (top) Original section of a high-SNR micrograph from our SEM of a particle atop the

surface Gibeon meteorite slice; (2nd row) simulated 10% sparse samples (left) and reconstruc-

tion (right); (3rd row) simulated 30% sparse samples (left) and reconstruction (right); (4th row)

simulated 50% sparse samples (left) and reconstruction (right)



Fig. 5. (top) Standard SEM image of the Gibeon sample; (2nd row) 10% sparse, modeled sam-

ple locations (left) and reconstruction (right); (3rd row) 30% sparse, modeled sample locations

(left) and reconstruction (right); (4th row) 50% sparse, modeled sample locations (left) and

reconstruction (right). The colors in the left column represent the number of times the probe

visited the given pixel. The electron probe scans in the vertical direction. In addition to sample

quality, notice the difference in sample charging.



Fig. 6. Measurement of the scan coil’s dynamic response. i) A slow scan was performed to

obtain a nearly dynamics-free image of the sample. ii) The beam was stepped from one extreme

of the scan range to the other while recording from the secondary electron detector. Landmarks

on both images were located. iii) The positions of the landmarks were plotted relative to each

other to obtain data points along the step response curve.
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Fig. 7. Actual and predicted collection time as a function of undersampling rate M/N .

probe, which can be attributed to large electron probe velocities and small errors in the 5th

order model. Acceptable image reconstruction is achieved for M/N ≥ 30%, corresponding to

over 3× increase in data throughput. Notice also that the for smaller M/N , the lower average

electron dose rates contribute to less charging on the sample (manifest by the slight glow on the

left-hand-side of the image).

The measured image acquisition time for collecting every pixel of a 1000 × 1000 image

with 16 samples per pixel is 6.9s (expected 6.4s at 2.5 MHz). Using sparse sampling factors

of 10%, 30% and 50%, we measured image collection times 0.7s (9.9× speedup), 2.1s (3.3×
speedup), and 3.5s (2.0× speedup), respectively, for 1000 × 1000 images. These collection

times are only slightly more than what would be predicted at 2.5 MHz, which can be ascribed

to software overhead. Nevertheless, the collection time indeed grows linearly with the number

of samples M , as shown in Figure 7.



5 CONCLUSIONS

We have demonstrated sparse sampling in an operational SEM, with acceptable image quality

achieved at 3× speedup for the sample we tested. This was accomplished by commanding

the electron probe to visit a randomly-selected subset of pixel locations, predicting the actual

locations via a 5th-order dynamical model, then recovering the image using a split-Bregman

formulation of regularized basis pursuit that leveraged block-DCT as a sparsifying basis.

Like most systems based on compressed sensing, our sparse imaging method achieves ef-

ficient data collection at the expense of greater off-line computation. Although fairly efficient,

our method still requires an order of magnitude more time to reconstruct the image than was

required to collect the data. This is acceptable since, in contrast to data collection, image recov-

ery may be easily distributed across many CPUs. Evaluating the quality of other approaches for

image recovery based on dictionary learning or image inpainting is a topic for future research.
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