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Abstract. We introduce the first online kernelized version of SARSA(λ)
to permit sparsification for arbitrary λ for 0 ≤ λ ≤ 1; this is possible via
a novel kernelization of the eligibility trace that is maintained separately
from the kernelized value function. This separation is crucial for pre-
serving the functional structure of the eligibility trace when using sparse
kernel projection techniques that are essential for memory efficiency and
capacity control. The result is a simple and practical Kernel-SARSA(λ)
algorithm for general 0 ≤ λ ≤ 1 that is memory-efficient in comparison
to standard SARSA(λ) (using various basis functions) on a range of do-
mains including a real robotics task running on a Willow Garage PR2
robot.

1 Introduction

In many practical reinforcement learning (RL) problems, the state space S may
be very large or even continuous, leaving function approximation as the only
viable solution. Arguably, the most popular form of RL function approximation
uses a linear representation 〈w, φ(s)〉; although linear representations may seem
quite limited, extensions based on kernel methods [14, 2, 13] provide (explicitly
or implicitly) a rich feature map φ that in some cases permits the approximation
of arbitrarily complex, nonlinear functions.

The simplicity and power of kernel methods for function approximation has
given rise to a number of kernelized RL algorithms in recent years, e.g., [20, 4,
7, 8, 17]. In this paper we focus on online kernel extensions of SARSA(λ) — a
model-free algorithm for learning optimal control policies in RL. However, un-
like the Gaussian Process SARSA (GP-SARSA) approach and other kernelized
extensions of SARSA [20,4], the main contribution of this paper is the first ker-
nelized SARSA algorithm to allow for general 0 ≤ λ ≤ 1 rather than restricting
to just λ ∈ {0, 1}.

While generalizing an online kernelized SARSA algorithm to SARSA(λ) with
0 ≤ λ ≤ 1 might seem as simple as using an eligibility trace [15], this leads
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to theoretical and practical issues when sparsity is introduced. Because online
kernel methods typically require caching all previous data samples, sparsifica-
tion techniques that selectively discard cached samples and reproject the value
representation are necessary [3, 5, 9]. However, in kernelized SARSA(λ), cached
samples are required for both the value and eligibility trace representation, hence
sparsification that focuses on low-error value approximations may inadvertently
destroy structure in the eligibility trace. To address these issues, we separate the
kernelization of the value function from the eligibility function, thus maintaining
independent low-error, sparse representations of each. Despite the mathematical
complications, we derive simple and efficient value and eligbility updates under
this scheme. We point out here that once one wishes to “switch off” the learning
and utilize the learned policy, our algorithm becomes linear in the number of
samples stored and our experimental section shows that our algorithm seems to
be more efficient than regular SARSA (λ).

These novel insights allow us to propose a practical, memory-efficient Kernel-
SARSA(λ) algorithm for general 0 ≤ λ ≤ 1 that scales efficiently in comparison
to standard SARSA(λ) (using both radial basis functions and tile coding) on
a range of domains including a real robotics task running on a Willow Garage
PR2 robot. Crucially we note the use of 0 < λ < 1 often leads to the best
performance in the fewest samples, indicating the importance of the two main
paper contributions:

1. the first generalization of kernelized SARSA(λ) algorithms to permit 0 ≤
λ ≤ 1 with sparsification, and

2. the novel kernelization and projection of separate value and eligibility func-
tions needed for low-error, memory-efficient approximations of kernelized
SARSA(λ) with an eligibility trace.

2 Preliminaries

In this section we briefly review [15] MDPs, the SARSA(λ) algorithm, its exten-
sion for function approximation and some background on Reproducing Kernel
Hilbert Spaces [1].

2.1 Markov Decision Processes

We assume a (finite, countably infinite, or even continuous) Markov decision
process (MDP) [11] given by the tuple 〈S,A, T, R, γ〉. Here, states are given by
s ∈ S, actions are given by a ∈ A, T : S × A × S → [0, 1] is a transition
function with T (s, a, s′) defining the probability of transitioning from state s
to s′ after executing action a. R : S × A × S → R is a reward function where
rt = R(st, at, st+1) is the reward received for time t after observing the transition
from state st to st+1 on action at. Finally, 0 ≤ γ < 1 is a discount factor.

A policy π : S → A specifies the action π(s) to take in each state s. The
value Qπ(s, a) of taking an action a in state s and then following some policy
π thereafter is defined using the infinite horizon, expected discounted reward
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criterion: Qπ(s, a) = Eπ [
∑∞

t=0 γt ·rt|s0 = s, a0 = a]. Our objective is to learn the
optimal Q∗ s.t. ∀s, a, π Q∗(s, a) ≥ Qπ(s, a) in an episodic, online learning setting.
Given Q∗, the optimal control policy π∗ is simply π∗(s) = argmaxa Q∗(s, a).

SARSA(λ) is a temporal difference RL algorithm for learning Q∗ from expe-
rience [15]. We use SARSA(λ) in an on-policy manner where Qt(s, a) represents
Q-value estimates at time t w.r.t. the greedy policy πt(s) := argmaxa Qt(s, a).
Initializing eligibilities e0(s, a) = 0; ∀s, a, SARSA(λ) performs the following on-
line Q-update at time t + 1:

Qt+1(s, a) = Qt(s, a) + ηerrtet(s, a); ∀s, a. (1)

Here η > 0 is the learning rate, errt = Qt(st, at)−Rt is the temporal difference
error between the actual prediction Qt(st, at) and a bootstrapped estimate of
Qt(s, a):

Rt = rt + γQt(st+1, at+1)

and et is the eligibility trace updated each time step as follows:

et+1(s, a) =

{
γλet(s, a) + 1 if s = st and a = at

γλet(s, a) otherwise.
(2)

The eligibility trace indicates the degree to which each state-action pair is up-
dated based on future rewards. The parameter λ (0 ≤ λ ≤ 1) adjusts how far
SARSA(λ) “looks” into the future when updating Q-values; as λ → 0, SARSA(λ)
updates become more myopic and it may take longer for delayed rewards to prop-
agate back to earlier states.

For large or infinite state-action spaces it is necessary to combine SARSA(λ)
with function approximation. Linear value approximation is perhaps the most
popular approach: we let Q̂t(s, a) = 〈wt, φ(s, a)〉 where wt ∈ R

d are d > 0
learned weights and φ : (s, a) 	→ φ(s, a) maps state-action (s, a) to features
φ(s, a) ∈ Φ ⊆ R

d. Because the optimal Qt may not exist within the span of Q̂t,
we minimize the error between Qt and Q̂t in an online empirical risk minimiza-
tion framework; this can be done by gradient descent on the squared error loss
function l[Qt, st, Rt] = 1

2 (Qt(st, at)−Rt)2 w.r.t. each observed datum (st, at, Rt).
For SARSA(λ) with general λ and linear function approximation, Sutton and
Barto [15] provide the following update rule

wt+1 := wt + ηerrtetφ(st, at) (3)

with an eligibility vector updated through et+1 = γλet + φ(st, at).

2.2 Reproducing Kernel Hilbert Spaces (RKHS)

When using Reproducing Kernel Hilbert Spaces [1] for function approximation
(regression, classification) we define a feature map implicitly by defining a sim-
ilarity measure called a kernel [14], [2], [13], e.g. a Gaussian kernel defined by
k(x, y) = e‖x−y‖2/2ρ. Positive definite and symmetric kernels define a Reproduc-
ing Kernel Hilbert Space (RKHS) Hk by completing the span of the functions
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kx(·) = k(x, ·) w.r.t. the inner product 〈kx, ky〉H = k(x, y). Some kernels such as
the Gaussian kernel are universal kernels, which means that the RKHS is dense
in the space L2 of square integrable functions. Using universal kernels means
that any such (L2) function can be approximated arbitrarily well by elements in
Hk.

If we have a feature map into a space with an inner product we have defined
a kernel through k(x, y) = 〈φ(x), φ(y)〉. However, our intent is to start with a
kernel like the Gaussian kernel and then use the feature map that is implicitly
defined through that choice. This means that φ maps x to the function kx ∈
Hk. Note that φ(x) is not necessarily a finite vector anymore, but a possibly
continuous function k(x, ·).

3 Kernel-SARSA(λ)

We now generalize SARSA(λ) with function approximation to learn with large
or even infinite feature vectors φ(s, a). We will use a reproducing kernel Hilbert
space as our hypothesis space. The “weights” w that we will end up with are
represented in the form w =

∑
i αik((si, ai), ·) and are really functions on S×A.

The corresponding Q function is

Q(s, a) =
∑

i

αik((si, ai), (s, a)).

To define Kernel-SARSA(λ), we extend the SARSA (λ) update rule given
in [15] to a RKHS setting. We slightly extend this update rule to include a
regularizer term1. The update is given by

wt+1 = wt − η

[

(Qt(st, at) − Rt)et − ξwt

]

(4)

where et is the eligibility trace, updated through

et = γλet−1 + φ(st, at), (5)

s.t. φ(st, at) = k((st, at), ·) and et is initialized to 0 at the start of each episode.
ξ denotes the regularizer. Alternatively we may write the eligibility trace as

et =
t∑

i=t0

(γλ)t−iφ(si, ai) (6)

where t0 is the time at which the current episode began. Typically such a repre-
sentation would be undesirable since it requires storing all past samples, however
1 Regularization is important for exact kernel methods that cache all samples since

they have no other means of capacity control. Later when we introduce sparsifica-
tion into the algorithm, the regularization term ξ may be set to zero since sparsity
performs the role of capacity control.



Sparse Kernel-SARSA(λ) with an Eligibility Trace 5

kernelizing our online algorithm already necessitates storing all previously visited
state-action pairs. Now, by substituting (6) into (4), we get

wt+1 := wt − η

(

errt

t∑

i=t0

(γλ)t−iφ(si, ai) − ξwt

)

(7)

and assuming that w0 = 0 we see that

wt =
t−1∑

i=1

αik((si, ai), ·)

which leads us to an alternative formulation of (7). If errt is the temporal dif-
ference error given by (Q(st, at) − Rt)) then

t∑

i=1

αik((si, ai), ·) :=
t−1∑

i=1

(1 − ηξ)αik((si, ai), ·) − ηerrt

t∑

i=t0

(γλ)t−ik((si, ai), ·).

(8)

Equating the coefficients of the basis functions leads to the update formulae:

αi := (1 − ηξ)αi, i = 1, . . . , t0 − 1 (9)
αt := ηerrt (10)

and otherwise for i = t0, ..., t − 1

αi := (1 − ηξ)αi − ηerrt(γλ)t−i−1 (11)

As a notational observation crucial for the next section, we note that wt is
exactly the same object as Qt. Normally in function approximation one may
think of Qt(·) as 〈wt, φ(·)〉 which is true here, but since φ(s, a)(·) = k((s, a), ·),
we can conclude from the reproducing property that wt(s, a) = 〈wt, φ(s, a)〉. We
will henceforth write Qt instead of wt in our equations.

Although surprisingly simple and elegant, we note that this is the first ker-
nelization of SARSA(λ) for general 0 ≤ λ ≤ 1 that the authors are aware of.
However, it is impractical in general since it requires storing all state-action pairs;
next we provide a memory-efficient variant of this novel kernelized SARSA(λ)
approach needed to make it practically viable.

4 Memory-Efficient Kernel-SARSA (λ) Based on the
Projectron

We now have the foundations for a powerful kernel reinforcement learning algo-
rithm. Problematically, however, the memory required to store the old samples
grows without bound. We will deal with this by extending sparse representation
techniques from [3, 5, 9].
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Following the Projectron approach [9], in order to bound the memory require-
ments of the algorithm, we ask ourselves at each time step, “to what extent can
the new sample be expressed as a linear combination of old samples?”. Consider
the “temporal hypothesis” Q′

t given through equation (7), and its projection
Q′′

t = Pt−1Q
′
t onto Ht−1 which is the span of the set S of previously stored basis

functions. One must be careful when trying to use (7) since our previous update
equations made the vital assumption that we store all points allowing the pro-
gression from (5) to (6). This assumption no longer holds since we plan to only
add those new points which cannot be well represented as a linear combination
of the old ones. This is an obstacle that has to be resolved to be able to use the
Projectron technique in our setting.

4.1 Separately Kernelizing the Eligibility Trace

We note that (6) represents the eligibility trace as a linear combination of pre-
vious basis functions. Hence we can write the eligibility trace (which is now
really an eligibility function) as a function (separate from the value function)
parameterized by β = {βi}i=1,...,t through

et =
t∑

i=1

βik((si, ai), ·). (12)

By substituting this form of the eligibility trace into its update equation (5) we
get

t∑

i=1

βik((si, ai), ·) :=
t−1∑

i=1

γλβik((si, ai), ·) + k((st, at), ·) (13)

and by equating the coefficients of the basis functions we get the parameter
updates βi = γλβi for i = 1, . . . , t − 1 and β = 1.

4.2 Projected Kernel-SARSA(λ) Updates

We begin by plugging the update of the eligibility trace into the Q update, and
call this the temporal hypothesis given by

Q′
t = (1 − ηξ)Qt−1 − ηerrt

[

γλet−1 + k((st, at), ·)
]

(14)

allowing us to write its projection Q′′
t = Pt−1Q

′
t =

(1 − ηξ)Qt−1 − ηerrt

[

γλet−1 + Pt−1k((st, at), ·)
]

. (15)

Our aim is to examine how well the temporal hypothesis Q′
t is approximated

by its projection onto Ht−1 which suitably is the hypothesis in Ht−1 closest to
h. We denote the difference Q′′

t − Q′
t by δt and note that

δt = −ηerrt

[

Pt−1k((st, at), ·) − k((st, at), ·)
]

. (16)
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By letting Kt−1 denote the kernel matrix with elements given by {Kt−1}i,j =
k((si, ai), (sj , aj), kt denote the vector with ith element kti = k((si, ai), (st, at))
and letting d∗ = K−1

t−1kt we can as in [9] derive that

‖δt‖2 = η2err2
t [k((st, at), (st, at)) − kT

t d∗]. (17)

Now if ‖δt‖2 is below some threshold ε, we update the Q function by setting it
to

(1 − ηξ)Qt−1 − ηerrt

[

γλet−1 +
|S|∑

i=1

d∗
i k((si, ai), ·)

]

. (18)

We note that the last part of Eq(18) is the projection of the eligibility trace
given by

Pt−1et = γλet−1 +
|S|∑

i=1

d∗
i k((si, ai), ·) (19)

= γλ

|S|∑

i=1

βik((si, ai), ·) +
|S|∑

i=1

d∗
i k((si, ai), ·) (20)

giving the updates

βi := γλβi + d∗
i , i = 1, ..., |S|. (21)

Finally we write Qt and et in their parameterized form to obtain

|S|∑

i=1

αik((si, ai), ·) =(1 − ηξ)
|S|∑

i=1

αik((si, ai), ·) − ηerrtγλPt−1et

=(1 − ηξ)
|S|∑

i=1

αik((si, ai), ·) − ηerrtγλ

|S|∑

i=1

βik((si, ai), ·)

(22)

and by again equating the coefficients of the basis functions we get the α
update

αi = (1 − ηξ)αi − ηerrtγλβi (23)

for i = 1, . . . , |S| when δt < ε. Otherwise α is updated as in Equations (9)-(10).
To avoid the costly calculation of the inverse kernel matrix we calculate this
incrementally as in [9] when a new sample is added:

K−1
t =

⎛

⎜
⎜
⎜
⎝

0

K−1
t−1

...
0

0 . . . 0 0

⎞

⎟
⎟
⎟
⎠

+ (24)

1
k((st, at), (st, at)) − kT

t d∗

(
d∗

−1

)
(
d∗T − 1

)
.
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Algorithm 1. Memory Efficient Kernel-SARSA (λ)

INPUTS:

– π0, ε, η, λ
– S = ∅

1. DO
(a) Select action at (e.g. greedily) in current state st and observe reward rt

(b) d∗ ← K−1
t−1kt

(c) ‖δt‖2 ← η2err2
t [k((st, at), (st, at))− kT

t d∗]
(d) if (‖δt‖2 < ε)

– for i = 1, . . . , |S|
• βi ← γλβi + d∗

i

• αi ← (1− ηξ)αi − ηerrtγλβi

(e) else
– Add k((st, at), ·) to S

– β|S| ← 1
– for i = 1, . . . , |S| − 1
• βi ← γλβi

– for j = 1, . . . , |S|
• αi ← (1− ηξ)αi − ηerrtγλβi

– Update K−1
t−1 through (24).

2. UNTIL policy update required

From here on, references to Kernel-SARSA(λ) imply the memory-efficient
version in Algorithm 1 and not the version in Section 3. This first version from
Section 3 (a) cannot be used directly since it stores every sample, and (b) if
sparsified näıvely via the Projectron, leads to an algorithm that stops learning
long before convergence because most new kernel samples are discarded (since
most lie within the span of previous samples) — unfortunately, the eligibility
trace is defined in terms of these new samples! In this way, the eligibility trace
is not updated and a directly sparsified approach to Section 3 will prematurely
cease to learn, rendering it useless in practice.2

5 Empirical Evaluation

Having now completed the derivation of our memory efficient Kernel-SARSA(λ)
algorithm, we proceed to empirically compare it to two of the most popular
and useful function approximation approaches for SARSA(λ): one version using
kernel (RBF) basis functions (n.b., not the same as Kernel-SARSA(λ) but with

2 As such, this paper contributes much more than a simple combination of Section 3
and the Projectron [9] (which does not work) — it makes the crucial point that
value function and eligibility function must be separately kernelized and projected
as presented in Section 4.
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similar function approximation characteristics) and the other using standard tile
coding [15].

Our experimental objectives are threefold: (1) to show that Kernel-SARSA(λ)
learns better with less memory than the other algorithms, (2) to show that
0 < λ < 1 leads to optimal performance for Kernel-SARSA(λ) on each MDP,
and (3) that Kernel-SARSA(λ) can learn a smooth nonlinear Q-function in a
continuous space with less memory than competing algorithms and which is
nearly optimal in a real-world domain.

5.1 Problems

We ran our algorithm on three MDPs: two standard benchmarks and one real-
world robotics domain.

Pole balancing (cart pole): requires the agent to balance a pole hinged atop a cart
by sliding the cart along a frictionless track. We refer to [15] for a specification of
the transition dynamics; rewards are zero except for -1, which is received upon
failure (if the cart reaches the end of the track, or the pole exceeds an angle of
±12 degrees). At the beginning of each episode we drew the initial pole angle
uniformly from [±3] degrees. Further, we cap episode lengths at 1000 time steps.
We report on a noisy version of this problem where we add ± 50% noise to the
agents actions, that is, when the agent commands a force of 1, the actual force
applied is drawn uniformly from the interval [0.5, 1.5]. Note that, since we report
on time per episode for this task, higher is better.

Mountain car: involves driving an underpowered car up a steep hill. We use
the state/action space, and transition/reward dynamics as defined in [15]. In
order to solve this problem the agent must first swing backwards to gain enough
velocity to pass the hill. The agent receives reward -1 at each step until failure
when reward 1 is received. We capped episodes in the mountain car problem to
1000 time steps. The car was initialized to a standing start (zero velocity) at a
random place on the hill in each episode. Note that, since we report on time per
episode for this task, lower is better.

Robot navigation: requires the agent to successfully drive a (real) robot to a
specified waypoint. The state space S = (d, θ, ẋ, θ̇), where d is the distance to
the goal, θ is the angle between the robot’s forward direction and the line from
the robot to the goal, ẋ is the robot’s forward velocity, and θ̇ is the robot’s angular
velocity. The action space is a ∈ {ẍ, θ̈}, which represents respective linear and
angular accelerations. We restrict the accelerations to 1.0ms−2 and 1.0rads−2

with decisions made at 10Hz. This corresponds to acceleration of 1.0ms−1 per 1
10

seconds for both x and θ. A reward of -1 is received at each time step. Further,
a reward of 10 is received for success, -100 for leaving a 3 metre radius from the
goal, and -10 for taking more than 1000 time steps; these last three events result
in termination of the episode.
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Table 1. The parameter setup we gave each algorithm. Here σ is the RBF tile width
given to each algorithm as a fraction of the state space in each dimension after the
state space was normalized to the unit hyper-sphere.

Domain Algorithm γ λ η ξ ε σ

Kernel-SARSA(λ) 0.9999 0.6 0.5 — 5.0×10−5 0.05
Mountain car RBF coding 0.9999 0.7 0.1 0 — 0.05

Tile coding 0.9999 0.7 0.005 — — 0.1

Kernel-SARSA(λ) 0.9999 0.7 0.1 — 5.0× 10−7 0.05
Cart pole RBF coding 0.9999 0.7 0.01 0.01 — 0.05

Tile coding 0.9999 0.6 0.1 — — 0.066

Kernel-SARSA(λ) 0.9999 0.6 0.1 — 0.5 0.1
Robot navigation RBF coding 0.9999 0.5 0.1 0.0 — 0.1

Tile coding 0.9999 0.6 0.1 — — 0.066

We used a high-fidelity simulator for training a Willow Garage PR2 robot3

and then evaluated the learned Q-value policy on an actual PR2. In the simulator
training phase, the robot’s task is simply to drive directly to the waypoint. For
the in situ robot testing phase, we gave the robot a global plan, from which it
drives towards the nearest waypoint beyond a 1m radius at each time step. This
has the effect of a single waypoint moving away at the same speed as the robot.
At the end of the planned path, the waypoint stops moving, and the robot must
drive to it. This RL problem requires a nonlinear Q-value approximation over a
continuous space, and RL algorithms must deal with a high-noise environment on
account of noisy actuators and an unpredictable surface response. Although the
transition dynamics are noisy, we note that high-precision PR2 sensors render
the state space fully observed for all practical purposes, making this an MDP.

5.2 Results

The above selection of problems demonstrate our performance in both difficult
continuous state spaces requiring nonlinear approximation of Q-values and a
real-world robotics navigation task.

For each MDP, we compare Kernel-SARSA(λ) to SARSA(λ) with tile coding
and SARSA(λ) with RBF coding. The first metric we record for each algo-
rithm and MDP is the memory usage in terms of the number of samples/basis
functions vs. the episode number. Obviously, a small memory footprint while
achieving near-optimal performance is generally desired. The second metric that
we evaluate for each algorithm and MDP is the time/reward per episode, i.e., the
number of steps until episode termination for cart pole and mountain car and the
average reward per time step within an episode for robot navigation, both being
recorded vs. the episode number. For the mountain car MDP, smaller episode
length is better since episodes terminate with success, whereas for the cart pole

3 http://www.ros.org/wiki/pr2 simulator
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MDP, longer is better since episodes terminate with failure. In the navigation
task MDP, larger average rewards per episode are better.

In the following results, each algorithm is configured with the parameter spec-
ifications in Table 1. The parameters were chosen from the following search
space: λ ∈ {0.0, 0.1, . . . , 0.9, 1.0}, η ∈ {1, 5} × 10−k, ξ ∈ {0, 1, 5} × 10−k, ε ∈
{1, 5} × 10−k, σ ∈ 1

n , n ∈ {5, 10, 15, 20}. For each algorithm and domain we
chose the parameters which obtain the best result.

Memory Efficiency and Performance. Figure 1 shows the growth in the
number of stored samples for Kernel-SARSA(λ), compared to the memory re-
quirements of RBF coding and tile coding, for each of the three MDPs. We can
see that Kernel-SARSA(λ) is always the most memory-efficient.

Figure 3 shows the time/reward for all three algorithms on all three domains.
In brief, the results show that Kernel-SARSA(λ) is always among the best in
terms of final episode performance (and is the best for both cart pole and robot
navigation). Kernel-SARSA(λ) also learns fastest in cart pole while performing
mid-range among the other two algorithms on both mountain car and robot
navigation. This is impressive given the small amount of memory used by Kernel-
SARSA(λ) relative to the other algorithms.

We now discuss results by domain in more detail:

Mountain Car: All three methods can solve this domain rather quickly. In
Figure 2 (top) we see that the RBF basis functions provide the steepest decline
in time needed to complete the task. Kernel-SARSA(λ) starts somewhat slower
because it needs to accumulate basis functions to be able to learn the optimal
policy. RBF nets and Kernel-SARSA(λ) reached an optimal policy in approxi-
mately the same number of episodes while tile coding needed many more. RBF
coding showed some instabilities much later on while memory efficient Kernel-
SARSA(λ) remained stable. Kernel-SARSA(λ) stores less than 150 samples, an
order of magnitude smaller than best performing tile coding.

Cart Pole: As can be seen in Figure 2 (middle) Kernel-SARSA(λ) clearly out-
performs both RBF nets and tile coding and learns to indefinitely balance the
pole after a very small number of episodes. Neither of the comparison meth-
ods learn to reliably balance the pole during the 100 episodes. Impressively,
Kernel-SARSA(λ) only stores a total of 60 samples in its representation of a
near-optimal policy.

Robot Navigation: We can see that Kernel-SARSA(λ) performs the best in the
long run from Figure 2 (bottom) and that for this problem, the other algorithms
are far less memory efficient by at least an order of magnitude as shown in
Figure 1 (bottom). While it takes a little while for Kernel-SARSA(λ) to collect
an appropriate set of kernel samples before asymptoting in memory, it appears
able to learn a better performing Q-function by the final episode.

Benefits of General λ. Figure 2 shows the time/reward for Kernel-SARSA(λ)
for varying values of λ on all three MDPs. The basic trend here is quite clear
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Fig. 1. Number of samples/basis functions vs. episode for all algorithms on
mountain car (top), cart pole (middle), and robot navigation (bottom) problems. Note
the vertical axis log scale on the top two plots.

— the best performing λ on all three domains satisfies .4 ≤ λ ≤ .8, which
indicates that both for a fast initial learning rate and good asymptotic learning
performance, the best λ /∈ {0, 1}. Even further we note that λ = 1 leads to poor
performance on all problems and λ = 0 leads to only mid-range performance in
general.
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Fig. 2. Average time per episode for all algorithms and standard error over 10
runs on mountain car (top), cart pole (middle) and moving average reward per
episode evaluated on the robot navigation (bottom)

Evaluation on Robot Navigation. When learning was complete in the sim-
ulator, learned Q-values were transferred to a Willow Garage PR2 robot, which
was given two paths to follow as described previously. These two paths are shown
in Figure 4, both demonstrating how well the agent has learned to navigate.
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Fig. 3. Average time per episode for Kernel-SARSA(λ) with various values
of λ on mountain car (top), cart pole (middle) and moving average reward per
episode evaluated on the robot navigation (bottom)

We note that the more kernel samples that are stored, the more irregu-
lar the function approximation surface may be. However, Kernel-SARSA(λ)’s
Projectron-based RKHS sparsification stored relatively few samples compared
to other algorithms as shown in Figure 5.2, leading to a smooth Q-value approx-
imation as exhibited in the smoothness of the navigation paths in Figure 4.
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Fig. 4. The ideal path (green), and the near-optimal path followed by Kernel-
SARSA(λ) (purple). Here we provided the robot a virtually straight path (top) and
a turn into a corridor (bottom).

6 Related Work

Both model-based and model-free approaches to using kernel methods in rein-
forcement learning have been proposed. In the model-based approaches, kernel-
ized regression is used to find approximate transition and reward models which
are used to obtain value function approximations. In the model-free approaches,
the task of finding an approximation of the value function through regression
is addressed directly as in Kernel-SARSA(λ). Gaussian Process kernel regres-
sion has been used for both approaches: [12, 8] studied the model-based setting
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and [6, 20] studied the model-free setting. [19, 18] took a direct approach to re-
placing the inner product with a kernel in LSTD, similar to our approach in
Kernel-SARSA(λ) but offline. An earlier approach at Kernel-Based Reinforce-
ment Learning [10] that calculated a value approximation offline was modified
by [7] into a model-based online approach. These approaches used kernels for
“local averaging” and can be viewed as a direct approach to kernelization. Equiv-
alence of previous kernel based approaches [20, 12, 18] to reinforcement learning
has been proven by [16] except for the manner of regularization. But crucially,,
all of the sparse, online, model-free approaches have failed to incorporate eligi-
bility traces for 0 < λ < 1 as we provided in the novel contribution of kernelized
SARSA(λ) in this paper — the first online kernelized SARSA(λ) algorithm to
show how kernelization can be extended to the eligibility trace.

7 Conclusion

We contributed the first online kernelized version of SARSA(λ) to permit arbi-
trary λ for 0 ≤ λ ≤ 1 with sparsification; this was made possible via a novel
kernelization of the eligibility trace maintained separately from the kernelized
value function. We showed the resulting algorithm was up to an order of mag-
nitude more memory-efficient than standard function approximation methods,
while learning performance was generally on par or better. We applied Kernel-
SARSA(λ) to a continuous state robotics domain and demonstrated that the
learned Q-values were smoothly and accurately approximated with little mem-
ory, leading to near-optimal navigation paths on a Willow Garage PR2 robot.
Importantly, we showed .4 < λ < .8 was crucial for optimal learning performance
on all test problems, emphasizing the importance of general λ for efficient on-
line kernelized RL in complex, nonlinear domains as contributed by the novel
kernelization and efficient projection of the eligibility trace in Kernel-SARSA(λ)
as introduced in this paper.
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