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Sparse least-squares reverse time migration using seislets
Gaurav Dutta∗ and Gerard T. Schuster, King Abdullah University of Science and Technology

SUMMARY

We propose sparse least-squares reverse time migration

(LSRTM) using seislets as a basis for the reflectivity distri-

bution. This basis is used along with a dip-constrained pre-

conditioner that emphasizes image updates only along promi-

nent dips during the iterations. These dips can be estimated

from the standard migration image or from the gradient using

plane-wave destruction filters or structural tensors. Numeri-

cal tests on synthetic datasets demonstrate the benefits of this

method for mitigation of aliasing artifacts and crosstalk noise

in multisource least-squares migration.

INTRODUCTION

Wavelet transforms provide a compact basis for data decom-

position which in turn is useful for formulating efficient sig-

nal processing and depth imaging algorithms. Such transforms

usually exploit the directional properties of an image through

the use of suitable basis functions. They provide a perfect re-

construction of the parameters after forward and inverse trans-

forms, are efficient to compute, and use minimal redundancy.

Thus, different wavelet-like transforms such as the digital wavelet

transform (DWT), curvelets, or projection onto convex sets

(POCS) algorithms are often used in geophysical applications

like data compression, interpolation, data regularization and

denoising (Foster et al., 1994; Dessing, 1997; Wapenaar et al.,

2005; Abma and Kabir, 2006; Candes et al., 2006a,b; Her-

rmann et al., 2009).

Fomel and Liu (2010) introduced the theory of the seislet trans-

form that is more suitable for representing seismic data. They

use basis functions that are aligned along dominant seismic

events or dips. In 2D or 3D, the basis functions from the seislet

transform follow locally linear events obtained from the in-

put data using local plane-wave destruction filters (Claerbout,

1992; Fomel, 2002). Through numerical tests, they demon-

strated the superior compression, interpolation and denoising

properties of the seislet transform over the digital wavelet trans-

form.

The above listed properties of the seislet transform makes it

an appealing tool for use in seismic imaging problems such

as least-squares migration (LSM) or full waveform inversion

(FWI). LSM has been shown to produce images with better

balanced amplitudes, fewer artifacts and better resolution than

standard migration (Lailly, 1984; Nemeth et al., 1999; Duquet

et al., 2000; Plessix and Mulder, 2004; Dai and Schuster, 2009;

Tang, 2009; Wong et al., 2011). However, the computational

cost of least-squares migration (LSM) makes the application

of this algorithm prohibitive for large-scale industrial 3D prob-

lems. Morton and Ober (1998) and Romero et al. (2000) pro-

posed blended source migration where they blended several

shotgathers into one supergather which is then migrated. This

approach, although very effective in reducing the computa-

tional cost, suffers from crosstalk noise which severely de-

grades the quality of the migrated image. Later, Dai and Schus-

ter (2009) and Schuster et al. (2011) extended the blended

source migration technique to multisource least-squares mi-

gration and showed that the crosstalk noise can be mitigated

by an iterative migration of supergathers.

In this paper, we propose using the seislet transform as a change

of basis for reflectivity during multisource LSM. In addition,

we also use a dip-constrained preconditioner which ensures

that the image updates occur only along some pre-estimated

dips or slopes. These dips or slopes are estimated from a stan-

dard migration image or from the gradient using a plane-wave

destruction filter. Numerical tests on synthetic data show that

this approach can efficiently suppress the crosstalk noise in

multisource LSM and mitigate the aliasing artifacts caused by

severely undersampled data.

THEORY

Under the single scattering Born approximation, the observed

data, d, can be written as

d =Lm. (1)

Here L is the linearized Born modeling operator that predicts

the data from the reflectivity image, m. In conventional LSM,

the reflectivity m is estimated by minimizing the misfit func-

tion, φ(m), given by (Nemeth et al., 1999)

φ(m) =
1

2
(Lm−d)T (Lm−d)+ f (m). (2)

Here f (m) is a regularization term that imposes constraints on

the solution m. If we express the reflectivity as a weighted sum

of seislet basis functions, we have

m =Sm̂. (3)

Here S represents the inverse seislet transform and m̂ repre-

sents the seislet coefficients. After this transformation, equa-

tion 1 can be expressed as

d =LSm̂, (4)

and the objective function in equation 2 gets modified as

φ(m̂) =
1

2
(LSm̂−d)T (LSm̂−d)+ f (m̂). (5)

If the prior model is of zero mean and known variance, then

the regularization term f (m̂) can be expressed as

f (m̂) =
1

2
m̂TC−1

m̂
m̂, (6)

where Cm̂ represents the covariance of m̂. Thus, the objective

function for estimating m̂ is given by

φ(m̂) =
1

2
(LSm̂−d)T (LSm̂−d)+

1

2
m̂TC−1

m̂
m̂. (7)
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Priorconditioned LSRTM

The gradient of equation 7 can be written as

∂φ(m̂i)

∂m̂i
=ST LT (LSm̂i −d)+C−1

m̂i
m̂i, (8)

and the corresponding normal equations are given by
(

ST LT LS+C−1
m̂i

I
)

m̂ =ST LT d. (9)

The matrices ST and S can be implemented using the fast

forward- and inverse-seislet transforms, respectively (Fomel

and Liu, 2010). Hence, the choice of seislet transform as a

suitable basis is appealing for a least-squares migration or full

waveform inversion problem where it is not feasible to explic-

itly compute and store these matrices.

Multisource LSRTM using seislets

For multisource LSRTM, the relationship between the model

and the data can be written as

NLm = Nd. (10)

Here N represents the phase-encoding matrix associated with

an ensemble of shot gathers. In a more compact notation, equa-

tion 10 can be written as

Lm =D, (11)

where L= NL and D= Nd. By expressing m = Sm̂ we get

LSm̂ =D. (12)

Adopting a similar approach as before, we can obtain the misfit

function for multisource LSRTM using seislets as

φ(m̂) =
1

2
(LSm̂−D)T (LSm̂−D)+

1

2
m̂TC−1

m̂
m̂,

=
1

2
(NLSm̂−Nd)T (NLSm̂−Nd)+

1

2
m̂TC−1

m̂
m̂,

(13)

and the gradient,

∂φ(m̂i)

∂m̂i
=ST

L
T (LSm̂i −D)+C−1

m̂i
m̂i

=ST LT NT (NLSm̂i −Nd)+C−1
m̂i

m̂i. (14)

Preconditioning

For preconditioning, the approximate Hessian for equation 7 or

equation 13 needs to be computed. The analytical expression

for the Hessian in equation 7 is given by

∂ 2φ(m̂i)

∂ 2m̂i

=ST LT LS+C−1
m̂i

. (15)

It is evident from equation 15 that computing the exact Hessian

for the new misfit function in the transformed domain requires

an explicit computation and matrix multiplication of the oper-

ators L, LT , S and ST which is prohibitive for realistic imaging

problems. A useful approximation of the pseudo-inverse of the

Hessian, also known as source and receiver side illumination

compensation, has been shown to accelerate the convergence

of LSM (Plessix and Mulder, 2004; Dai et al., 2012). Besides

the source-side illumination preconditioner, we use two differ-

ent kinds of preconditioners during the inversion.

Figure 1: True reflectivity model used to generate the observed

data.

• Thresholding the seislet coefficients to remove the un-

wanted artifacts in the image.

• Smoothing along the prominent dips in the image. The

dips are estimated using plane-wave destruction filters

(Claerbout, 1992; Fomel, 2002) and can be usually pre-

computed from the standard migration image or can be

evaluated at every iteration from the gradient.

NUMERICAL RESULTS

We first demonstrate the effectiveness of using seislets for do-

ing sparse LSM on an undersampled dataset. The observed

data are generated using the reflectivity model shown in Figure

1 and with a homogeneous background velocity of 3500 m/s.

There are only 10 shots generated which are evenly spaced at

a distance of 1000 m on the surface and each shot is recorded

by 50 receivers separated at an interval of 200 m.

Figures 2(a) and 2(b) compare the standard RTM and LSRTM

images, respectively, for this sparse dataset. Unless other-

wise mentioned, RTM usually refers to the image from the

first least-squares iteration. It is evident from Figure 2(b) that

LSRTM has improved the spatial resolution when compared

to the RTM image. However, the aliasing artifacts are still not

completely removed from the image. The RTM and LSRTM

images using seislets are shown in Figures 2(c) and 2(d), re-

spectively. It can be clearly seen that these images are free

from the aliasing artifacts since the inversion using seislets

promotes sparse image updates during the least-squares iter-

ations.

We next show how seislets can be used during multisource

LSRTM to mitigate the crosstalk noise. We simulate 256 shots

using the true velocity model shown in Figure 3(a). Each shot

is recorded with 512 receivers at a 20 m receiver interval with a

total recording time of 10 s. We assume a fixed-spread acquisi-

tion geometry for both the sources and the receivers and blend

all the 256 shotgathers into one supergather using the dynamic

polarity and phase-encoding technique proposed by Schuster

et al. (2011) and Dai et al. (2012). The velocity model shown

in Figure 3(b) is used as the migration velocity model.
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Priorconditioned LSRTM

Figure 2: Images from (a) standard RTM, (b) standard

LSRTM, (c) RTM using seislets, and (d) LSRTM using

seislets. The LSRTM images are after 10 iterations.

Figure 4(a) shows the standard RTM image obtained by mi-

grating each of the 256 shots individually. The local dips esti-

mated from this RTM image are shown in Figure 4(b). Figures

5(a) and 5(b) show the standard multisource RTM and LSRTM

images, respectively, using one supergather only. It can be seen

that the crosstalk noise is dominant in the multisource RTM

image. The SNR is relatively better in the multisource LSRTM

image but the crosstalk noise is still prominent. The precon-

ditioned multisource RTM and LSRTM images using seislets

are shown in Figures 5(c) and 5(d), respectively. These images

are free from the high-frequency crosstalk noise and the SNR

is much better than the standard images.

CONCLUSIONS

A sparse least-squares migration technique is presented that

uses the seislet transform as a change of basis for the reflectiv-

ity. Along with a dip-constrained preconditioner, this approach

is shown to produce images with more meaningful structural

updates during the least-squares iterations. Numerical tests

on synthetic data for multisource LSRTM show that this tech-

nique can remove the crosstalk noise significantly from the im-

age when using blended-source or multisource migration. Our

numerical tests also show that the aliasing artifacts arising out

of using undersampled data are also mitigated since the inver-

sion promotes sparsity in the image during the least-squares

iterations. The success of using seislets as basis functions dur-

ing LSM significantly depends on the estimated dips. During

inversion, care should be taken to ensure that the dip estima-

tion is highly accurate.
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Priorconditioned LSRTM

Figure 3: (a) True velocity model, and (b) migration velocity

model.

Figure 4: (a) Standard RTM image, and (b) estimated dips

from the RTM image using plane-wave destruction filters.
Figure 5: Images from (a) multisource RTM, (b) multisource

LSRTM, (c) multisource RTM using seislets, and (d) multi-

source LSRTM using seislets. The LSRTM images are after

20 iterations.
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