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Figure 1: Our method automatically decomposes any mesh animations like performance captured faces (left) or muscle deformations (right)
into sparse and localized deformation modes (shown in blue). Left: a new facial expression is generated by summing deformation components.
Our method automatically separates spatially confined effects like separate eyebrow motions from the data. Right: Our algorithm extracts
individual muscle and bone deformations. The deformation components can then be used for convenient editing of the captured animation.
Here, the deformation component of the clavicle is over-exaggerated to achieve an artistically desired look.

Abstract

We propose a method that extracts sparse and spatially localized de-
formation modes from an animated mesh sequence. To this end, we
propose a new way to extend the theory of sparse matrix decom-
positions to 3D mesh sequence processing, and further contribute
with an automatic way to ensure spatial locality of the decompo-
sition in a new optimization framework. The extracted dimensions
often have an intuitive and clear interpretable meaning. Our method
optionally accepts user-constraints to guide the process of discover-
ing the underlying latent deformation space. The capabilities of our
efficient, versatile, and easy-to-implement method are extensively
demonstrated on a variety of data sets and application contexts. We
demonstrate its power for user friendly intuitive editing of captured
mesh animations, such as faces, full body motion, cloth animations,
and muscle deformations. We further show its benefit for statisti-
cal geometry processing and biomechanically meaningful anima-
tion editing. It is further shown qualitatively and quantitatively that
our method outperforms other unsupervised decomposition meth-
ods and other animation parameterization approaches in the above
use cases.
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1 Introduction

Nowadays, time-varying dynamic geometry with very fine dynamic
shape detail can be generated and rendered at very high visual
fidelity. When creating such content, artists usually rely on a
low-dimensional control parametrization, for example a kinematic
skeleton rig to control surface motion via joint angles, a muscle sys-
tem simulating face motion and tissue deformation, or a physics-
based simulation model generating realistically deforming cloth
or other materials. Despite increasing expressive power of such
parametrizations and simulations, producing such realistic anima-
tions from scratch is a labor-intensive process, in particular since it
is highly non-trivial to design or customize a specific parameteriza-
tion to a new object to be animated.

Performance capture techniques were thus developed that measure
detailed time-varying surface models of the real world in motion
from sensor data [Theobalt et al. 2010]. These methods capture
highly detailed animation models, mostly as space-time surface
mesh sequences. However, their applicability in animation produc-
tion so far has been strongly limited because a low-dimensional
control parametrization for the captured data is missing. Conve-
niently re-using, editing or otherwise analysing this input data is
therefore not possible.

To overcome this problem, some recent work suggested to fit spe-
cific parametric models to such input data: simple linear regression
models, skeletons or bone transformations, or even pre-modeled
facial blendshapes, see Sect. 2. Such methods require additional
prior knowledge about the underlying physical process of the an-
imation (e.g. a template shape or a parametric physics model), or
additional data needs to be recorded alongside the capture. They
are thus object-type specific and not very easy to use on general
data. Dimensionality reduction techniques for animation parame-
terization rely less on specific prior information, and are thus more
generally applicable to a broader range of animations. Many of
them are, in essence, matrix decomposition techniques that explain
observed deformations as a linear combination of factors, or defor-
mation components, that can be controlled by an animator. Many
previously used dimensionality reduction techniques, like Principal
Component Analysis (PCA), reproduce input data faithfully and
maintain certain compression guarantees, but the individual com-
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puted dimensions usually lack interpretable meaning and are of
global support, i.e. their modification acts on the whole mesh. In
contrast, in order to generate professional quality animation, artists
require crisp controls on plausible local effects which can be edited
in an intuitive manner [Havaldar 2006].

In this paper, we present a new efficient, easy-to-implement, and
versatile data-driven approach to decompose a mesh sequence into
intuitively meaningful vocabulary of sparse deformation compo-
nents, irrespective of what the true physical process underlying
an animation is. It takes inspiration from matrix decomposition
methods such as Non-Negative Matrix Factorization (NMF), Ro-
bust PCA, and Sparse PCA, that have recently been very popular in
machine learning, image processing and computer vision. We con-
tribute with the first theory for general sparse matrix decomposi-
tion for mesh sequence processing in computer graphics. The new
algorithm decomposes deformations (here, vertex displacements)
into a linear combination of weights and sparse deformation com-
ponents (Sect. 3). Our method relies on a sparsity-inducing reg-
ularizer that is designed for the setting of mesh animations. We
further include a mechanism to automatically find components that
are not only sparse but also localized on the mesh (Sect. 3.2). We
also provide means to easily let input provided by the user guide
the sparse decomposition (Sect. 3.3), and contribute with a new ef-
ficient optimization and initialization scheme to compute the de-
composition (Sect. 3.4).

Our experiments show that the sparse localized deformation com-
ponents computed by our method are a powerful new tool to
elegantly solve a variety of mesh processing and editing tasks.
We show our method’s strength in automatically building a lo-
calized and intuitively meaningful set of deformation components
for a variety of captured mesh sequences, such as face animations
(Sect. 4.2), muscle deformations (Sect. 4.3), and captured cloth
deformations (Sect. 4.4). It is also shown that the automatically
inferred components are similar to traditional blendshape models
used in face animation, and thus enable much more intuitive anima-
tion editing, with meaningful local support, than previous dimen-
sionality reduction techniques and other parameterization learning
techniques (e.g. Fig. 1, left). Our decompositions also often permit
semantically meaningful analysis and modification of animations,
e.g. by finding biomechanically relevant deformation modes corre-
sponding to individual muscles (e.g. Fig. 1, right). They also offer
a powerful new way to approach the learning of statistical shape
models from scanned examples, where they often enable convenient
automatic separation of desired and undesired dimensions of shape
variation (Sect. 4.5). In addition to qualitative results, we also quan-
titatively show that our method outperforms previous approaches in
the literature (Sect. 4.1).

A reference implementation of the algorithm is provided at
http://github.com/tneumann/splocs

2 Related Work

Skeletal Rigging Artists typically resort to parametric models
for synthesizing mesh animations. The de-facto standard for ar-
ticulated motion is linear blend skinning (and its extensions), often
combined with hierarchical kinematic skeletons. The high diffi-
culty of fitting such a model to example mesh animations given
by an artist is evaluated in [Mohr and Gleicher 2003; Weber et al.
2007]. Simple hierarchical skeletons can now be fit to articulated
mesh sequences [de Aguiar et al. 2008] and explain body shape
variations [Hasler et al. 2010]. Such skeletons often miss detail
that can be re-introduced in pose space using the Eigenskin method
[Kry et al. 2000], which essentially comes down to clustered PCA
(with overlapping regions) and linear regression in pose space, and
only works given sufficient training data. More general skinning

decomposition methods fit unordered non-hierarchical collections
of arbitrary [Kavan et al. 2010] or rigid [Le and Deng 2012] bone
transformations and blend weights to mesh animations. While use-
ful for quick rendering using GPU’s, this is not so useful for editing
- the bones offer many degrees of freedom that quickly produce
deformations far outside the input range. Above cited approaches
differ from our approach in the deformation representation (linear
blend skinning vs. vertex displacements). They prescribe a fixed
sparsity (e.g., 4 bones per vertex) while our method finds the suit-
able sparsity for every single vertex. Our method can benefit from
skinning decomposition methods as a preprocessing step to explain
rough articulations. As we show in this paper, deformation on top
of that, such as detailed folds or smaller pose changes, can be better
explained using our method.

Facial Animation and Editing Blendshapes are widely used for
facial animation. They are another highly important animation pa-
rameterization, and customizing them to a target face is a labor in-
tensive process. Adopting given facial blendshape template model
to a set of examples was demonstrated by Li et al. [2010]. To
enable more local modification, Tena et al. [2011] cluster the hu-
man face into regions and learn a clustered PCA model based on
marker based motion capture data. Such direct and local manipula-
tion is also possible with our automatically found parameterization,
and can be used with direct manipulation tools [Lewis and Anjyo
2010; Seo et al. 2011] without an explicit blending step. An elab-
orate facial editing system with many interesting user interaction
concepts (that are compatible to our deformation components) was
presented by Lau et al. [2009]. It relies on a facial prior based on a
huge expression database. In contrast, we can automatically find an
intuitive-to-control parameterization of arbitrary mesh sequences,
not only faces.

Simulating Deformations Physical simulation is often used as
parameterization for complex deformations based on material pa-
rameters and collisions. Fitting such models to captured mesh data
is a very challenging task [Sifakis et al. 2005; Miguel et al. 2012].
Simulation can also be constrained to lie in an artist-designed sub-
space [Schumacher et al. 2012]. Learned simulation models are
object-specific, where as our approach is general and explicitly ex-
poses the learnt subspace for manipulation. On the other hand, pure
data driven simulation methods such as [Guan et al. 2012; Kavan
et al. 2011; de Aguiar et al. 2009] circumvent the need for phys-
ical simulation (almost) completely by learning from real world
data. As just recently shown by Kim et al. [2013], successfully
learning complex deformations from data is possible but requires
a dauntingly huge amount of well structured training data which
is often not available, in particular for captured data. A decompo-
sition method that is able to build a latent deformation space that
generalizes beyond the training data and allows for user input, as
offered by our method, can help to overcome this limitation in the
future.

Mesh Deformation Apart from parametrization based deforma-
tion techniques, directly editing mesh animations, with ideas simi-
lar to static mesh deformation, have emerged that overcome some of
the limitations of parametric models [Sumner et al. 2007; Kircher
and Garland 2009; Fröhlich and Botsch 2011]. These are power-
ful methods for editing, but solve a different problem compared to
this paper which studies exploration of an underlying lower dimen-
sioinal deformation space.

Low Dimensional Deformation Spaces The problem of finding
and navigating a latent space that is able to explain deformations
given by (captured) data is a more general problem, and ours is not
the first approach to tackle it. The motivation comes from recent
success in capturing performances directly from the real world, of
human body movements or of detailed facial expressions [Theobalt
et al. 2010]. Editing such geometry at each surface point or at each
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frame in a sequence is impractical. Many methods transfer ideas
from machine learning to identify a lower dimensional space of
deformations based on linear (PCA) or non-linear dimensionality
reduction techniques [Levine et al. 2012; Cashman and Hormann
2012; Tournier and Reveret 2012]. Feng et al. [2008] deform a
mesh and reproduce fine-scale details from given input data and
control points by using kernel canonical correlational analysis on
top of low-dimensional skeletal deformation. Some methods resort
to Independent Component Analysis (ICA) [Hyvärinen et al. 2001],
for example for motion editing [Cao et al. 2007]. Shape and pose
variations of human bodies can also be learned and modified using
linear regression models [Anguelov et al. 2005; Hasler et al. 2009],
e.g., by modifying height, weight, gender, etc. Multi-linear mod-
els can be used to represent variation in human facial expressions
and identity [Vlasic et al. 2005]. A key problem with those ap-
proaches is that the extracted components show global correlation
of deformations on the surface, whereas artists often require spe-
cific deformation control, e.g., of specific muscle groups, which are
directly discovered by our method. To boost computation speed,
Meyer et al. [2007] use the Varimax rotation of the PCA compo-
nents as a basis that is localized. Experimentally, we found that
Varimax yields unsatisfactory components that show global arti-
facts in the presence of noise and limited (captured) data.

Sparse Decompositions A major shortcoming of PCA is that it
finds components which involve all original variables - in the con-
text of mesh deformations every vertex deforms in each component.
Several alternatives have been explored in the recent decade, such
as non-negative matrix factorization [Lee and Seung 1999], which
finds positive components, and Sparse PCA [Zou et al. 2006; Jol-
liffe et al. 2003], which introduces a sparsity inducing norm such
as ℓ1 and often drop the orthogonality constraint. The fact that such
decomposition methods happen to retrieve a localized set of vari-
ables, such as face or brain regions in (fMRI) images, made them
popular in computer vision, signal processing and medical imaging.
But they have not yet been used in animation processing. Jenatton
[2011] mentions two different formulations of sparse PCA: defla-
tion methods [Mackey 2009] consider a single component at each
step that constructs a subspace one by one, a strategy we use in our
paper for initialization. Matrix factorization methods [Mairal et al.
2009] have a non-convex formulation to simultaneously optimize
for all the principal components, which we adopt for global opti-
mization of our components. Sparse decomposition methods are
also related to independent component analysis (ICA) [Hyvärinen
et al. 2001], it is known that both methods solve the same problem
in the case of no noise and square system where the input and out-
put dimensionalities are equal (see [Olshausen and Field 1997]).
In our setting, these conditions are not satisfied and our decom-
position outperforms the previously used ICA decomposition in
terms of localized control. Not least because of the success of com-
pressed sensing and sparse linear models, minimization of sparsity-
inducing norms can be achieved efficiently [Boyd et al. 2011]. In
computer graphics, such methods can help to find robust correspon-
dences between meshes [Pokrass et al. 2013]. Deng et al. [2013]
recently showed that sparsity inducing norms are very suitable to
obtain local modifications on constrained static meshes which are
popular in architecture. It is the only other study known to us that
imposes sparsity on deformations themselves. Such intuitive edit-
ing paradigms can be achieved for any captured mesh sequence us-
ing the versatile approach presented in this paper.

3 Method

Our proposed method aims to decompose captured or animated
mesh sequences into sparse, localized, and intuitive-to-control de-
formation components. The input data to the algorithm consists of
a mesh animation with F frames. Each frame f consists of N ver-

tex positions v
(f)
i . The mesh topology is equal for all frames, and

the vertices are in correspondence over time. We assemble a single
“animation matrix” X ∈ R

F×3N by stacking the vertices of all
frames in a row-wise fashion
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For convenience, we assume the vertex coordinates in the animation
matrix are expressed as residual displacements to a “mean shape”
x̂ of the mesh (e.g. the first frame or the average of all frames).
We also assume that rigid alignment through global translation and
rotation is performed before assembling the animation matrix.

Formally, from now on, we assume X ← X − x̂ and accord-

ingly v
(f)
i ← v

f
i − v̂i. We also normalize X by its standard

variation (across frames and vertices) after subtracting the mean to
make the algorithm invariant to the amount of deformation of dif-
ferent datasets.

3.1 Sparse PCA for Mesh Sequences

We are looking for an appropriate matrix factorization of X into
K deformation components C ∈ R

K×3N with weights W ∈
R

F×K

X = WC . (1)

The above model is comparable to the widely used blend-
shapes [Osipa 2003], where the weights W are usually key-framed
by an animator and the components C (blendshapes minus mean
shape) are prepared by a modeller.

The space of solutions to Eq. (1) has to be regularized by addi-
tional constraints on W and C. For example, PCA (Principal
Component Analysis) constrains the components to be orthogo-
nal, C⊤ C = I. However, the principal components usually have
global support on the whole mesh and are therefore unintuitive for
artistically meaningful localized editing [Lewis and Anjyo 2010],
see Fig. 6(a).

Sparse components can be discovered by imposing sparsity on the
solution of Eq. (1). To this end, a sparsity inducing norm, such as
the ℓ1 norm can be employed as a regularizer Ω(C) on the com-
ponents to yield Sparse PCA [Zou et al. 2006; Jenatton 2011]. Fol-
lowing their framework, the matrix factorization can be formulated
as a joint regularized minimization problem,

argmin
W,C

‖X−W ·C‖2
F
+Ω(C) s.t. V(W) (2)

where the constraint V can be one of the following

max (|W:,k|) = 1, ∀k (3)

or max (W:,k) = 1, W ≥ 0,∀k (4)

W:,k denotes the kth column, e.g. the weights of component k over
all frames. The constraints on the weights W are essential to pre-
vent the weights from getting too large (and components getting
arbitrarily small). Depending on the use case (see Sect. 4), we use
(4) which is inspired by blendshapes and works well for faces, or
(3) that also allows negative weights which works better for data
that can show two directions of deformation from the rest shape,
like muscle bulges and dimples on body shapes.

To find an appropriate regularizer for animation data, let us also ob-
serve that each triplet in the rows of C forms a three-dimensional



Figure 2: Effect of automatic local support demonstrated on face
dataset [Valgaerts et al. 2012]. Without local support(top), spa-
tially distant regions are co-activated. By imposed local support
(bottom), left and right side brows and cheek are separated, even
though this separate deformation is never visible in the input. This
allows generating novel facial expressions (bottom right).

vector c
(i)
k = [x, y, z]

(i)
k . Every such triplet corresponds to the x,

y, and z displacement of vertex i in component k. While regular-
izing C with the element-wise ℓ1 norm would induce sparsity, it
would ignore this inherent group structure and would vanish each
dimension of the displacement vector separately. To make the di-
mensions vanish simultanously, the ℓ1 norm has to act on the (un-
squared) lengths of the displacement vectors,

Ω(C) =

K
∑

k=1

N
∑

i=1

Λki

∥

∥

∥
c
(i)
k

∥

∥

∥

2
. (5)

This norm, called the ℓ1/ℓ2 norm, is a form of group sparsity, see
e.g. [Wright et al. 2009; Bach et al. 2012].

The spatially-varying regularization parameters Λki (denoted in
matrix form as Λ) are an important innovation that we exploit to
enforce local support for the deformation components. This exten-
sion is important for our mesh animation setting.

3.2 Local Support

To derive a deformation basis where the edits are spatially confined,
we stipulate that each deformation component Ck should be cen-
tred around the set of vertices {j ∈ Jk} showing largest displace-
ments in that component. We define a fuzzy support region that
is centred around these vertices as follows. For every component
k, let dk ∈ R

N be the geodesic distance of each vertex in the
rest-pose mesh to the vertices in Jk. To allow the control of the
size of the support regions, we define a range [dmin, dmax]. We map
geodesic distances from this range to [0, 1] (with clipping when out
of this range) and relate them to the regularization strength

Λki = λ ·











0 if dki < dmin

1 if dki > dmax
(

dki−dmin

dmax−dmin

)

otherwise

(6)

This simply maps the geodesic distance linearly to the regulariza-
tion strength. It thus changes the regularization strength of each
component locally at each vertex.

This support region, and thus the regularization Eq. (5), are itera-
tively updated during the optimization of Eq. (2) by re-computing
distances dk at every step for each component. To do this quickly,
we use the heat method presented by Crane et al. [2013], which
re-computes geodesics on the mesh at extremely high speed.

user-stroke #1 component #1 user-stroke #2 component #2

Figure 3: Incorporating user constraints: Given a rough scribble
in form of a binary mask, a deformation component found in this
region.

In practice, we construct the set Jk of vertices in the center of each
support region greedily, by picking vertices showing maximal acti-

vations for each component k, Jk = {argmaxi‖ c
(i)
k ‖2}. But this

set can also be obtained through user-input as we detail in the fol-
lowing. Fig. 2 demonstrates the effect of automatic local support.

3.3 User Constraints

In most cases, as we show in our experiments, the automatically
found components already correspond to intuitively meaningful di-
mensions. But sometimes, artists wants to explore a different de-
formation space than the one found automatically. We therefore
provide a simple user interface in which an artist can paint the cen-
ter of a region for which a component shall be found, as shown in
Fig. 3. This fits perfectly into the support region concept explained
above, that we can conveniently set to the mask of vertices stroked
by the artist. Due to diffusion by geodesic distances, this stroke
mask does not need to be very precise.

3.4 Optimization

Due to the non-convexity of Eq. (2) and our added objective of
Eq. (6), the problem is difficult to optimize directly. However, when
fixing either W or C the problem is convex and can be solved
easily, and therefore we use an iterative refinement method that al-
ternates between the two optimization tasks [Mairal et al. 2009].
Usually, Sparse PCA is initialized by PCA, but this conflicts with
our proposed extension for local support (in Sec. 3.2) and does not
reach a good solution in practice. We therefore propose a new ini-
tialization strategy.

Initialization We use a deflation algorithm to greedily and itera-
tively find the component Ck (and corresponding weights W:,k)
at each step that explain maximal variance in the data and subtract
each of them from the animation matrix X to compute the residual
R. We assume that the next component can be detected by check-
ing for the vertex vj with the highest residual at the current step.
From the chosen vertex, we build a support region around it using
Eq. (6) and factorise the motion of vertices in this region into the
product of a single component Ck and weight vector W:,k. We
iterate until we find the required number of K components (that is
set by the user). This solution is not optimal with respect to Eq. (2),
but gives a good initialization that is already spatially localized and
works very well in practice.

Optimization of weights Given the initial components C, opti-
mization of Eq. (2) with respect to the weights W is a constrained
linear least squares problem. The problem is separable - the con-
straints act on the weight vector W:,k of each component sepa-
rately. We can thus use the block-coordinate descent algorithm,
which in our case optimizes weights for each component succes-
sively, similar to [Mairal et al. 2009]. In practice, we re-use the
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Figure 4: Generalization to unseen data: we plot the reconstruc-
tion error (y-axis) with respect to the number of components used
(x-axis) on a set of body scans from [Hasler et al. 2009] that were
not part of the training data. Our method outperforms other related
approaches in generalizing to unseen data from small training sets.

weights from the previous iteration (“warm restart”) and for each
component k solve

argmin
W

:,k∈V

‖X− W · C‖2
F
= PV

(

(R+ W:,k · Ck) · Ck

(Ck)⊤ Ck

)

,

where R = X−WC is the current residual. PV performs a pro-
jection of the weights onto the constraint set, depending on which
constraint is used. For example, for Eq. (3), this comes down to a
normalization, PV(w) = w/max |w|. We perform a single it-
eration (for each k) of weight optimization before optimizing the
sparse components in the next step.

Optimization of sparse components The optimization of C
given fixed W can be tackled using convex optimization. Many
algorithms exist that are able to optimize the involved ℓ1/ℓ2 norm
regularizer. We chose to use the Alternating Direction Method of
Multipliers (ADMM) [Boyd et al. 2011] as we observed quick con-
vergence for our problems (also see the supplementary document).
The basics of ADMM are extensively covered in [Boyd et al. 2011].
Here, we only give details on how to apply this algorithm in our
setting: First, Eq. (2) needs to be modified by introducing a dual
variable Z ∈ R

K×3N . With that, the optimization objective (with
fixed W) is rewritten in a form compatible to ADMM as follows

argmin
C,Z

‖X−W ·C‖2
F
+Ω(Z)

s.t. C− Z = 0

The ADMM algorithm initializes U ∈ R
K×3N to zero and then

iterates the following steps

C ← argmin
C

‖X− W · C‖2
F
+

ρ

2
‖C− Z+ U‖2

F

Z ← argmin
Z

(

Ω(Z) +
ρ

2
‖C− Z+ U‖2

F

)

U ← U+ C− Z .

The first step, updating C, is a linear least squares problem. The
second step, updating the dual variable Z, corresponds to the prox-
imal operator [Bach et al. 2012] of the ℓ1/ℓ2-norm Ω. A closed
form solution is (see Ch. 3.3 in [Bach et al. 2012]),

zik ← proxΩ(pik) =

(

0, 1−
Λki

ρ‖pik‖2

)

+

pik
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Figure 5: Reconstruction Error with respect to sparse control
points: we plot the reconstruction error (y-axis) of different ap-
proaches when used for regularizing a sparse number of control
points (x-axis), in test poses which are not part of a limited train-
ing dataset [Zhang et al. 2004]. Our sparse localized deformation
components require more control points than PCA, but show much
lower reconstruction error from then on, as they are able to learn a
wider variety of deformations from extremely limited training data.

where pik = cik + uik and the notation (·)+ = max(· , 0) are
introduced just for brevity. We found that fixing the penalty param-
eter ρ = 10 works well in our situation for all the datasets consid-
ered; strategies to adjust it are discussed in [Boyd et al. 2011]. We
run 10 iterations of ADMM to optimize the components and keep
U across the whole procedure. In summary, the whole optimiza-
tion procedure interleaves the following steps: recomputation of
support maps based on geodesic distances; optimization of weights
using block-coordinate-descent; optimization of components using
ADMM.

Convergence Because of the changing regularization by updat-
ing the support maps (cf. Sect. 3.2), we cannot guarantee that the
objective function is decreasing at each step. We monitor conver-
gence by recording the change of objective function Eq. (2) at each
step, and terminate if the average change of the last 5 iterations is
below a threshold ǫ.

Tunable Parameters In summary, our method takes the follow-
ing user-specified parameters: the required number K of deforma-
tion components, the minimal and maximal geodesic distance for
the support maps dmin and dmax as well as λ in Eq. (6) that sets the
importance of local support term. Users of our algorithm also have
to decide whether the weights are allowed to be negative (Eq. (3))
or not (Eq. (4)) and if they want to use a specific frame (e.g. the first
one) or the average of all frames as the rest shape.

4 Results

To evaluate our method, we perform quantitative evaluation to asses
the generalizability and reconstruction quality on unseen data. We
demonstrate the versatility of our method on a variety of captured
animation data sets. As potential applications we show intuitive
editing and shape analysis on faces (Sect. 4.2), full-body models
(Sect. 4.5), muscle motion (Sect. 4.3) and cloth motion (Sect. 4.4).
The processed datasets and the method parameters are listed in Ta-
ble 1, where we also record computation time and reconstruction
accuracy. Please see also accompanying video.

4.1 Quantitative Evaluation

Since our method can be viewed as an unsupervised dimensionality
reduction technique, it is interesting to assess the generalizeability
of the extracted dimensions to unseen data. For this, we randomly
split 111 scans of people roughly standing in the same pose that we



(a) Principal Component Analysis (PCA), Top 5 PC’s

(b) PCA components rotated using Varimax

(c) Independent Component Analysis (ICA) [Hyvärinen et al. 2001]

(d) Proposed Sparse Localized Deformation Components

Figure 6: Comparison of general decomposition methods on a
captured face dataset [Zhang et al. 2004]. Color coding shows
magnitude of vertex displacements inside the components, from
grey (zero) to blue (maximum). The deformation components of
PCA and ICA act globally on each vertex in the mesh, which pro-
hibits local modification. Varimax shows certain locality, but this
cannot be controlled and shows artifacts for captured data. Our
components show sparse and local deformations on confined re-
gions, which is important for example for artistic editing.

obtained from [Hasler et al. 2009] into training (55 scans) and test
set (56 scans). We train Clustered PCA [Tena et al. 2011], PCA,
and our method (without and with automatic locality) with varying
number of components K. For Clustered PCA, we fixed the number
of regions to 13, and set K so that it counts all the components and
not the number of components per region as in [Tena et al. 2011].
We also run our algorithm without locality in Sec. 3.2 (constant
Λki = 0.5), which is closer to classical Sparse PCA. To recon-
struct the training set, we invert Eq. (1) and measure the difference
in vertex coordinates with the error metric introduced in [Kavan
et al. 2010] (root mean squared error multiplied by 1000 for conve-
nience). The averaged reconstruction errors over 3 different random
splits are reported in Fig. 4. The results indicate that our method
with localization generalizes better to new body shapes outside the
training set than PCA and plain sparse PCA (our method without
localization). To assess the the suitability of sparse localized de-
formation components to providing editing beyond limited capture
data, we performed an experiment on the facial performance dataset
provided by [Zhang et al. 2004]. We train PCA, Clustered PCA and
our method on only 19 randomly selected frames from this 365
frame dataset. For each of the remaining frames, we randomly
selected sparse control points on the mesh and reconstructed the
weights for the components to fit only to the control points. We
compare the resulting complete mesh to the ground truth and again

(a) Skinning Decomposition [Kavan et al. 2010], from left to right: Ver-

tex influences; Influence and motion of 2 bones in isolation; silencing the

motions of all but one bone gives artifacts; bones offer too many degrees

of freedom, e.g. arbitrary translation of the lip which results in artifacts.

(b) Clustered PCA according to [Tena et al. 2011], from left to right: Un-

derlying segmentation; first and second principal component in region 1;

close up views clearly show artifacts that have to be removed with an ex-

plicit blending step, which our method does not require.

Figure 7: Comparison of related decomposition methods.

use the error metric from [Kavan et al. 2010]. The experiment was
repeated in 5 trials differing in training set, each trial was further re-
peated 10 times using different random control points. The average
reconstruction error in relation to number of control points is shown
in Fig. 5 Due to the locality of our components, our method requires
more control points until it outperforms PCA, here with 50 compo-
nents this happens at around 70 control points. However, from this
point on, it can generate more accurate deformations compared to
PCA. It also consistently outperforms Clustered PCA.

To understand why our method generalizes so well to unseen data,
consider a facial geometry sequence in which both eyebrows are al-
ways raised together. PCA cannot reproduce a mesh showing only
one eyebrow raising. In contrast, our approach finds localized com-
ponents for every eyebrow, and can reproduce their motion sepa-
rately, even though this was not seen in the training data.

4.2 Facial performances

Our method can be used to learn deformation components of cap-
tured facial animations that mimic the control properties of blend-
shapes that are widely used by animation artists to create facial
animations, and which are normally created in a tedious manual
process. Our automatically detected components are spatially lo-
calized and thus limit the influence of modifications to confined
regions that correspond to individual intuitively meaningful effects
(e.g., twitching of an eyebrow or a nostrill).

Comparison to Important Related Work Such spatially con-
fined and intuitive edits are hard to perform with components from
global decomposition methods such as PCA or ICA. Fig. 6 illus-
trates this on facial performance data [Zhang et al. 2004]. Even
without facial prior or user input, our deformation components
are spatially confined to local regions and already resemble artisti-
cally modeled blendshapes for controlling a facial animation [Osipa
2003].

Fig. 6(b) visually compares to PCA components after varimax rota-
tion, a technique used by [Meyer and Anderson 2007] for extraction
of key points. We observed that for our data of limited length, the
Varimax components show severe artifacts which makes them un-
usable for direct editing. Notice that Varimax and PCA components
only differ in a rotation, so Varimax will perform exactly the same



Figure 8: Results of direct manipulation of the underlying basis.
From left: user-constraints, PCA basis, Varimax Basis, Our ba-
sis. PCA effects unintuitive global deformation even if the edits
are local. Varimax basis shows artifacts. Ours provides artistically
meaningful local edits.

as PCA with respect to measured reconstruction error and general-
ization.

In Clustered PCA, where we use spectral clustering as in [Tena et al.
2011] to provide the region segmentation, components are confined
to regions but within these regions, they exhibit the same limita-
tions as PCA components: they don’t necessary show confined and
independent effects - all PCA components have to be activated to
achieve a specific deformation effect. Additionally, blending at re-
gion boundaries is needed to remove artifacts [Tena et al. 2011] (see
also Fig. 7(b)).

We also compare to skinning decomposition methods that learn
explicit bone transformations, especially to the method of [Ka-
van et al. 2010]. We observed two key problems which interfere
with the target applications that our method is designed for. Firstly,
the bone transformation only work when modifying several bones
in concert, e.g. they don’t allow individual control. For exam-
ple, eyebrow-wrinkles are produced by setting transformations of at
least 2 specific bones in a specific, hardly intuitive way. Secondly,
bone transformations themselves do not provide intuitive control
parameters at all. For example, editing the translation of a bone
quickly results in deformation artifacts because parts of the mesh
can easily be “pulled” outside of the mesh (see Fig. 7(a)). No-
tice that this is inherent to the underlying skinning representation to
achieve translation and rotation invariance.

Automatic Local Support In Fig. 2, we show the benefit of the
spatial locality term (Eq. (6)) by decomposing the dataset provided
by [Valgaerts et al. 2012]. This example illustrates how impos-
ing local support regions helps our method to separate motions of
distant regions which are co-activated in the original actor’s per-
formance. One could say it helps us to model regions influenced
by individual muscle-groups separately, such as the left eyebrow
motion which is distinct from the right eyebrow motion.

Artistic Control In Fig. 9, we show the results of artistic edits us-
ing our sparse components on another face animation captured by
[Beeler et al. 2011] that we downsampled to 40k vertices. For the
editing, we can resort to the direct manipulation method of [Lewis
and Anjyo 2010], where positional edits on mesh vertices are used
with our sparse components for modifying the shape within the lin-
ear deformation space. Based on our sparse components, captured
facial animations can be conveniently edited beyond the captured
motion using only a few input constraints for crisp direct manip-
ulation (see video). Also co-articulation effects that are never ob-
served in the input, such as separate eye-brow movement, can be
plausibly reproduced. We also tested this editing paradigm on the
decomposed dataset of [Zhang et al. 2004] and just a single con-
trol point, see Fig. 8 We used the same set of user edits on PCA,
Varimax, and our components. It can be seen (also refer to video)
that our sparse components allow for localized edits constrained in
a plausible space of face motion, a characteristic that artists often

Figure 9: Our method allows completely new exaggerated facial
expressions far beyond the input range, here based on the dataset
of [Beeler et al. 2011].

require [Havaldar 2006]. In contrast, in case of PCA, single vertex
edits have unintuitive global effects on the entire face.

4.3 Muscle deformations

To show its use in biomechanics, we applied our algorithm to cap-
tured moving arm geometry exhibiting muscle-induced surface de-
formation, that is provided by [Neumann et al. 2013]. This dataset
shows deformation of the arm and shoulder of a curl motion done
once without weight and twice with 14kg in the hand (we only se-
lected a subset of the full captured dataset). These meshes are al-
ready temporally aligned and registered to a simple 3-piece bone
skeleton. Prior to sparse component extraction, we subtract the
skeleton pose induced deformation by aligning all meshes to the
template skeleton pose. The extracted deformation components
from our method (Fig. 1, left; supplementary video), without any
user-constraints, already visually appear to correspond to local
bulges due to individual muscle groups, such as the deltoid mus-
cle, the biceps and triceps muscles.

In Fig. 10, we show the activations of some of these components in
the input sequence. Fig. 10(d) shows that one component explains
how the tendon at the elbow joint twitches during this sequence.
Fig. 10(f) shows the activation of the triceps muscle during the same
motion. The triceps muscle is summoned to counteract the exter-
nal force on the hand, whereas the tendon at the elbow twitches
due to change in the pose of the arm. In other words our method is
able to provide such biomechanically informative muscle activation
graphs, without requiring the user to explicitly fit a physiological
muscle template to the data. Surface noise in the data due to limita-
tions of the acquisition method can also be isolated by our method,
which the user can easily remove by deleting the corresponding
components and projecting the data into the remaining subspace.
Animators can also selectively emphasise the effect of individual
muscle groups in an animation, i.e, create a biologically inaccurate
but artistically desirable appearance of an animation which is often
needed in VFX productions (see video).

Figure 11: Left: 3 sparse localized deformation components on a
performance capture sequence showing cloth folds, Right: effect of
exaggerating one component.



Dataset Algorithm Parameters Results

Source N F K x̂ V λ dmin dmax iters time ERMS

Face [Beeler et al. 2011] 40 000 322 80 first Eq. (4) 2 0.1 0.6 49 6m57s 0.39

Face [Zhang et al. 2004] 23 725 384 50 first Eq. (4) 1 0.1 0.7 82 3m58s 0.76

Body-scans [Hasler et al. 2009] 6 449 111 100 avg. Eq. (3) 1 0.1 1.0 34 33s 0.76

Cloth folds [Wu et al. 2011] 10 684 459 200 avg. Eq. (3) 25 0.01 0.3 18 4m39s 0.29

Face [Valgaerts et al. 2012] 44 153 566 50 first Eq. (4) 2 0.1 0.7 113 14m09s 0.67

Muscles [Neumann et al. 2013] 3 467 242 80 avg. Eq. (3) 5 0.1 0.4 77 1m36s 1.08

Table 1: Overview of processed datasets. From left to right, columns show data set source, number of vertices N , number of frames F . The
columns grouped under “Algorithm Parameters” show: number of components K, which frame to use as rest shape (first or average), type
of constraint for weights (allow non-negativity or not), λ to control sparsity regularization, dmin and dmax to control size of support regions.
Numbers below “Results” are number of iterations for global optimization until convergence, computation time in minutes (i7 3.40GHz,
16GB RAM, Python implementation), and reconstruction error ERMS using the measure from [Kavan et al. 2010].
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Figure 10: Automatically found activations of components corresponding to specific muscles. The subject flexes the elbow pose (a) to pose
(b). Our method happens to identify bio-mechanically meaningful deformation components: (c) Twitching of the tendon at the elbow joint -
support area. (d) activation graph . (e) Triceps muscle - support area. (f) activation graph. In the graphs, the black columns correspond to
pose-a and red columns to pose-b. The subject performs one motion cycle without any weight in the hand, and then two cycles holding an
external load in the hand.

4.4 Cloth deformations

Our method also enables visualization of cloth deformation patterns
in captured mesh animations, such as the detailed full-body motion
data including cloth wrinkles captured by [Wu et al. 2011] from
multi-view video. Our objective is to derive a set of features that
describe high-frequency detail of finer-scale folds. So we separate
out the lower-frequency motion coming from the limbs and register
all the meshes onto a single template pose. The moving cloth folds
appear as floating residuals on this template mesh (see video). Our
sparse decomposition identifies localized fold patterns on the cloth
surface that can be visualized and controlled individually, Fig. 11.
This hints at potential applications of sparse localized deformation
components in data-driven cloth simulation and upsampling.

4.5 Statistical shape modeling, processing and visual-

isation

In statistical shape processing, researchers are often faced with the
problem of aligning large data sets of shape models or scans that
show variants of a class of shapes. These shapes may exhibit certain
local shape variations, but also differ in proportions or pose. Certain
statistical properties or correlations of the shapes shall be learned,
while certain other effects shall be factored out. Our decomposition
method can be of great help in such a setting. We exemplify it on
the problem of building a static statistical shape model of human
shape variations from a large corpus of laser scans of real human
subjects, which are previously done with PCA and bilinear models
[Anguelov et al. 2005; Hasler et al. 2009]. For instance, Hasler et
al. [2009] provide a data set of 111 humans of different shape and
gender that were asked to stand in the same pose during a scan.
From this set one may want to capture shape variations and ne-
glect variations due to pose. Hasler and other researchers resorted

to deformation-based scan alignment relative to a template to get
dense correspondences of the surfaces. However, pose variations
due to different joint angles/hand poses still exist after that corre-
spondence estimation as people can never stand in the exact same
pose. Applying PCA to that set thus leads to components which in-
tertwine pose and shape variations, i.e. dimensions that one wants
to be separated. Experimentally, we showed that by applying our
method to the above scan data, we are able to separate effects of
pose and shape of specific body parts (Fig 12). Deformation related
to pose and shape variations are gathered into different components.
We can meaningfully pose normalise all the scans by manually re-
moving the pose-specific deformation components and projecting
the scans into the remaining subspace. This would be difficult with
other means. At the same time we can automatically extract intu-
itive localized dimensions of shape variation, even without having
to pose normalise the scans before the decomposition. These di-
mensions correspond to more meaningful dimensions than found in
previous approaches, for instance, the waist girth, belly size, or the
hip size. These can can now be individually explored and changed
irrespective of global body pose. We foresee that this general idea
could be used on scan sets with much stronger pose variation, en-
able more robust shape-retrieval under pose variation, and be used
in the context of co-segmentation learning from shape sets.

4.6 Discussion

Sparse Localized Deformation components present a versatile de-
composition method for space-time mesh animation data that is ap-
plicable to many settings: editing, control, scan alignment, con-
struction of static and parametric shape models etc. The major
advantage of our approach is that it is very general yet simple to
implement. Quantitative experiments show that our method pro-
vides excellent generalizeability compared to other methods like



Figure 12: Automatically extracted deformation components on a
database of human body scans from [Hasler et al. 2009]. Exagger-
ating certain components produces spatially localized and semanti-
cally meaningful effects. Our method even isolates pose variations
into separate components (bottom row, right).

PCA, Clustered PCA, Varimax, and non-localized Sparse PCA. Our
current model learns deformation components that show complex
effects due to vertex displacements from a rest shape; articulated
motions showing rotations are better decomposed using previous
methods [Kavan et al. 2010; de Aguiar et al. 2008]. As it is, our
method can explain local high-detail deformations such as muscle
bulges, cloth folds and slight pose changes after using such skeletal
decomposition methods for rough pose alignment. In the future, we
plan to investigate the use of rotation invariant deformation encod-
ings or hierarchical schemes in Eq. (2).

Similar to other data-driven deformation methods, ours can only
learn deformation effects visible in the input animation, but sep-
arate them into meaningful individual dimensions. The option for
user-constraints allows for the introduction of semantic information
into the very process of the decomposition. Our algorithm automat-
ically extracts components which are symmetric (e.g. left and right
side of the face), but only if this symmetry is present in the input
data. Asymmetry is a very important property of individual faces,
but in the future, it would be interesting to extend our data-term to
incorporate user-given knowledge about symmetry.

Controlling and exploring the latent deformation space, as offered
by our method, has wider implications in the domain of statistical
shape processing. This is a direction that we would like to explore
in the future. Another promising research direction is to extend this
theory of sparse deformation components to account for dynamics
or physical material properties, which can potentially improve the
realism for interactive applications such as computer games. We
publish our source-code along with this paper to stimulate future
research in these areas.

5 Conclusion

In this paper, we develop a sparse matrix decompositions method
for processing 3D mesh animations. We learn deformation compo-
nents from the input data that are spatially localized and identify
local features of shape deformation. Unlike previous data-driven
approaches, our method allows controlling the dimensions of the
underlying space of deformations. In the results and in the accom-
panying video, we demonstrate how our method provides novel ca-
pabilities for intuitive and localized artistic edits on captured per-
formances and on shape models. Our method automatically builds
a rich space of deformations that generalizes better to unseen data.
We have shown how this delivers a powerful tool for artistic editing,
as well as for data exploration and statistical shape processing, and
are eager to see interesting applications of our method in the future.

References

ANGUELOV, D., SRINIVASAN, P., KOLLER, D., THRUN, S.,
RODGERS, J., AND DAVIS, J. 2005. SCAPE: shape comple-
tion and animation of people. ACM Trans. Graph. (Proc. SIG-
GRAPH) 24, 3.

BACH, F. R., JENATTON, R., MAIRAL, J., AND OBOZINSKI, G.
2012. Optimization with sparsity-inducing penalties. Found.
Trends Mach. Learn. 4, 1.

BEELER, T., HAHN, F., BRADLEY, D., BICKEL, B., BEARDS-
LEY, P., GOTSMAN, C., SUMNER, R. W., AND GROSS, M.
2011. High-quality passive facial performance capture using an-
chor frames. ACM Trans. Graph. (Proc. SIGGRAPH) 30.

BOYD, S., PARIKH, N., CHU, E., PELEATO, B., AND ECKSTEIN,
J. 2011. Distributed optimization and statistical learning via the
alternating direction method of multipliers. Found. Trends Mach.
Learn. 3, 1.

CAO, Y., SHAPIRO, A., FALOUTSOS, P., AND PIGHIN, F. 2007.
Motion editing with independent component analysis. Visual
Computer.

CASHMAN, T. J., AND HORMANN, K. 2012. A continuous, ed-
itable representation for deforming mesh sequences with sep-
arate signals for time, pose and shape. Comp. Graph. Forum
(Proc. EG) 31, 2.

CRANE, K., WEISCHEDEL, C., AND WARDETZKY, M. 2013.
Geodesics in heat: A new approach to computing distance based
on heat flow. ACM Trans. Graph., to appear.

DE AGUIAR, E., THEOBALT, C., THRUN, S., AND SEIDEL, H.-P.
2008. Automatic conversion of mesh animations into skeleton-
based animations. Comp. Graph. Forum (Proc. EG) 27, 2.

DE AGUIAR, E., SIGAL, L., TREUILLE, A., AND HODGINS, J. K.
2009. Stable spaces for real-time clothing. ACM Trans. Graph.
(Proc. SIGGRAPH) 29, 3.

DENG, B., BOUAZIZ, S., DEUSS, M., ZHANG, J.,
SCHWARTZBURG, Y., AND PAULY, M. 2013. Exploring
Local Modifications for Constrained Meshes. Comp. Graph.
Forum (Proc. EG) 32, 2.

FENG, W.-W., KIM, B.-U., AND YU, Y. 2008. Real-time data
driven deformation using kernel canonical correlation analysis.
ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3.
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HASLER, N., THORMÄHLEN, T., ROSENHAHN, B., AND SEIDEL,
H.-P. 2010. Learning skeletons for shape and pose. In Proc. of
I3D.

HAVALDAR, P. 2006. Performance driven facial animation. In
ACM SIGGRAPH 2006 Course 30 Notes.
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