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René Vidal
Center for Imaging Science
Johns Hopkins University
rvidal@cis.jhu.edu

Abstract

We propose an algorithm called Sparse Manifold Clustering and Embedding
(SMCE) for simultaneous clustering and dimensionality reduction of data lying
in multiple nonlinear manifolds. Similar to most dimensionality reduction meth-
ods, SMCE finds a small neighborhood around each data point and connects each
point to its neighbors with appropriate weights. The key difference is that SMCE
finds both the neighbors and the weights automatically. This is done by solving
a sparse optimization problem, which encourages selecting nearby points that lie
in the same manifold and approximately span a low-dimensional affine subspace.
The optimal solution encodes information that can be used for clustering and di-
mensionality reduction using spectral clustering and embedding. Moreover, the
size of the optimal neighborhood of a data point, which can be different for dif-
ferent points, provides an estimate of the dimension of the manifold to which the
point belongs. Experiments demonstrate that our method can effectively handle
multiple manifolds that are very close to each other, manifolds with non-uniform
sampling and holes, as well as estimate the intrinsic dimensions of the manifolds.

1 Introduction

1.1 Manifold Embedding

In many areas of machine learning, pattern recognition, information retrieval and computer vision,
we are confronted with high-dimensional data that lie in or close to a manifold of intrinsically low-
dimension. In this case, it is important to perform dimensionality reduction, i.e., to find a compact
representation of the data that unravels their few degrees of freedom.

The first step of most dimensionality reduction methods is to build a neighborhood graph by con-
necting each data point to a fixed number of nearest neighbors or to all points within a certain radius
of the given point. Local methods, such as LLE [1], Hessian LLE [2] and Laplacian eigenmaps
(LEM) [3], try to preserve local relationships among points by learning a set of weights between
each point and its neighbors. Global methods, such as Isomap [4], Semidefinite embedding [5],
Minimum volume embedding [6] and Structure preserving embedding [7], try to preserve local and
global relationships among all data points. Both categories of methods find the low-dimensional rep-
resentation of the data from a few eigenvectors of a matrix related to the learned weights between
pairs of points.

For both local and global methods, a proper choice of the neighborhood size used to build the
neighborhood graph is critical. Specifically, a small neighborhood size may not capture sufficient
information about the manifold geometry, especially when it is smaller than the intrinsic dimension
of the manifold. On the other hand, a large neighborhood size could violate the principles used to
capture information about the manifold. Moreover, the curvature of the manifold and the density of
the data points may be different in different regions of the manifold, hence using a fix neighborhood
size may be inappropriate.
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1.2 Manifold Clustering

In many real-world problems, the data lie in multiple manifolds of possibly different dimensions.
Thus, to find a low-dimensional embedding of the data, one needs to first cluster the data according
to the underlying manifolds and then find a low-dimensional representation for the data in each
cluster. Since the manifolds can be very close to each other and they can have arbitrary dimensions,
curvature and sampling, the manifold clustering and embedding problem is very challenging.

The particular case of clustering data lying in multiple flat manifolds (subspaces) is well studied and
numerous algorithms have been proposed (see e.g., the tutorial [8]). However, such algorithms take
advantage of the global linear relations among data points in the same subspace, hence they can-
not handle nonlinear manifolds. Other methods assume that the manifolds have different instrinsic
dimensions and cluster the data according to the dimensions rather than the manifolds themselves
[9, 10, 11, 12, 13]. However, in many real-world problems this assumption is violated. Moreover,
estimating the dimension of a manifold from a point cloud is a very difficult problem on its own.

When manifolds are densely sampled and sufficiently separated, existing dimensionality reduction
algorithms such as LLE can be extended to perform clustering before the dimensionality reduction
step [14, 15, 16]. More precisely, if the size of the neighborhood used to build the similarity graph
is chosen to be small enough not to include points from other manifolds and large enough to capture
the local geometry of the manifold, then the similarity graph will have multiple connected compo-
nents, one per manifold. Therefore, spectral clustering methods can be employed to separate the
data according to the connected components. However, as we will see later, finding the right neigh-
borhood size is in general difficult, especially when manifolds are close to each other. Moreover, in
some cases one cannot find a neighborhood that contains only points from the same manifold.

1.3 Paper Contributions

In this paper, we propose an algorithm, called SMCE, for simultaneous clustering and embedding
of data lying in multiple manifolds. To do so, we use the geometrically motivated assumption that
for each data point there exists a small neighborhood in which only the points that come from the
same manifold lie approximately in a low-dimensional affine subspace. We propose an optimization
program based on sparse representation to select a few neighbors of each data point that span a
low-dimensional affine subspace passing near that point. As a result, a few nonzero elements of the
solution indicate the points that are on the same manifold, hence they can be used for clustering. In
addition, the weights associated to the chosen neighbors indicate their distances to the given data
point, which can be used for dimensionality reduction. Thus, unlike conventional methods that
first build a neighborhood graph and then extract information from it, our method simultaneously
builds the neighborhood graph and obtains its weights. This leads to successful results even in
challenging situations where the nearest neighbors of a point come from other manifolds. Clustering
and embedding of the data into lower dimensions follows by taking the eigenvectors of the matrix
of weights and its submatrices, which are sparse hence can be stored and be operated on efficiently.
Thanks to the sparse representations obtained by SMCE, the number of neighbors of the data points
in each manifold reflects the intrinsic dimensionality of the underlying manifold. Finally, SMCE
has only one free parameter that, for a large range of variation, results in a stable clustering and
embedding, as the experiments will show. To the best of our knowledge, SMCE is the only algorithm
proposed to date that allows robust automatic selection of neighbors and simultaneous clustering and
dimensionality reduction in a unified manner.

2 Proposed Method

Assume we are given a collection of N data points {xi ∈ R
D}Ni=1 lying in n different manifolds

{Ml}
n
l=1 of intrinsic dimensions {dl}

n
l=1. In this section, we consider the problem of simultane-

ously clustering the data according to the underlying manifolds and obtaining a low-dimensional
representation of the data points within each cluster.

We approach this problem using a spectral clustering and embedding algorithm. Specifically, we
build a similarity graph whose nodes represent the data points and whose edges represent the simi-
larity between data points. The fundamental challenge is to decide which nodes should be connected
and how. To do clustering, we wish to connect each point to other points from the same manifold. To
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Figure 1: For x1 ∈ M1, the smallest neighborhood containing points from M1 also contains points from
M2. However, only the neighbors in M1 span a 1-dimensional subspace around x1.

do dimensionality reduction, we wish to connect each point to neighboring points with appropriate
weights that reflect the neighborhood information. To simultaneously pursue both goals, we wish to
select neighboring points from the same manifold.

We address this problem by formulating an optimization algorithm based on sparse representation.
The underlying assumption behind the proposed method is that each data point has a small neighbor-
hood in which the minimum number of points that span a low-dimensional affine subspace passing
near that point is given by the points from the same manifold. More precisely:

Assumption 1 For each data point xi ∈ Ml consider the smallest ball Bi ⊂ R
D that contains the

dl + 1 nearest neighbors of xi from Ml. Let the neighborhood Ni be the set of all data points in
Bi excluding xi. In general, this neighborhood contains points from Ml as well as other manifolds.
We assume that for all i there exists ǫ ≥ 0 such that the nonzero entries of the sparsest solution of

‖
∑

j∈Ni

cij(xj − xi)‖2 ≤ ǫ and
∑

j∈Ni

cij = 1 (1)

corresponds to the dl + 1 neighbors of xi from Ml. In other words, among all affine subspaces
spanned by subsets of the points {xj}j∈Ni

and passing near xi up to ǫ error, the one of lowest
dimension has dimension dl and it is spanned by the dl + 1 neighbors of xi from Ml.

In the limiting case of densely sampled data, this affine subspace coincides with the dl-dimensional
tangent space of Ml at xi. To illustrate this, consider the two manifolds shown in Figure 1 and
assume that points x4, x5 and x6 are closer to x1 than x2 or x3. Then any small ball centered at
x1 ∈ M1 that contains x2 and x3 will also contain points x4, x5 and x6. In this case, among affine
spans of all possible choices of 2 points in this neighborhood, the one corresponding to x2 and x3

is the closest one to x1, and is also close to the tangent space of M1 at x1. On the other hand, the
affine span of any choices of 3 or more data points in the neighborhood always passes through x1.
However, this requires a linear combination of more than 2 data points.

2.1 Optimization Algorithm

Our goal is to propose a method that selects, for each data point xi, a few neighbors that lie in the
same manifold. If the neighborhood Ni is known and of relatively small size, one can search for the
minimum number of points that satisfy (1). However, Ni is not known a priori and searching for
a few data points in Ni that satisfy (1) becomes more computationally complex as the size of the
neighborhood increases. To tackle this problem, we let the size of the neighborhood be arbitrary.
However, by using a sparse optimization program, we bias the method to select a few data points
that are close to xi and span a low-dimensional affine subspace passing near xi.

Consider a point xi in the dl-dimensional manifold Ml and consider the set of points {xj}j 6=i. It
follows from Assumption 1 that, among these points, the ones that are neighbors of xi in Ml span
a dl-dimensional affine subspace of RD that passes near xi. In other words,

‖ [x1 − xi · · · xN − xi] ci‖2 ≤ ǫ and 1
⊤ci = 1 (2)

has a solution ci whose dl + 1 nonzero entries corresponds to dl + 1 neighbors of xi in Ml.

Notice that after relaxing the size of the neighborhood, the solution ci that uses the minimum number
of data points, i.e., the solution ci with the smallest number of nonzero entries, may no longer be
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unique. In the example of Figure 1, for instance, a solution of (2) with two nonzero entries can
correspond to an affine combination of x2 and x3 or an affine combination of x2 and xp. To bias
the solutions of (2) to the one that corresponds to the closest neighbors of xi in Ml, we set up an
optimization program whose objective function favors selecting a few neighbors of xi subject to the
constraint in (2), which enforces selecting points that approximately lie in an affine subspace at xi.
Before that, it is important to decouple the goal of selecting a few neighbors from that of spanning
an affine subspace. To do so, we normalize the vectors {xj − xi}j 6=i and let

Xi ,

[

x1−xi

‖x1−xi‖2

· · · xN−xi

‖xN−xi‖2

]

∈ R
D×N−1. (3)

In this way, for a small ε, the locations of the nonzero entries of any solution ci of ‖Xici‖2 ≤ ε do
not depend on whether the selected points are close to or far from xi. Now, among all the solutions
of ‖Xici‖2 ≤ ε that satisfy 1

⊤ci = 1, we look for the one that uses a few closest neighbors of
xi. To that end, we consider an objective function that penalizes points based on their proximity to
xi. That is, points that are closer to xi get lower penalty than points that are farther away. We thus
consider the following weighted ℓ1-optimization program

min ‖Qici‖1 subject to ‖Xici‖2 ≤ ε, 1
⊤ci = 1, (4)

where the ℓ1-norm promotes sparsity of the solution [17] and the proximity inducing matrix Qi,
which is a positive-definite diagonal matrix, favors selecting points that are close to xi. Note that
the elements of Qi should be chosen such that the points that are closer to xi have smaller weights,
allowing the assignment of nonzero coefficients to them. Conversely, the points that are farther from
xi should have larger weights, favoring the assignment of zero coefficients to them. A simple choice

of the proximity inducing matrix is to select the diagonal elements of Qi to be
‖xj−xi‖2∑
t 6=i

‖xt−xi‖2

∈

(0, 1]. Also, one can use other types of weights, such as exponential weights
exp(‖xj−xi‖2/σ)∑
t 6=i

exp(‖xt−xi‖2/σ)

where σ > 0. However, the former choice of the weights, which is also tuning parameter free, works
very well in practice, as we will show later.

Another optimization program which is related to (4) by the method of Lagrange multipliers, is

minλ ‖Qici‖1 +
1

2
‖Xici‖

2
2 subject to 1

⊤ci = 1, (5)

where the parameter λ sets the trade-off between the sparsity of the solution and the affine recon-
struction error. Notice that this new optimization program, which also prefers sparse solutions, is
similar to the Lasso optimization problem [18, 17]. The only modification, is the introduction of the
affine constraint 1⊤ci = 1. As we will show in the next section, there is a wide range of values of
λ for which the optimization program in (5) successfully finds a sparse solution for each point from
neighbors in the same manifold.

Notice that, in sharp contrast to the nearest neighbors-based methods, which first fix the number
of neighbors or the neighborhood radius and then compute the weights between points in each
neighborhood, we do the two steps at the same time. In other words, the optimization programs (4)
and (5) automatically choose a few neighbors of the given data point, which approximately span
a low-dimensional affine subspace at that point. In addition, by the definition of Qi and Xi, the
solutions of the optimization programs (4) and (5) are invariant with respect to a global rotation,
translation, and scaling of the data points.

2.2 Clustering and Dimensionality Reduction

By solving the proposed optimization programs for each data point, we obtain the necessary

information for clustering and dimensionality reduction. This is because the solution c⊤i ,

[ci1 · · · ciN ] of the proposed optimization programs satisfies
∑

j 6=i

cij
‖xj − xi‖2

(xj − xi) ≈ 0. (6)

Hence, we can rewrite xi ≈ [x1 x2 · · · xN ]wi, where the weight vector w⊤
i ,

[wi1 · · · wiN ] ∈ R
N associated to the i-th data point is defined as

wii , 0, wij ,
cij/‖xj − xi‖2

∑

t 6=i cit/‖xt − xi‖2
, j 6= i. (7)
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The indices of the few nonzero elements of wi, ideally, correspond to neighbors of xi in the same
manifold and their values indicate their (inverse) distances to xi.

Next, we use the weights wi to perform clustering and dimensionality reduction. We do so by
building a similarity graph G = (V,E) whose nodes represent the data points. We connect each
node i, corresponding to xi, to the node j, corresponding to xj , with an edge whose weight is equal
to |wij |. While, potentially, every node can get connected to all other nodes, because of the sparsity
of wi, each node i connects itself to only a few other nodes that correspond to the neighbors of xi

in the same manifold. We call such neighbors as sparse neighbors. In addition, the distances of the
sparse neighbors to xi are reflected in the weights |wij |.

The similarity graph built in this way has ideally several connected components, where points in
the same manifold are connected to each other and there is no connection between two points in
different manifolds. In other words, the similarity matrix of the graph has ideally the following form

W , [ |w1| · · · |wN | ]=









W [1] 0 · · · 0

0 W [2] · · · 0

...
...

. . .
...

0 0 · · · W [n]









Γ, (8)

where W [l] is the similarity matrix of the data points in Ml and Γ ∈ R
N×N is an unknown

permutation matrix. Clustering of the data follows by applying spectral clustering [19] to W .1 One
can also determine the number of connected components by analyzing the eigenspectrum of the
Laplacian matrix [20].

Any of the existing dimensionality reduction techniques can be applied to the data in each cluster to
obtain a low-dimensional representation of the data in the corresponding manifold. However, this
would require new computation of neighborhoods and weights. On the other hand, the similarity
graph built by our method has a locality preserving property by the definition of the weights. Thus,
we can use the adjacency matrix, W [i], of the i-th cluster as a similarity between points in the
corresponding manifold and obtain a low-dimensional embedding of the data by taking the last few
eigenvectors of the normalized Laplacian matrix associated to W [i] [3]. Note that there are other
ways for inferring the low-dimensional embedding of the data in each cluster along the line of [21]
and [1] which is beyond the scope of the current paper.

2.3 Intrinsic Dimension Information

An advantage of proposed sparse optimization algorithm is that it provides information about the
intrinsic dimension of the manifolds. This comes from the fact that a data point xi ∈ Ml and its
neighbors in Ml lie approximately in the dl-dimensional tangent space of Ml at xi. Since dl + 1
vectors in this tangent space are linearly dependent, the solution ci of the proposed optimization
programs is expected to have dl +1 nonzero elements. As a result, we can obtain information about
the intrinsic dimension of the manifolds in the following way. Let Ωl denote the set of indices of
points that belong to the l-th cluster. For each point in Ωl, we sort the elements of |ci| from the
largest to the smallest and denote the new vector as cs,i. We define the median sparse coefficient
vector of the l-th cluster as

msc(l) = median{cs,i}i∈Ωl
, (9)

whose j-th element is computed as the median of the j-th elements of the vectors {cs,i}i∈Ωl
. Thus,

the number of nonzero elements of msc(l) or, more practically, the number of elements with rela-
tively high magnitude, gives an estimate of the intrinsic dimension of the l-th manifold plus one.2

An advantage of our method is that it allows us to have a different neighborhood size for each data
point, depending on the local dimension of its underlying manifold at that point. For example, in the
case of two manifolds of dimensions d1 = 2 and d2 = 30, for data points in the l-th manifold we
automatically obtain solutions with dl + 1 nonzero elements. On the other hand, methods that fix
the number of neighbors fall into trouble because the number of neighbors would be too small for
one manifold or too large for the other manifold.

1Note that a symmetric adjacency matrix can be obtained by taking W = max(W ,W⊤).
2One can also use the mean of the sorted coefficients in each cluster to compute the dimension of each

manifold. However, we prefer to use the median for robustness reasons.
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SMCE, ! = 0.1 SMCE, ! = 1 SMCE, ! = 10 SMCE, ! = 100

LLE, K = 5 LEM, K = 5 LLE, K = 20 LEM, K = 20

Figure 2: Top: embedding of a punctured sphere and the msc vectors obtained by SMCE for different values
of λ. Bottomn: embedding obtained by LLE and LEM for different values of K.

SMCE LLE

Figure 3: Clustering and embedding for two trefoil-knots. Left: original manifolds. Middle: embedding and
msc vectors obtained by SMCE. Right: clustering and embedding obtained by LLE.

3 Experiments

In this section, we evaluate the performance of SMCE on a number of synthetic and real experiments.
For all the experiments, we use the optimization program (5), where we typically set λ = 10.
However, the clustering and embedding results obtained by SMCE are stable for λ ∈ [1, 200]. Since
the weighted ℓ1-optimization does not select the points that are very far from the given point, we
consider only L < N − 1 neighbors of each data point in the optimization program, where we
typically set L = N/10. As in the case of nearest neighbors-based methods, there is no guarantee
that the points in the same manifold form a single connected component of the similarity graph built
by SMCE. However, this has always been the case in our experiments, as we will show next.

3.1 Experiments with Synthetic Data

Manifold Embedding. We first evaluate SMCE for the dimensionality reduction task only. We
sample N = 1, 000 data points from a 2-sphere, where a neighborhood of its north pole is excluded.
We then embed the data in R

100, add small Gaussian white noise to it and apply SMCE for λ ∈
{0.1, 1, 10, 100}. Figure 2 shows the embedding results of SMCE in a 2 dimensional Euclidean
space. The three large elements of the msc vector for different values of λ correctly reflect the fact
that the sphere has dimension two. However, note that for very large values of λ the performance
of the embedding degrades since we put more emphasis on the sparsity of the solution. The results
in the bottom of Figure 2 show the embeddings obtained by LLE and LEM for K = 5 and K =
20 nearest neighbors. Notice that, for K = 20, nearest neighbor-based methods obtain similar
embedding results to those of SMCE, while for K = 5 they obtain poor embedding results. This
suggests that the principle used by SMCE to select the neighbors is very effective: it chooses very
few neighbors that are very informative for dimensionality reduction.

Manifold Clustering and Embedding. Next, we consider the challenging case where the mani-
folds are close to each other. We consider two trefoil-knots, shown in Figure 3, which are embedded
in R

100 and are corrupted with small Gaussian white noise. The data points are sampled such that
among the 2 nearest neighbors of 1% of the data points there are points from the other manifold.
Also, among the 3 and 5 nearest neighbors of 9% and 18% of the data points, respectively, there
are points from the other manifold. For such points, the nearest neighbors-based methods will con-
nect them to nearby points in the other manifold and assign large weights to the connection. As a
result, these methods cannot obtain a proper clustering or a successful embedding. Table 1 shows
the misclassification rates of LLE and LEM for different number of nearest neighbors K as well as
the misclassification rates of SMCE for different values of λ. While there is no K for which we can
successfully cluster the data using LLE and LEM, for a wide range of λ, SMCE obtains a perfect
clustering. Figure 3 shows the results of SMCE for λ = 10 and LLE for K = 3. As the results
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Table 1: Misclassifications rates for LLE and LEM as a function of K and for SMCE as a function of λ.

K 2 3 4 5 6 8 10
LLE 15.5% 9.5% 16.5% 13.5% 16.5% 37.5 38.5%
LEM 15.5% 13.5% 17.5% 14.5% 28.5% 28.5% 13.5%

λ 0.1 1 10 50 70 100 200
SMCE 15.5% 6.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 2: Percentage of data points whose K nearest neighbors contain points from the other manifold.

K 1 2 3 4 7 10
3.9% 10.2% 23.4% 35.2% 57.0% 64.8%

show, enforcing that the neighbors of a point from the same manifold span a low-dimensional affine
subspace helps to select neighbors from the correct manifold and not from the other manifolds. This
results in successful clustering and embedding of the data as well as unraveling the dimensions of
the manifolds. On the other hand, the fact that LLE and LEM choose wrong neighbors, results in a
low quality embedding.

3.2 Experiments with Real Data

In this section, we examine the performance of SMCE on real datasets. We show that challenges
such as manifold proximity and non-uniform sampling are also common in real data sets, and that
our algorithm is able to handle these issues effectively.

First, we consider the problem of clustering and embedding of face images of two different subjects
from the Extended Yale B database [22]. Each subject has 64 images of 192 × 168 pixels captured
under a fixed pose and expression and with varying illuminations. By applying SMCE with λ =
10 on almost 33, 000-dimensional vectorized faces, we obtain a misclassification rate of 2.34%,
which corresponds to wrongly clustering 3 out of the 128 data points. Figure 4, top row, shows the
embeddings obtained by SMCE, LLE and LEM for the whole data prior to clustering. Only SMCE
reasonably separates the low-dimensional representation of face images according to the subjects.
Note that in this experiment, the space of face images under varying illumination is not densely
sampled and in addition the two manifolds are very close to each other. Table 2 shows the percentage
of points in the dataset whose K nearest neighbors contain points from the other manifold. As the
table shows, there are several points whose closest neighbor comes from the other manifold. Beside
the embedding of each method in Figure 4 (top row), we have shown the coefficient vector of a
data point in M1 whose closest neighbor comes from M2. While nearest-neighbor-based methods
pick the wrong neighbors with strong weights, SMCE successfully selects sparse neighbors from the
correct manifold. The plots in the bottom of Figure 4 show the embedding obtained by SMCE for
each cluster. As we move along the horizontal axis, the direction of the light source changes from
left to right, while as we move along the vertical axis, the overall darkness of the images changes
from light to dark. Also, the msc vectors suggest a 2-dimensionality of the face manifolds, correctly
reflecting the number of degrees of freedom of the light source on the illumination rig, which is a
sphere in R

3.

Figure 5: 2-D embedding of Frey face data using SMCE.

Next, we consider the dimensionality
reduction of the images in the Frey
face dataset, which consists of 1965
face images captured under varying
pose and expression. Each image is
vectorized as a 560 element vector of
pixel intensities. Figure 5 shows the
two-dimensional embedding obtained by
SMCE. Note that the low-dimensional
representation captures well the left to
right pose variations in the horizontal
axis and the expression changes in the
vertical axis.
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Figure 4: Clustering and embedding of two faces. Top: 2-D embedding obtained by SMCE, LLE and LEM.
The weights associated to a data point from the first subject are shown beside the embedding. Bottom: SMCE
embedding and msc vectors.
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Figure 6: Clustering and embedding of five digits from the MNIST dataset. Left: 2-D embedding obtained by
SMCE for five digits {0, 3, 4, 6, 7}. Middle: 2-D embedding of the data in the first cluster that corresponds to
digit 3. Right: 2-D embedding of the data in the second cluster that corresponds to digit 6.

Finally, we consider the clustering and dimensionality reduction of the digits from the MNIST test
database [23]. We use the images from five digits {0, 3, 4, 6, 7} in the dataset where we randomly
select 200 data points from each digit. The left plot in Figure 6 shows the joint embedding of the
whole data using SMCE. One can see that the data are reasonably well separated according to their
classes. The middle and the right plots in Figure 6, show the two-dimensional embedding obtained
by SMCE for two data clusters, which correspond to the digits 3 and 6.

4 Discussion

We proposed a new algorithm based on sparse representation for simultaneous clustering and dimen-
sionality reduction of data lying in multiple manifolds. We used the solution of a sparse optimization
program to build a similarity graph from which we obtained clustering and low-dimensional embed-
ding of the data. The sparse representation of each data point ideally encodes information that can
be used for inferring the dimensionality of the underlying manifold around that point. Finding ro-
bust methods for estimating the intrinsic dimension of the manifolds from the sparse coefficients and
investigating theoretical guarantees under which SMCE works is the subject of our future research.
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