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Abstract

In this paper, we consider the problem of structure recovery in
Markov Network over Gaussian variables, that is equivalent
to finding the zero-pattern of the sparse inverse covariance
matrix. Recently proposed [, -regularized optimization meth-
ods result into convex problems that can be solved optimally
and efficiently. However, the accuracy such methods can be
quite sensitive to the choice of regularization parameter, and
optimal selection of this parameter remains an open problem.
Herein, we adopt a Bayesian approach, treating the regular-
ization parameter(s) as random variable(s) with some prior,
and using MAP optimization to find both the inverse covari-
ance matrix and the unknown regularization parameters. Our
general formulation allows a vector of regularization param-
eters and is well-suited for learning structured graphs such as
scale-free networks where the sparsity of nodes varies signif-
icantly. We present promising empirical results on both syn-
thetic and real-life datasets, demonstrating that our approach
achieves a better balance between the false-positive and false-
negative errors than commonly used approaches.

Introduction

In many applications of statistical learning the objective is
not simply to construct an accurate predictive model but
rather to discover meaningful interactions among the vari-
ables. This is particularly important in biological applica-
tions such as, for example, reverse-engineering of gene reg-
ulatory networks, or reconstruction of brain-activation pat-
terns from functional MRI (fMRI) data. Probabilistic graph-
ical models, such as Markov networks (or Markov Random
Fields), provide a principled way of modeling multivariate
data distributions that is both predictive and interpretable.

A standard approach to learning Markov network struc-
ture is to choose the simplest model, i.e. the sparsest net-
work, that adequately explains the data. Formally, this
leads to regularized maximum-likelihood problem with the
penalty on the number of parameters, or [y norm, a gener-
ally intractable problem that was often solved approximately
by greedy search (Heckerman 1995). Recently, even bet-
ter approximation methods were suggested (Meinshausen &
Buhlmann 2006; Wainwright, Ravikumar, & Lafferty 2007;
Yuan & Lin 2007; O.Banerjee, El Ghaoui, & d’ Aspremont
2008; Friedman, Hastie, & Tibshirani 2007; Duchi, Gould,
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& Koller 2008) that exploit sparsity-enforcing property of
l1-norm regularization and yield convex optimization prob-
lems that can be solved efficiently. However, those ap-
proaches are known to be sensitive to the choice of the reg-
ularization parameter, i.e. the weight on [;-penalty, and to
the best of our knowledge, selecting the optimal value of
this parameter remains an open problem. Indeed, the two
most commonly used approaches are (1) cross-validation
and (2) theoretical derivations. However, A\ selected by
cross-validation, i.e. the estimate of the prediction-oracle
solution that maximizes the test data likelihood (i.e. min-
imizes the predictive risk) is typically too small and yields
high false-positive rate'. On the other hand, theoretically de-
rived A (see (O.Banerjee, El Ghaoui, & d’ Aspremont 2008))
has asymptotic guarantee of correct recovery of the connec-
tivity components (rather than edges), which correspond to
marginal rather than conditional independencies, i.e. to the
entries in covariance rather then the inverse covariance ma-
trix. Although such approach is asymptotically consistent,
for finite number of samples it tends to miss many edges,
resulting into high false-negative error rates.

In this paper, we propose a Bayesian approach to regu-
larization parameter selection, that also generalizes to the
case of vector-), allowing to choose, if necessary, a differ-
ent sparsity level for different nodes in the network. (This
work extends our approach to scalar-\ selection proposed
in (Asadi et al. 2009); for completeness sake, we will
also summarize here the results from (Asadi er al. 2009)).
More specifically, the regularization parameter controlling
the sparsity of solution are considered to be random variable
with particular priors, and the objective is to find a MAP so-
lution (©, A), where O is the set of model parameters and
A is the set of regularization parameters. Our algorithm
is based on alternating optimization over © and A, respec-
tively. Empirical results demonstrate that our approach com-
pares favorably to previous approaches, achieving a better
balance between the false-positive and false-negative errors.

Note that our general formulation is well-suited for learn-

'This is actually not surprising as it is well known that cross-
validated A for the prediction objective can be a bad choice for the
structure recovery/model selection in [;-regularized setting (e.g.,
see (Meinshausen & Buhlmann 2006) for examples when A se-
lected by cross-validation leads to provably inconsistent structure
recovery).



ing structured networks with potentially very different node
degrees (and thus different sparsity of the columns in the in-
verse covariance matrix). One common practical example
of such networks are networks with heavy-tail (power-law)
degree distributions, also called scale-free networks. Ex-
amples of such networks include social networks, protein
interaction networks, Internet, world wide web, correlation
networks between active brain areas in fMRI studies (V.M.
Eguiluz and D.R. Chialvo and G.A. Cecchi and M. Baliki
and A.V. Apkarian 2005), and many other real-life networks
(see (Barabasi & Albert 1999) for a survey). Empirical re-
sults on both random and structured (power-law) networks
demonstrate that our approach compares favorably to pre-
vious approaches, achieving a better balance between the
false-positive and false-negative errors.

Our Approach

Let X = {Xj,...,X,} be a set of p random variables, and
let G = (V, E) be a Markov network (a Markov Random
Field, or MRF) representing the conditional independence
structure of the joint distribution P(X). The set of vertices
V = {1,...,,p} is in a one-to-one correspondence with the
set of variables in X. The edge set E contains an edge (i, j)
if and only if X; is conditionally dependent on X; given all
remaining variables; the lack of edge between X; and X
means that the two variables are conditionally independent
given all remaining variables (Lauritzen 1996).

We will assume a multivariate Gaussian probability den-
sity function over X = {X7,..., X, }:

p(x) = (21) 7P/ det() " zem 2w T BT m) n

where p is the mean and 3 is the covariance matrix of the
distribution, respectively, and x” denotes the transpose of
the column-vector x. Without loss of generality we will
assume that the data are normalized to have zero mean
(u = 0), and we only need to estimate the parameter > (or
%71, Since det(X) ! = det(X71), we can now rewrite eq.
1, assuming C' = X! and p = 0:

p(x) = (2m) P/2 det(C) 2 e 5% Ox, @

Missing edges in the above graphical model correspond
to zero entries in the inverse covariance matrix C' = Y1,
and thus the problem of structure learning for the above
probabilistic graphical model is equivalent to the problem
of learning the zero-pattern of the inverse-covariance ma-
trix. Note that the inverse of the maximum-likelihood esti-
mate of the covarlance matrlx Y (i.e. the empirical covari-
ance matrix A = Zl 1 xT'x; where x; is the i-th sample,
i = 1,...,n), even if it ex1sts does not typically contain
any elements that are exactly zero. Therefore an explicit
sparsity-enforcing constraint needs to be added to the esti-
mation process.

A common approach is to include as penalty the [;-norm
of C, which is equivalent to imposing a Laplace prior on C'
in maximum-likelihood framework (O.Banerjee, El Ghaoui,
& d’ Aspremont 2008; Friedman, Hastie, & Tibshirani 2007;
Yuan & Lin 2007; Duchi, Gould, & Koller 2008). For-
mally, the entries C;; of the inverse covariance matrix C are

assumed to be independent random variables, each follow-

ing a Laplace distribution p(C;;) = %e*/\ii |Cis—ais] with

zero location parameter (mean) «;; and common scale pa-
rameter \;; = A, yielding p(C) = [[}_, le p(Cij) =

(A2 e NICIL where [|C|ly = ,; [Cyyl is the (vec-
tor) [;-norm of C. Then the objective is to find the
maximum-likelihood solution arg maxcyo p(C|X), where
X is the n X p data matrix, or equivalently, since p(C|X) =
P(X,C)/p(X) and p(X) does not include C, to find
arg maxcso P(X, C), over positive definite matrices C.
This yields the following optimization problem consid-
ered in (O.Banerjee, El Ghaoui, & d’Aspremont 2008;
Friedman, Hastie, & Tibshirani 2007; Yuan & Lin 2007;
Duchi, Gould, & Koller 2008):

Ig&glndet(C) tr(AC) — N|C||1 3)
where det(Z) and tr(Z) denote the determinant and the
trace (sum of the diagonal elements) of a matrix Z, respec-
tively.

Herein, we make a more general assumption about p(C),
allowing different rows in C' to have different parameters
Ny i€, p(Cyj) = %e"\”CU' This reflects our desire to
model structured networks with potentially very different
node degrees (i.e., row densities in C’) This yields p(C) =
I, ? 1 Lef)\ Gl = =TT0_, 2;367)\ L= 1Gul,

Moreover, we will take Bayesian approach and assume
that parameters ), are also random variables following some
joint distribution p({\;}). Given a dataset X of n samples
(rows) of vector X, the joint log-likelihood can be then writ-
ten as

In L(X, C,{Ai}) = In{p(X|C)p(CHA Dp({Ai})} =

1< N
3 ZX?CXZ' +len 517
i=1 i
P P
=D A 1C] + Inp({Ai),
i =1

where const does not depend on C or {\;}.

We can also rewrite > x! Cx; = ntr(AC’) where tr
denotes the trace of a matrix, and A = }L S xTPx; is the
empirical covariance matrix.

We will use the maximum a posteriori probability (MAP)
approach that requires maximization of the above joint log-
likelihood, rewritten as

const + gln det(C) —

n
Ci%%{)ii}i[lndet(C) — tr(AC)] zi:)\ Z|CUH-

p
+p Y I +Inp({Ai}),

where C' = 0 constraint ensures the solution C' (inverse co-
variance matrix) is positive definite.

We considered independent \; with several types of priors
p(A;): (1) uniform (flat), (2) exponential and (3) Gaussian.
The uniform (flat) prior puts equal weight on all values of



A € [0,A;] (assuming sufficiently high A;), and thus ef-
fectively ignores p();); this prior was used in Regularized
Likelihood method discussed in the next section.

The exponential priors p(\;) = b;e~b*i yield:

n

max
C>0,A€ERP 2 -
7

P P

Rather than taking a more expensive, fully Bayesian ap-
proach here and integrating out C' in order to obtain the
maximum-likelihood type II estimate of b;, we will use an
approximate estimate b; = ||A(i);!||1/p, where A, =
A + €l is the empirical covariance matrix?, and A, (i) de-
notes its i-th row. In other words, b; is estimated as an aver-
age l1-norm per element of i-th row.

Finally, we also considered the truncated (to exclude neg-
ative values of A) unit-variance Gaussian prior which re-
places Y% b;\; in the equation above with > 7' (\; — b;)? /2.

[Indet(C) — tr(AC)] — i i i |Ci5] +

Fixed-Point Method for )\ Selection

We shall now address the optimization problem arising in
selection of parameter A as discussed in Section .

Scalar )\

We consider the following optimization problems:

rgaxg[ln det(C) —tr(AC)] = A C|ls +p*InA—B0(N), (5)
where 6(\) is some given function of A derived from the par-
ticular prior p(\). By ||C||s we denote the sum of absolute
values of the elements of the matrix S - C, where - denotes
the element-wise product, where .S is a given p X p matrix
with nonnegative entries.

Let f(C) = §[Indet(C) — tr(AC)], and let us consider
the following function:

H(N) = max f(C) = A|Cls.

The function %[Indet(C) — tr(AC)] — M||C||s is strictly
concave and, hence, has a unique maximizer C'()\) for any
value of A\. From general theory of convex optimization in
we know that ¢ () is a differentiable convex function whose
derivative for any given A equals ||C'())||s. The proof of this
simple fact can be found in the Appendix.

Lemma 1 ¢()\) is a differentiable convex function whose
derivative for any given X equals —||C'(\)||s.

Now let us consider the following optimization problem

max 1(\) = max () + p?Ind —0(N). (6)
Clearly, the optimal solution to this problem is also optimal

for problem (5). To find ¢(\) one needs to solve the sparse
inverse covariance selection problem with a fixed value of \.

Zslightly regularized with small € = 102 on the diagonal to
obtain an invertible matrix when A is not invertible.

This can be done by applying one of the techniques recently
proposed for this method, such as, (O.Banerjee, El Ghaoui,
& d’ Aspremont 2008; Friedman, Hastie, & Tibshirani 2007;
Duchi, Gould, & Koller 2008; Rot 2008). Herein, we used
the glasso method proposed in (Friedman, Hastie, & Tibshi-
rani 2007).

Notice that 1)() is a sum of a convex and a concave func-
tions, hence is neither convex nor concave and may have
multiple local optima. In our experiments with 6(\) = bA
we observed that the maximum was unique in most of the
cases. In the rare case when it appeared to be not unique, it
was not clear if such was the true nature of ¥ ([) or a result
of inaccuracies in the solution of the convex subproblems.?

We will describe the optimization scheme to solve prob-
lem 6 in the next section, focusing on the exponential prior.
A similar analysis and an update rule can be derived for the
Gaussian prior on .

Vector )\

Now let us consider a similar problem to (5), but with X -
a vector of weights for the S-norm of the columns of C.
Hence we will now consider a vector norm ||C; || s, which is
the same the matrix norm we discussed before, applied to
columns (or rows) of C and S.
D

n

5 Indet(C) — tr(AC)] - > xlcl

i=1

Si

p p
i=1 i=1

As before, let f(C) = F[Indet(C) — tr(AC)], and
6(N) = max 1(C) ~ N|Clls.

Notice that, for any fixed A, >, A\ ||Ci||s, = [|C||a.s, where
A - S is a matrix whose i-th column equals A;.S; for all 7.
This implies that for any fixed and given A and X function
@(8) = ¢p(A+ 6X) reduces to the case of the univariate ¢(\)
described in the previous section. This implies, for instance,
that the multivariate function ¢(\) is convex in any direc-
tion, hence is convex in general. Also from the analysis in

3Let us consider exponential prior. The derivative of ¥()) is
p?/A — ||C(N\)||s — b. Here are some observations which help
explain why a unique stationary point is typical for the case when
6(X) = bA. We are considering all point for which ¢(\) = 0.
Multiplying the expression for the gradient by nonnegative A we
have that
A (V) = p* = AICOV) s — bA

If the quantity A||C'()\)||s increases as A grows (which is expected
since the decrease of \ usually slows down with the growth of \)
then the right hand side of the last equality is a decreasing function
of A. Hence the equality to zero can only be achieved for a single
value of A which would imply unique maximum. We are not yet
aware of any theoretical result that guarantees that \||C'(\)]||s in-
creases monotonically with A\ but we have consistently observed it
in the experiments. Note also that for sufficiently small A the quan-
tity A’(\) is positive, while for sufficiently large X it becomes
negative. Hence an existence of at least one local maximum is al-
ways guaranteed.



the previous section it is easy to see that the ¢-th element of
the gradient of ¢(\) equals —||C; ()]s, -

Now we consider ¢(\) = @A) + pd b In)\, —
>-P_, biA;. This function is again neither concave nor con-
vex. Its gradient is

where C'()) is, again, the maximizer of f(C) — A||C||s for
a given A. Hence for \* which maximizes () we have

1C;(A)|ls; +b; =p/A;, i=1,....p,
or, equivalently,
Al b ,i=1,...,p.

C GO s, + b
Hence \* is a fixed point of the following operator T'(\) =
p/(|IC(N)|ls + b), where by p/(||C(N)||s + b) we mean a
p-dimensional vector with entries p/(||C;(M\)||s;, + bi). To
solve this problem we consider applying the following fixed
point algorithm

0. Initialize )\1;
1. find C(\F) and ¢(A*);

2. 1If Z(p/Ai ~ [@10%]

3. /\fJrl = p/(||C’7;()\k)||gi + b;); go to step 1.
4. end

Note that in Step 1 we perform a standard inverse covariance
selection optimization problem with fixed A such as is done
in the previous section.

In our experiments the fixed point algorithm presented
above converged in every experiment. While we do not have
theoretical guarantees of the convergence of the algorithm,
we will present a modification of the algorithm which in-
vokes a line search algorithm in case the fixed point itera-
tion fails to provide sufficient improvement in the objective
function ¥(A).

We apply the following optimization algorithm.

s, — bi)? < € go to step 4.

. Initialize )\1;
1. find C(A\*) and ¢(\F);
2. I Y (p/hi — |G|

AT =p/(ICA)1s, + bi); ©)
find C;(A\**1) and (\FT1);
if YA > p(NF) k =k + 1, go to step 3.
else \FT1 = (AF - \F1) /2. Go to step 4.
5. end

The proposed algorithm performs a line search along the di-
rection d defined by d; = p/(||Ci(A)]] s, +bi) — Ai, while the
gradient of 1)(\) equals g such that g; = p/A;—||Ci(N)]| s, —

b;. If we consider the inner product, we have d g=
D@/ QICNIs; +b:) + MilICi(W s, +bi) — 2p) =

i

s, — bi)? < egotostep 5.

;1) Z(p//\i(l\cv:(k)l\si + i) + Xi([|Ci(N)[s; + bi)/p = 2) 2 0.

Hence, unless p = A;||C;(\)||s, for all 4, then we know
the direction d makes and obtuse angle with the gradient
and, thus, is an ascent direction. In the case when p =
Ai|lCi(N)||s; for all 4, then the gradient of () is zero and
the algorithm have converged to a local stationary point. In
fact we can show that

T
d"g/ldlllgl > const >0,

for all cases when ||d||||g|| > 0, which means that the cosine
of angle between the gradient and the direction d remains
bounded away from zero, which will in turn imply that suf-
ficient ascent can always be achieved by a line search along

direction d. Indeed, from ||d||||g]] < w we have

d"g/lld|||lgll >
P @/ O(IC: M s; + b)) + Xi(IC:s(V)lls; + bi) — 2p)
= (5 = (ICWls: +00))* + (g7 — M)

i

2

>

P
Do X(lICi(N) ls; + bi) > const > 0.

i=1

The last inequality comes from the facts that (||C;(\)]|s, +
b;) > b;)andthat \; > 6 > Oforalli=1,...,p.

The advantage of the Algorithm (7) is that, while theo-
retically convergent to the optimum solution, it only resorts
to line search if the initial fixed point iteration fails. Hence,
in practice, no extra work is necessary to apply this algo-
rithm. In our experiment the number of fixed point iterations
was small compared to the dimension p and the algorithm
worked very efficiently. The work of each iteration is es-
sentially the same as the work taken by a single solve of the
inverse covariance problem, but since the consecutive solves
are related, one can successfully utilize warm starts.

Flat Prior: Specific Case

Assuming the flat prior on \ is equivalent to setting b = 0
in the exponential-prior formulation. However, when n <<
p, the term p?In A may dominate the total sum and ()
may be unbounded from above. In order to handle the flat
prior case, we propose the following modified optimization
procedure. Let

o(\) = max % Indet(C) — gtr(SC’) = AMICll1,0,

where ||C||1,0 is a sum of the absolute values of all off-
diagonal elements of C' and let C'(\) be the solution to the
above convex optimization problem. As A grows the max-
imum eigenvalue of C'(A) no longer converges to zero. In
fact one can show that the diagonal elements of C'(\) will
converge to the inverse of diagonal of the empirical covari-
ance matrix S. Now we consider the following regularized
version of the maximum log-likelihood problem

max ¢ (A) = max p(A) +p*InA— )\Z ICiul. (®)

As in the case of positive b we can show here that a finite
maximum always exists. The advantage of this formulation,
referred to as Regularized Likelihood, is that it does not de-
pend on the choice of b and the regularization term arises
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Figure 1: Results on very sparse random networks (4% density).
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Figure 2: Results on dense random networks (52% density).

naturally from the optimization algorithm. The drawback of
this approach is that it no longer can be interpreted as a joint
likelihood optimization problem. A procedure, very simi-
lar to the algorithm described above can be applied to this
regularized approach. The computational results in the next
section show that this approach produces good empirical re-
sults.

Empirical Evaluation

In order to test structure-reconstruction accuracy, we per-
formed experiments on several types of synthetic problems.
(Note that, unlike prediction of an observed variable, struc-
ture reconstruction accuracy is harder to test on “real” data
since (1) the “true” structure my not be available and (2)
known links in “real” networks (e.g., known gene networks)
may not necessarily correspond to links in the underlying
Markov net.)

In all our experiments, we used glasso (Friedman, Hastie,
& Tibshirani 2007) method to solve the sparse inverse co-
variance selection problem with a fixed value of A (a sub-
problem in our alternating minimization scheme); we also
used glasso (Friedman, Hastie, & Tibshirani 2007) when
choosing A via cross-validation (described below).

First, we experimented with uniform random matri-
ces. We generated two ‘“ground-truth” random inverse-
covariance matrices: a very sparse one, with only 4% (off-

diagonal) non-zero elements, and a relatively dense one,
with 52% (off-diagonal) non-zero elements. We then sam-
pled n = 30, 50, 500, 1000 instances from the correspond-
ing multivariate Gaussian distribution over p = 100 vari-
ables. We used two methods for Bayesian learning of A
discussed in the previous section: (1) Regularized Likeli-
hood and (2) Exponential Prior. We compared the structure-
learning performance as well as the prediction performance
of the Bayesian A\ with the two other alternatives: (1) A
selected by cross-validation using the prediction error and
(2) theoretically derived A\ from (O.Banerjee, El Ghaoui, &
d’ Aspremont 2008). Figures 1 and 2 show the results on
a sparse (4% link density) and a dense (52% link density)
random matrices, respectively. We can clearly see that: (1)
cross-validated A (green) overfits dramatically, producing al-
most complete matrix (almost 100% false-positive rate); (2)
theoretically derived A (Banerjee et al. 2006) (shown in
black) is too conservative: it misses almost all edges (has
a very high false-negative rate); (3) prior-based approaches -
flat prior (red) and exponential prior (blue) yield much more
balanced trade-off between the two typos of errors.

We also experimented with semi-realistic, “structured”
random networks that followed a power-law degree dis-
tribution over the variables. The networks were gener-
ated using the preferential attachment (Barabasi-Albert)
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Figure 3: Results on scale-free networks (21% density).

model (Barabasi & Albert 1999) 4, that produces “scale-
free” (power-law) networks containing (relatively few) very
highly connected “hubs” besides a large number of sparsely
connected nodes. Although such networks are sparse in
terms of total number of edges, their power-law structure is a
natural candidate for using vector rather than scalar sparsity
parameter.

We generated power-law networks with density 5%, 21%
and 31%, measured by the % of non-zero off-diagonal en-
tries. For each density level, we generated 5 different
power-law networks over p = 100 variables, that defined
the structure of the “ground-truth” inverse covariance ma-
trix, and for each of them, we generated 5 matrices with
randomly generated covariances corresponding to the non-
diagonal non-zero entries (bounded by 0.1 in order to ensure
the resulting matrix is positive-definite)® We then sampled
n = 50, 100, 200, 500, 1000, 10000 instances from the cor-
responding multivariate Gaussian distribution over p = 100
variables.

We evaluated the following methods of selecting A when
reconstructing the sparse MRF structure from data: (1) the-
oretical )\ - theoretically derived )\ in (Banerjee ef al. 2006);
(2) cross-validation X is selected as one giving best aver-
age prediction (i.e. minimizing the sum-squared prediction
error) over the network nodes; (3) “exponential scalar” and
(4) “exponential vector” correspond to parameter selected
using our method with exponential prior, its scalar and vec-
tor versions, respectively; (5) Gaussian scalar and (6) Gaus-
sian vector are defined similarly for Gaussian prior; (7) fixed
A = 1/b simply assigns to A the mean of the exponential
distribution estimated directly from the data as mentioned
in section ; finally (8) flat (“regularized likelihood”) corre-
sponding to the flat-prior version, along with the other scalar
priors. We report the off-diagonal true positive (TP) and
false positive (FP) rates.

Figure 3 summarizes the results on scale-free networks
with density 21%, comparing vector-lambda approach to the
scalar approach and to a wide variety of other methods men-
tioned above (we observed similar type of results for other

*We used the open-source Matlab code available at
http://www.mathworks.com/matlabcentral/fileexchange/11947.
5The variance over the results was quite small.

densities). We observed that:

1. similarly to the above experiments with random networks,
cross-validation (CV) for prediction often selects nearly-
zero A, and thus is similar to unregularized ML estimate,
selecting too many edges and having very high false-positive
rate;

2. theoretical (Banerjee’s) A is another extreme: its edge
selection is too conservative in order to bound the false-
positive rate of the covariance matrix entries asymptotically,
and thus its true positive rate is close to zero unless the num-
ber of samples becomes very large;

3. our approaches are in between the two extremes, for both
exponential and Gaussian priors.

4. vector-\ approaches seem preferable in the relatively
low-sample regime (especially Gaussian-vector-method),
since their scalar counterparts tend to be too conservative
and yield TP=0 in that regime;

5. regularized likelihood behaves very similar to scalar-
exponential method, but does not require parameter tuning;
6. simply setting A = 1/b, i.e. to the mean of the exponen-
tial distribution, does not seem to work well as its FP rate
is very high in both small-sample and large-sample regimes,
only going somewhat doing in the mid-sample regime.

7. Figure 3(c) shows that \ is not very sensitive to the choice
of b for a wide range of bs when N gets sufficiently high.

In summary, empirical results suggest that Bayesian ap-
proach to selecting the regularization parameter may pro-
vide an attractive alternative to both cross-validates and the-
oretical A\ selection in various empirical settings, since it
achieves a better balance between the false-positive and
false-negative errors than the two commonly used ap-
proaches (cross-validation and theoretical). However, con-
sistency analysis of the proposed approach remains a direc-
tion for future work, as well as empirical evaluation of this
approach on real-life data.

Real-life dataset: brain imaging (fMRI)

Finally, we present some initial results on real-life data. We
used the fMRI data from the 2007 Pittsburgh Brain Activity
Interpretation Competition (PBAIC)(Pittsburgh EBC Group
2007), where the fMRI data were recorded while subjects
were playing a videogame, and the task was to predict sev-



Table 1: Results on fMRI data (PBAIC 2007): correlation
between the predicted and actual response, averaged over 3
subjects. All methods ran on a subset of preselected 200
voxels (variables) most-correlated with the response. "OLS’
- ordinary least-squares (linear) regression ’EN’ - Elastic
Net sparse regression, SMN (prior) - our sparse Markov Net-
work learner with a particular prior.

Response SMN (exp) | SMN (gauss) | OLS | EN

3 (CBody’) 0.44 0.47 0.41 | 0.49
15( Instructions’) 0.52 0.68 0.69 | 0.69
22(’VRfixation’) 0.77 0.79 0.78 | 0.80
24(’Velocity’) 0.61 0.63 0.59 | 0.65

eral real-valued response variables. We experimented with
several response variables such as Instructions(whether a
person is listening to audio instructions), Body (looking at
virtual person), VRfixation (in VR world vs fixation) and Ve-
locity (subject moving but not interacting with VR objects)
- see (Pittsburgh EBC Group 2007) for more details. Since
the “ground truth” network structure is unavailable in real-
life scenario (and must be discovered), we only evaluated the
predictive ability of our Markov network models. In Table 1
we show the average results for 3 subjects, where the dataset
for each subject contained n = 704 samples (measurements
over time) and approximately p = 33,000 variables (vox-
els). On this dataset, we also experimented with Gaussian
vs exponential prior on A; Gaussian prior appears to yield
slightly more accurate results that match the performance of
the state-of-art sparse regression method, Elastic Net (EN);
both clearly outperform linear regression. Matching state-
of-art predictive performance supports our confidence in the
Markov network model quality, while the sparse structure
we learn can provide scientific insights into brain activation
processes (further discussion of which is out of scope of this
paper).

Appendix
Proof of Lemma 1:
Proof. Consider ¢Q+4)-¢() _

_ O +dN) - A+ dVICA+dN)ls = F) +AICMIls _

dX
A dX\) — A||C (X dX — A AllC (M
F(A+dX) IC(A+dN)lls = F(N) + Al ()HS—HC(Aﬁ-d/\)Hs
dX
We will now show that
lim FON+HdN) = MICA+dN)ls — FO) + AICV)ls o ©

dX—0 dX

Let us consider only dA > 0 for a moment. Assume that

i FA 4 dA) = ACA+dN)ls — F(N) +AICN)]s
im sup

> 2e>0.
dX—0 dA

This means that there is an infinite sequence dA\r — +0
such that
F +dAR) = MIC(A + drg)lls = f(A) = ACN) s + edX.

Since edAg > 0 this means that for some small enough d\
C(X\ + dAg) is a better solution that C'(A) for the given A.

Since by assumption C'()) is the maximizer, then we have
reached a contradiction and the above lim sup equals to zero.
Now assume
lim ing JA TN — AMCO+ dN) s — FO) + ACHVIs <2 <o.
dA—0 dX

Again we have a sequence d\;, — +0 for which
FO 4 dAR) = AICO + dag)lls < FON) = AICN) I + edAg.
or

FON 4 dAg) = (A + dA)IICA + dAp)lls < F(A) — (A +dAp)ICN) s
tedrg + dA([IC(N)lls — [IC(A + dAg)lls)-

Since [|[C(A)|ls — |C (A + dAk)|ls) — 0 as dAr — 0, then
for large enough k we have

FOVHdAR) = A+ dAR)ICA +dAg)lls < F(A) = (A +dA)IICN)s,

which contradicts the fact that C'(A 4+ d)y) is the optimal
solution for A4-d\. The proof can be repeated almost iden-
tically for d\ < 0, hence we have shown (9).
It is now trivial to conclude that the derivative
/ A+ dN) = ¢(N)
e
= Jlim —ICO+dNs = ~ICWs

The convexity follows from the simple fact that as A in-
creases ||C'(A\)||s has to decrease, hence the derivative of
@(A) increases.

[
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