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CBAPTER 0 

IN'I'ROOOCTION 

In this thesis we will prove that no intricate sparse matrix algorithms are 

required for an efficient solution of large, sparse sets of linear equa

tions. Such equations occur in finite element calculations, for which a 

navel organization has been developed. Thus will be indicated in the second 

part of this introduction. 

0.1. Linear equations and partitions 

Large sets of linear equations are usually sparse, that is, nearly all 

coefficients of the associated matrix are zero. Let Qw = f be such a set of 

equations, with Q a non-singular n x n matrix, w and f veetors of unknown 

and known values. Suppose this set can be solv:ed (without permutation of 

rows and columns) by LU-decomposition [Wilkinson 1 65], i.e. there exist a 

lower triangular matrix L and an upper triangular matrix U such that 

Q = LU. The matrices L and U usually contain many more non-zero coeffi

cients than Q (i.e. "fill-in" appears), but even so they are aften sparse. 

To obtain L and U efficiently, one has to avoid, as much as possible, 

arithmetical operations with zero coefficients. Optimum efficiency in this 

sense is achieved by so called sparse matrix algorithms. For a survey see 

[Duff '77], which contains 604 references. Due to the fill-in these algo

rithms and the associated data structures are rather intricate. Envelope 

algorithms are much more simple. However, in general these are not so ef

ficient, because zeros within the envelopes are not taken into account. 

It is well-known [Duff '77, Tarjan • 76] that the order of the equations 

and variables influences the sparsity of the associated triangular factors 

and the number of arithmetical operations with non-zero coefficients. 

Therefore one may try to find suitable permutation matrices P1 and P2 so as 

to solve the permuted set (P 1 QP~) (P2 w) = P
1 

f. The determination of permu

tatien matrices 1 which achieve some minimum eperation or starage count, is 

an NP-complete problem in some oircumstances and is conjectured to be one 

in others [Tarjan '76]. Thus to obtain a good ordering of variables and 
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equations, the best way seems to be an heuristic approach to the original 

problem, which gives rise to the equations. In this thesis we shall not be 

concerned with finding optima! or good orderings, but with finding a method 

to avoid, given an ordering, arithmetical operations with zeros. 

Using graph-theoretic terminology it is demonstrated that for a given 

matrix Q (irrespective of how well the equations are ordered) it is always 

possible to partition the set of variables in such a way that the triangu

lar factors L and u can be obtained from the (partial) decompositions of 

smaller matrices determined by the partitioning. The decomposition of the 

smaller matrices wil! require the same arithmetical operations with non

zero matrix coefficients as the decomposition of Q. Because no zeros occur 

within the envelopes of the triangul.ar factors associated with those small

er matrices, no intricate sparse matrix algorithms are required to avoid 

operations with zero coefficients; simplar (viz. envelope) algorithms suf

fice to abtain the triangular factors of Q with the least number of arith

metical operations. An algorithm wil! be presented which determines such a 

proper perfect preserving partition, as it is called. 

0.2. A novel implementation of finite element algorithms 

Large, sparse sets of equations are encountered in the finite element 

method, this being a widely used method to solve certain types of partial 

differential equations. Already befere its invention, the mathematica! 

soundness of the fini te element method was shown in [Courant '43]. The 

method was independently developed in the fifties by aeronautical engineers 

concerned with stress and structural analysis [Turner e.a. '56]. The term 

"finite element" was used for the first time in [Clough '60]. 

The method was well received; it is applied to a variety of prablems of the 

non-structural type such as occur in fluid mechanica, heat conduction, 

seepage flow, electric and magnatie potential. Its acceptance among 

engineers was assured at an early stage (the first edition of Zienkiewicz' 

bock dates from 1967). Later, applied mathematiciene [Zlamal '68, Strang 

and Fix '73] became interested. The popularity of the finite element method 

is due to the fact that it is highly suitable for computers. The LinkOping 

survey [Fredriksson '76] already contains the description of 450 different 

computer programs for structural mechanica applications only. A recent 



comprehensive bibliography [Norrie and De Vries '76] mentions over 70.00 

raferences up to the end of 1975. 
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The later part of this thesis deals with a novel efficient organization of 

finite element calculations. It does not aim to discuss possible specific 

applications of the metbod or when and under which oircumstances the finite 

element metbod is to be favoured. Fini te element computations include the 

assembly of a large sparse matrix from so called element matrices and the 

solution of an associated set of linear equations. The results described 

above for computing the triangular factors of a sparse matrix justify a 

nevel organization of finite element computations. Instead of one large set 

of equations, a hierarchical series of smaller ones is set up or, in finite 

element terminology, instead of one large structure a hierarchy of smaller 

substructures is analysed. In particular we will show that if the nodes of 

the finite element structure are ordered according to the nested dissectien 

strategy [George '73], then the associated proper perfect preserving parti

tien is obtained immediately. 

For (not necessarily homogeneous) n x m grids we describe algorithms in 

PASCAL, which find a suitable hiera;rchy of substructures and perferm the 

decomposition of the associated matrices. These newly developed recursive 

algorithms differ from existing ones in that a number of traditionally 

consecutive steps (mesh generation, assembly, decomposition and forward 

substitution) are carried out here in an interleaved way. Moreover, the 

only data stored explicitly are (non-zero) matrix coefficients; no overhead 

data like pointers, etc. are required. The algorithms are conceptually 

simple and it is also possible to make them useful for arbitrary two

dimensional solid and frame structures. For three-dimensional structures 

similar algorithms could be developed. 
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CHAPTER 1 

LINEAR EQUATIONS 

By its very nature, it is convenient to view a sparse matrix as a graph 

[Parter '61, Rose '71, Tarjan '76]. In this chapter we will formulate LU

decomposition of a matrix in graph-theoretic terminology. Because reordering 

of the rows and columns of a matrix leads to different triangular factors, 

we will have to consider ordered graphs, i.e. graphs in which the vertices 

are ordered. Some new results will be derived concerning orderings which 

lead to the same triangular factors. The chapter will be concluded with a 

discussion of the new concept of a preserving palm, which is a graph for 

which the fill-in is restricted to certain edges. 

1.1. LU-decomposition 

Let 

{1.1) Qw = f 

be a set of n linear equations in n unknowns, with Q a non-singular matrix, 

for which 

Q =LU, 

where L is a lower triangular and u an upper triangular matrix. The coef

ficients of Q, L and U will be denoted by qij' !ij and uij' respectively 

(1 s i,j s n). The following relations hold [Wilkinson '65]: 

(1 s j s n) 

(1.2) 

(1 s j < i s n) 

The coefficients of L and U must obviously be computed in a certain 

(partially prescribed) order. 
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The solution w of (1.1) can be obtained by a forward substitution, i.e. 

solving w' from 

Lw' = f 

followed by a backward substitution, i.e. solving w from 

uw= w' • 

If Q is a symmetrie matrix, then it is not necessary to compute all coef

ficients of both L and u. If Q is moreover positive definite then one may, 
t for instance, use the formulae for Cholesky decomposition: Q = LL 

[Wilkinson '65] 

j 
(qjj 

j-1 2? R. •• - l R.jt JJ t=l 
(1.2') (1 ~ j < i ~ n) 

( j-1 
R.itR.jt) I R.jj R.ij = q - l 

ij t=l 

If I is a set of row indices and J a set of column indices, then QIJ de

notes the matrix obtained from Q by deleting all coefficients with a row 

index not belonging to I or a column index not belonging to J. Let for a 

certain k (1 ~ k ~ n) I {l, ••• ,k} and J = {k+l, ••• ,n}, then 

PaPtiaZ deaomposition of Q with QII als block-pivot or, equivalently, 

partial decomposition of Q with its first k pivots is defined to be the 

following decomposition of Q [Bunch and Rose '74]: 

with OII' o1J and OJI zero matrices, 



where L
11 

is lower triangular and u
11 

upper triangular such that 

This partial decomposition is only defined if Q
11 

is non-singular and has 

itself an LU-decomposition. 
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If Q is symmetrie and pcsitive definite, then partial Cholesky decomposition 

of Q with QII as block-pivot results in: 

where 

with 

Q =LU' + [OII 
I I O 

JI 

Lt = u• 
I I 

t 
LIILII = QII 

t 
LJILII QJI 

Qr Q t 
I = JJ - LJILJI 

r 
To compute the coefficients of LI and Q

1 
for partial Cholesky decomposition 

the following formulae will be used: 

( 
j-1 )~ t .. = q .. - 1 t\ 

JJ JJ t=1 J 
(1 $ j $ k) 

(1 ~is n, 1 ~ j ~ min(k,i-1)) 

(k < j s i s n) • 

1.2. Profile and envelope algorithms 

If the matrix Q is sparse, then usually its triangular factors L and u con

tain more non-zero coefficients than Q. Nevertheless L and U are often 

sparse matrices as well, A coefficient which is zero in Q but non-zero in 
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L +U is said to belong to the fill-in of Q. (A formal definition of fill-in 

will be given inSection 1.4.) The fill-in is always restricted to the so 

called envelope of Q, defined as follows. Let the column index of the first 

non-zero coefficient in the lower triangular part of row i be denoted by 

r
2 

(i) • If no such coefficient exists in row i, 

equal to i. In the same way cQ(j) denotes the 

zero coefficient in the upper triangular part 

then rQ(i) is defined to be 

row index of the first non

of column j. Again, if no 

such coefficient exists, then cQ(j) = j. (The subscript Q will be dropped 

if no confusion is likely.) If bt = max{j -r(j) I 1 ~ j ~ n} and 

b = max{j - c (j) I 1 ~ j ~ n}, then the bandJ.ûidth of Q is defined to be the 
u 

maximum of bt and bu. Next env(Q) (the envelope of Q) is defined as: 

env(Q} = {(i,j) I j 2 r(i) and i 2 c(j)} 

which implies: if (i,j) t env(Q) then qij = 0. For an example see figure 1. 

0 

0 

it denotes non-zero coefficient 

() denotes zero coefficient 

'Î'.(M envelope 
.'l)f!! 

bandwidth is 4 

Figure 1 

If Q has an LU-decomposition Q = LU, what do we know of env(L) and env(U) ? 

As usual we neglect numerical cancellation: t .. (i > j) is considered to be 
l.J 

a zero coefficient only if qij = 0 and all relevant products tittjt or 

titutj in formulae 1.2 or 1.2' are zero1 analogously for uij (i < j). It is 

·well known [George and Liu '75] that with this convention 
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env (L +U) = env(Q) • 

Only those coefficients of L a:nd U whose indices belong to env, (L +U) need 

to be computed, the ethers being zero. If Q is symmetrie, we use instead of 

the envelope the profile defined by: 

pr(Q) = {(i,j) I i~ j and j ~ r{i)} • 

We then have: 

pr(L) = pr(Q) • 

If (i,j) € env(Q) and qij = 0 (i~ j), then (i,j) will be called a zero 

element of env{Q). An envelope without zero elements will be called denae. 

In an analogous way a dense profile is defined. By definition {i,j) is a 

first zero element of env(Q) if it is a zero element and if for all other 

zero elements (i',j') of env{Q) it yields: 

i' > i or j' > j • 

In the next chapter we will use the following lemma, which is a generallza

tien of a theorem in [George a:nd Liu ' 7 5]: 

LEMMA 1: If (i,j) is a first zero element of env(L+U), then 

cQ(j) = cu(j) = j (if i> j) or rQ(i) = cL(i) =i (if i< j). 

Proof: Suppose i> j. 

From (1.2) and ~ij = 0 it fellows 

(1.3) 1 s t < j . 

(i,j) is a first zero element of env(L +U) implies 

(1.4) ~i,j-1 ~ 0 • 

From (1.3) a:nd (1.4) wededuce 

(1.5) uj-l,j = 0 • 

Because (i,j) is a first zero element of env{L+U), {1.5) implies: 

(j-1,j) ~ env{L +U) • 

From this we conc~ude cQ(j) = cu(j) = j. 

In the same way it can be shown that i< j implies rQ(i) = rL(i) =i. D 
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Remark: Let LI and UI be the factors obtained from a partial decomposition 

of Q withits first k pivots (1 $ k s n). From Lemma 1 it follows: if 

r
2

{i) < i for 1 < i ~ k and c
2

(j) < j for 1 < j s k, then both env(LI) and 

env(UI) are dense. 

corollary: If Q is a symmetrie matrix and (i,j) is a first zerp element of 

Algorithms which use the property that only the coefficients whose indices 

belong to pr (L) or env (L +U) are non-zero, will be called profile and 

envelope algorithms respectively. 

The profile and envelope algorithms may be overly inefficient in that they 

may process many matrix coefficients which are in fact zero. This will 

happen with sparse matrices having large envelopes or profiles. To handle 

those matrices with optimum efficiency, i.e. to avoid arithmetical opera

tions with zeros, so called sparse matT-iro algorithms have been developed; 

these are algorithms in which for every coefficient is recorded whether it 

is zero or not. Obviously these algorithms require considerable organiza

tional overhead, the more so as it is not a priori clear which coefficients 

of L and u are non-zero. (The so called fill-in consists of all the coef

ficients which are zero in Q, but non-zero in L or u. This fill-in will be 

discussed into more detail in the sequel.) Fora description s~e [Gustavson 

'72], Usually a sparse matrix algorithm contains the following'steps: 

- symbolic decomposition: to determine the location of the non-zeros in L 

and U; 

- numeric decomposition: to determine the values of the non-zero coef

ficients. 

It will be clear that sparse matrix algorithms are rather intricate. 

1.3. Graph-theoretic notation 

Following [Rose '71, George '77] we will introduce in this section a graph

theoretic notatien and nomenclature to be used later on. 

A directed graph G = (V,E) consists of a finite set V of vertices and a 

finite set E ~ {(v,w) I v,w ~V, v ~ w} of ordered vertex pairs called 

edges. An undirected graph G = (V,E) consists of a finite set V of vertices 
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and a finite set E of unordered vertex pairs, i.e. {v,w) is considered to 

be the same as (w,v). Whenever in the sequel it is left unspecified whether 

or not the graph G is directed, G may be either. 

Let G = (V,E) be a graph. If W cv, then the section graph G(W) is the sub

graph (W,E(W)), where E(W) = {(v,w) € E I v,w € W}. For v € V the adJacency 

set adj(v) is defined by adj(v) = {w I (v,w) € E}. For distinct vertices v 

and w a path from v to w of length k is defined to be a sequence of dis

tinet vertices v = v0,v1, ••• ,vk = w, ~uch that (vi-l'vi) E E, for 

i= l, ••. ,k. 

An undirected graph is called connected and a directed graph is called 

st~ngZy conneated, if for every pair of distinct vertices v, w there is a 

path from v to w. If a graph is not (strongly) connected, then it consists 

of two or more (strongly) connected components. The set W c V is a separut01.• 

of the graph G = (V,E) if the sectien graph G(V \ W) is not (strongly) con

nected. A separator W of G = (V,E) is minimal if no proper subset W' c W is 

a separator of G. 

A rooted tree T is an undirected graph with a distinguished vertex r, call

ed the root, such that there is a unique path from r to any vertex. If v is 

on the path from r to w (w ~ v), then vis an ancestor of wandwis a 

descendant of v. If moreover {v,w) is a tree edge, then v is the predeaessor 

of wand w is a suaaessor of v. A vertex without successors is called a 

leaf vertex. 

The concepts defined above are rather standard and definitions of them 

occur rather frequently in literature. The following concept, although oot 

new, is less well-known. It has been introduced {with the name palm tree) 

in [Tarjan '72] in conneetion with depth-first searches in graphs. In this 

thesis we will name it a palm and use it to investigate the LU-decomposi

tion of associated matrices. An undirected graph G = {V,E) is called a 

palm, if the edge set E consists of two disjoint sets E = El u E2 such that 

i) · the graph T = {V,El) is a rooted tree, 

ii) if (v,w) € E2 then v is an ancester or descendant of w in T. 

The ed.ges of El and E2 are called tree ed.ges and fronde respectively. Hence 

a palm may be obtained from a rooted tree T by appending a number of (pos

sibly zero) fronds; a frond is always an edge from a vertex to one of its 

ancesters in T. A palm forest is defined to be an undirected graph, whose 

connected components are pallD.s. 
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If v is a vertex of a palm or a tree, then A(v} and V(v) denote the sets 

of ancestor, respectively descendant vertices; À{v) denotes A(v) u v and 

VCv) denotes V<v> u v. 

For a qraph G = (V,E) with lVI = n, an ordering a of V is a bijeetion 

a: {1,2, ••• ,n} ~ v. G = (V,E,a) denotes an ordered graph. a 

Given a qraph G = (V,E), let P be a partition of v, i.e. P = {Vl, ••• ,vm}, 
m 

such that V = U Vs and Vs n Vt = ~ for s ~ t. The quotient graph of G 
s=l 

with respect to P, denoted by G/P is the graph G/P = (P,E), where 

(Vs, Vt} € E if and only if vertices v € Vs and w E: Vt exist, so that; 

(v,w) E: E. Obviously: G (strongly) connected implies G/P (strongly) con

nected. 

1.4. Conneetion and decomposition graphs 

Let G = (V,E,a) be an ordered graphanddefine E' =Eu {(v,v) I v ~::V}. 

Suppose a map q: E' ~ lR is associated with G. The numbers q((v,w)), as

sociated with the edges (v,w), may be arranged in an n x n matrix Q (with 

n = lvl>: 

q((a(i),a(j))) if (a(i),a(j}) E: E' 
1 s: i, j s: n • 

otherwise 

The graph G is then the eonneetion graph of Q. 

The coefficients q .. with (a(i),a{j)) <: E will be called structurally non
l.J 

zero, even though their value may happen to be zero. Whenever henceforth 

a coefficient is said to be non-zero, we will always mean structurally non-

zero. 

Conversely, with each square matrix a conneetion qraph is associated in the 

followinq way. Let Q be an n x n matrix. Define the vertex set V by 

V= {l, ••• ,n} and the edge set E by: 

(v,w) <: E iff a ~ 0 
""V,W 

(v ~ w) • 

Let moreover the ordering a be defined by a (i) 

qraph G = (V,E,a) is a conneetion qraph of Q. 

i (1 s: i s: n) • Then the 
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Generally, a conneetion graph G = {V,E,a) is directed. Bowever, if E is. 

such that (v,w) 10 E iff (w,v) e E, G will be considered to be undireeted. 

In that case an associated matrix Q is structurally symmetrie, i.e. qij f: 0 

iff q .. P. 0. If an undirected graph is not connected, then the associated 
Jl. 

(structurally symmetrie) matrices are decomposabZe. If a directed graph is 

not strongly connected, then the associated matrices are reducibZe. If the 

matrix Q is reducible or.decomposable, then the associated set of equations 

may be replaced by a number of smaller sets [Varga '62] • 

For a vertex v of the graph G = {V ,E,a) the eUmination graph Gv is defined 

as G = (V\{v}, E(V\{v}) u D(v)), where D(v) == {(x,y) I (x,v) E E, 
V 

(v,y) e E, x P. y, (x,y) IE}. D(v) is called the deficiency of vinG. 

Let now G = (V ,E,a) be the conneetion graph of a matrix Q. Partial decompo

sition of Q with only its first pivot gives: 

Since q~j P. 0 iff {qij P. 0 or (q11 r} 0 and qlj ; 0)), it is easily seen that 
r 

the elimination graph Ga(l) is precisely the conneetion graphof Q1 • The 

deficiency D(a(1)) consistsof those vertices (a(i),a(j)) with.qij == 0 and 
r 

qij .;. o. 

0 i 
Let G = G = (V,E,a) and for i= 1, ••• ,n-1 let G be reeursively defined by: 

i i-1 
G is the elimination graph {G ) a (i). The fiU-inDa (G) is defined by 

n-1 
U o1- 1 (a(i)) , 

1=1 

i-1 i-1 where D (a(i)) is the deficiency of a{i) in G • The deaomposition graph 

* * Ga is defined by: Ga = (V ,Eu Da (G)). I1; G = (V ,E,a) is the conneetion graph 

of an n x n matrix Q with LU-decomposition Q = LU, then the deeomposition 

* [ . J graph Ga is the conneetion graph of L +U Rose and TarJan '75 • The fill-in 

Da(G) consists precisely of those edges (a(i),a(j)) which satisfy· 

qij = 0 and (tij r} 0 or uij ; 0) • 

For an example see figure 3. 
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The fill-in is characterized by the following lemma: 

LEMMA 2: Let G = (V,E,a) be an ordered graph. Then (v,w) is an edge of 

G* = (V ,E u D (G)) if and only if there exists a path 
a a -1 -1 -1 

v=v0 , ••• ,vk=winGsuchthata (vi) <minimum(a (v),a (w)) 

for i= 1, ••• ,k-1. 

A proef of this lemma may be found in [Rose and Tarjan • 75]. 

In Sectien 1.2 we have introduced the notatien rQ and c
2

• Let G = (V,E,a) 

be the conneetion graphof the matrix Q with LU-decomposition Q = LU. 

0 

Suppose vis a vertex of G with a(i) = v. A notatien equivalent to rQ(i) < i 

is: 

Similarly rQ(j) < j is equivalent to: 

-1 -1 
3W€V [a (w) < a {v) and (w,v) € E] • 

Bence we know from Lemma 1: if for all v € V with a-1 (v) ; 1, there exists 
-1 -1 a w € V with a (w) < a (v) and (v,w) € E and (w,v) € E, then both env(L) 

and env (U) are dense; that is to say, the envelopes of L and U do net con

tain any zero element. 

1.5. Consistent orderinga 

Let Ga = (V,E,a) be the conneetion graph of an n x n matrix Q. Let a be 

also an ordering of v. The graph Ga = (V,E,aJ is the conneetion graphof 

the matrix Q: 

N 

{1.6) 
qij = q((a(i),a(j))) I if caCi),a(j)) € E 

(1!>i,jSn). 
0 otherwise 

The orderinga a and a together determine a permutation n = a-1a of 

{l •••• ,n}. A permutation matrix associated with nis defined by: 

(1 s i, j s n) 

where ö is the Dirac delta function. The following relation holds: 



t or in other words, GB is the conneetion graph of PQP • 

Proof: 

Hence: 

(1. 7) t 
{PQP )ij = q -1 -1 • 

« B(i),a B(j} 

Since Ga is the conneetion graph of Q, we know that 

(1.8) 

{ 

q _
1 

_
1 

= q((B(i),S(j))) if CBCi),a(j)) 
a fHil ,a a (j) 

q _
1 

_
1 

= 0 otherwise. 
a 13(i) ,a a {j) 

-

€ E 

Since GB is the conneetion graphof Q we know that (1.6) holds. Hence we 

conclude from (1. 7), (1.8) and (1.6): 

t 
(PQP )ij= qij • 
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0 

Suppose the matrix Q has an LU-deeomposition: Q =LU. The fill~in Da(G) and 

* the deeomposition graph G depend upon the ordering a of V. Usually, LU-
« t 

decomposition of the permuted matrix PQP results in triangular factors 

essentially different from L and u. That is to say, the triangular factors 

of PQPt can not be obtained from a suitable pe~tation of the rows and 

columns of L and U. For instance, the number of non-zero coefficients in 

the triangular factors of PQPt usually differs from the number of non-zeros 

in L and u. However, if PLPt is lower triangular and POPt is upper trian

gular, then 

- t is an LU-deeomposition of Q = PQP • 

An ordering B of V will be called conBiBtent with a if all edges (v,w) of 

* the decomposition graph Ga = (V,E u Da (G) ,a) satisfy: 
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iff 
-1 -1 B (v) > B (w) • 

We will prove: 

LEMMA 3: If the ordering B is consistent with a and P is the permutation 
-1 t t matrix associated with n = B a, then PLP and PUP are lower and 

upper triangular respectively. 

Proof: (PLPt)n(i),n(j) = tij' hence in order to prove that PLPt is lower 

triangular, it suffices to show: 

(1.9) lij ~ 0 + n(i) > n(j) • 

From iij ~ 0, assuming a(i) = v and a(j) = w, it fellows that 

-1 -1 
a (v) > a (w) • 

Because B is consistent with a we conclude 

-1 -1 B (v) > B (w) • 

-1 -1 Hence n(i) = B a(i) > B a(j) = n(j). Herewith (1.9) is proved. In the 

same way it is shown that PUP t is upper triangular. D 

t t LEMMA 4: If PLP is lower triangular and PUP upper triangular, then the 

expresslons to be evaluated during the decompos_itions _of Q and PQPt 

respectively, both contain the same non-zero terms. 

t t t Proof: Let Q' = PQP , L' = PLP and U' = PUP , then 

(1.10) 

When decomposing PQP\ the computation of t!. requires the evaluation of: 
l.J 

(1.11) 

From (1.10) we see that the righthand side of (1.11) may be rewritten as 

( 

n 

q -1 -1 - L 
n (i) 1 '1T (j) t=l 

t -1 -1 u -1 -1 ) I u -1 -1 • 
'IT (i) ,11 (t) n (t) ,n (j) n (j) ,n (j) 

t~j 
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-1 
Substituting k for n (t) in the above we get 

( q -
n-1(i),n-1 (j) 

n ) 2 !/, -1 u -1 I u -1 -1 
k=1 n (i),k k,n (j) n (j),n (j) 

k?'n-1(j) 

which is the expression for !/, _
1 

_
1 

• Hence the expression to be 
n (i) ,n (j) 

evaluated to compute !/,ij contains (apart from the order) the same non-zero 

terms as the expression for !/, _
1 

_
1 

• In the same manner we can prove 
n (i) ,n (j) 

that the expressions for ui· and u _
1 

_1 both contain (apart from 
J n (i),n (j) 

the order) the same non-zero terms. 0 

An immediate consequence of Lemmas 3 and 4 is: 

Corollary: Let a and a be the orderings associated with the matrices Q and 

PQPt respectively (P being a permutation matrix). If a is con

sistent with a then the LU-decompositions of Q and PQPt both re

quire the evaluation of the same expressions with non-zero terms. 

1.6. Preserving palms 

An ordered undirected graph G = (V,E,a) is a preserving paLm, if it is a 

palm with the property: v € V, w € V(v) + a-1 (v) > a-1 (w). Let.G = (V,E,a) 

be the conneetion graph associated with the n x n matrix Q and let Q have 

* an LU-decomposition: Q = LU. If the decomposition graph Ga = (V ,E u Da (G) ,a) 

is a preserving palm, then we can show that 

1 ~i~ n, a(j) € V(a(i)) 

(1.12) u .. 
J~ 

q .. - 2 J/,J.t utJ' 
JJ a(t)€V(a(j)) 

(1 ~ j ~ n) 

Since L is lower triangular and G* is the conneetion graph of L +U, we have 
a 

(1.13) i .;. j and !/,ij .;. 0 iff i > j and (a(i) ,a(j)) € E u Da (G) • 



1.8 

* Since Ga is supposedly a palm, we conclude from (1.13) 

( 1.14) i Y. j and i .. Y. 0 iff i> j and [a(i) EV(a(j)) or n(j) EV(a(i))]. 
l.J 

However, since G: is a preserving palm, it fellows from (1.l4) 

(1.15) i Y. j and R. •• .;. 0 iff n(j) € V(a(i)) • 
l.J 

The matrix Q is structurally symmetrie, therefore; 

Hence (1.15) may be extended to: 

(1.16} i Y. j and R.ij.;. 0 iff i.;. j and uji.;. 0 iff a(j) E V(n(i)l . 

Finally, from (1.16) together with {1.2) we conclude that (1.12) holds. 
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In this chapter we will investigate certain partitions of a matrix Q (with 

LU-decomposition Q =LU) into blocks (which are again matrices). Associated 

with such a partition is the quotient graph obtained from the corresponding 

partition of the vertex set of the conneetion graph of Q. 

For undirected graphs, corresponding to structurally symmetrie matrices, we 

introduce preserving partitions and describe how to compute the coefficients 

of L and U. Perfect preserving partitions will be shown to have the nice 

property that the corresponding computations to obtain the coefficients of 

L and u do not require sparse matrix algorithms to avoid arithmetical opera

tions with zeros. It wil! be proved that with every ordered undirected graph 

an (even proper) perfect preserving partition is associated. Hence, irre

spective of how well the rows and columns of a matrix are ordered, the coef

ficients of its trianqular factors can be obtained with optimum efficiency 

by using only envelope algorithms. For directed graphs similar, though under 

certain circumstances less strenger results hold. 

The last sectien of this chapter deals with nested dissectien [George '73], 

a well-known way of finding a suitable ordering for a conneetion graph. It 

is shown that if nested dissectien is used to construct an ordering, then 

finding a proper perfect preserving partition is trivia!. Hence, in order 

to implament a nested dissectien decomposition of a matrix with optimum 

efficiency, no sparse matrix codes are needed; envelope algorithms suffice. 

In this chapter it is assumed, unless stated otherwise, that G = (V ,E,a) is 

the ordered undirected conneetion graph of a structurally symmetrie n x n 

matrix Q with LU-decomposition Q = LU, where L is lower triangular and U is 

upper triangular. 
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2.1. Preserving partitions 

A bZoak-matr-i~ is a matrix whose coefficients are matrices, called blocks. 

All formulas and results derived thusfar apply to bleek matrices with square 

matrices as diagonal bleeks. A bleek is considered to be zero if it is a 

zero matrix. 

Let P = {Vl, ••• , Vm} be a par ti ti on of V. Let Qrs denote the matrix obtained 

from Q by deletien of all rows i for which a(i) ( Vr and all columns j for 

which a(j} I Vs. Define: 

(2.1) Q 

(Q wil! be considered to be an n x n matrix.) Moreover, let 13 denote the 

unique ordering { 1, ••• , n} -+ V determined by 

(i.e. 13 orders first the vertices in V1, next the vertices in V2, ••• 

and so on}; 

ii) -1 -1 v,w E Vr , a (v) > a (w) 

(i.e. within every Vr the vertices are ordered according toa}. 

Hence the rows and columns of Q are ordered in such a way that a
13 

is the conneetion graphof Q. Therefore we know from Sectien 1.5: 

{V,E,S) 

-1 where P is the permutation matrix associated with the permutation n = 13 a. 

The ordering cr: {1, ••• ,m} -+Pis defined by cr(r) = Vr (1 :s r :s m). If P 

satisfies the following properties: 

i) * the quotient graph (Ga I P) 0 is a preserving palm (i.e. 

Vs E V(Vr) + r > s); 

ii) Vs € V(Vr) + a-1 (v) > a-1 (w) for v € Vr, w € Vs, 

then P wil! be called a p~eaerving pa~ition or p-~tition for short. 



If P is a p-partition, then 6 as defined above is consistent with a. 

Proof: We must show 

Assume that {v,w) é Eu Da{G). If v,w é Vr then property ii) of 6 qives: 

If, however, v € Vr, w € Vs (r :i s) then (because G* I P is a palm) 
a 

Vs E: V{Vr) or Vr E: V(Vs). Assuming that Vs e V(Vr), we know from property 
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ii) of a p-partition: a-1{v) > a-1 (w). From property i) of a p-partition we 
-1 -1 know r > s; hence property i) of e gives: e (v) > e (w). 

Now we have shown: 

-1 -1 and e (v) > 13 (w)] • 

In the same way we may show: 

-1 -1 and 13 (W) > 6 (V)] • 

Hence 

[ex -l (V) >a - 1 (w) and 13-1 (V) > 13-1 (W)) or [a - 1 (W) >a - 1 (V) and 6-1 {W) > fS-1 (V)) 

which is equivalent with: 

- t Because 6 is consistent with a we know from Lemma 3 that L = PLP and 
- t - t -U = PUP are triangular factors of Q = PQP • The matrix Q is in {2.1) - -partitioned into blocks; the matrices L and u may be partitioned in the 

same way: 

- t L=PLP = 

- t U=PUP = 

L 
mm 

D 
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Obviously the matrices Lrr and Urr (1 s r s m) are lower and upper triangu

lar, respectively. 

The conneetion graph of the block matrix in (2.1) is G I P. If P is a p-par-

* * tition, then (G I P) = (G I P> is a preserving palm. Bence we may apply 
a a a 

(1.16) to the block matrices Q, L and U and the ordering a: 

r ~ s and L ' 0 iff r ~ s and U ~ 0 iff Vs € V(Vr) • rs rs 

Let us furthermore consider the computation of the matrices: 

Defining 

2ss = Qss - I Lst uts 
Vt€V(Vs) 

Qrs "' Qrs - I Lrt Uts 
Vt€V(Vs) 

Qsr = Qsr - I Lst 0tr 
Vt€V(Vs) 

we get from applying (1.12) 

Lss u ss = Qss 

s s s m, Vr € A (Vs) • 

Writing 

Ä(Vs) = {Vs1, ••• ,Vsk} 

it follows from (1.2) that partial decomposition of Qs defined by 

Q = s 
0 



with Q a block pivot gives: ss 

where 

Q = L U + Qr s s s s 

L = s 

23 

(U I u 1 , ••• , u k) • ss s,s s,s 

Because L =u = 0 for Vr t A(Vs), all non-zero coefficients of Land U rs sr 
can be obtained by (partial) decomposition of thematrices Qs (1 Ss s m). 

Furthermore, the matrix Qs and hence Ls and Us can be computed once Lt and 

ut are computed for all t with Vt E V(Vs). 

Summarizing: The matrices L and U. may be computed as follows. Take a vertex 

Vs for which all matrices Lt and ut with Vt € V(Vs) have been computed and 

compute Ls and Us by partial decomposition of Q
6

• The computations must 

start wi th a leaf vertex, for instanee (but net necessarily) V1; the com

putations end with the decomposition of ~· All non-zero coefficients of L 

and U are contained in the matrices L
6 

and u
6 

(1 s s s m). The above process 

will be called decomposition of Q basedon its p-partition P. 

In the following sections we will show that sparee matrix algorithms to 

compute L and U are always equivalent with a decomposition based on a p

partition satisfying special properties. 

2.2. Perfect preserving partitions 

A sufficient condition for the graph G that env(L} and env(U) are dense is 

formulated at the end of Section 1.4. We will now formulate a condition 

under which the envelopes of L
6 

and 0
5 

(encountered during a decomposition 

of Q based on a p-partition) are dense. First we will introduce the follow

ing definition. A partition P = {v1, ••• ,vm} of V is called perfect if for 

all v € Vs (1 ss s m) with a-1 (vl ~ min{a-1 (w) I w € Vs} there is a we Vs 

such that 
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i) -1 -1 
a (w) < a (v} , 

ii) there is a path v = v0 , ••• ,vk =win G with a-1 (vh) < a-1 (w) for 

h = 1, ••• ,k-1. 

Perfect preserving partition will be abbreviated to pp-partition. We will 

now prove: 

LEMMA 5: Let P"' {V1, ••• ,vm} be a pp-partition of v. Let Ls and Us 

(1 s s s m) be obtained from a decomposition of Q based on P. 

The envelopes of Ls and u
8 

are dense. 

Proof: Ls and Us (1 s s s m) are obtained from a partial decomposition of 

Qs. Let the ordering a: {1, ••• , IVsl} -+ Vs be induced by a, i.e. 
1 -1 -1 -1 a- (v) < a (w) iff B (v) < B (w) for v,w E Vs. To show that L

8 
and u

8 

have dense envelopes, use is made of the remark immediately after Lemma 1; 

it suffices to show 

CQ (j) < j 
s 

and rQ (j) < j 
s 

for 1 < j s lvsl • 

Because Qs is structurally symmetrie, we know 

hence it suffices to show: 

(2.2) cQ (j) < j for 1 < j s IVsl • 
s 

Let v E vs, such that a-1 {v) ~ min{a-1 (w) I wE Vs}. From the definition of 

perfect partition, we know there exists a w E Vs such that 

-1 -1 and there exists a path v = v0 , .•• ,vk =win G with a (vh) <a (w) for 

h = 1, ••• ,k-1. From Lemma 2 we conclude (v,w) E Eu D (G). Eerewith we have a 
shown 

(2.3) -1 -1 
V 1 1 I 3 [a (w) < a (v) and VEVs,a- (V)~n{a- (W) WEVS} WEVs 

1 -1 -1 ~ 0] • 
a {v) ,a (w) 

Because the coefficients of L
8 

are ordered according to a, (2.3) is equi

valent to: 



(2.4) cL (j) < j for 1 < j s IVsl • 
s 

But from Sectien 1.2 we know that 

(2.5) CL (j) = CQ (j) 
s s 

and from (2.4) and (2.5) we infer (2.2). 
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D 

Suppose P = {V1, ••• ,vm} is a pp-partition of v. The non-zero coefficients 

of Land U may be obtained by calculating thematrices L
8 

and U
8 

(1 ss Sm), 

where L
8 

and u
8 

are the results of a partial decomposition of Q
8

• From 

Lemma 5 we know that all coefficients whose indices beleng to env(L
8

) and 

env(U
8

) are non-zero. Hence a sparse matrix algorithm (in which it is ex

plicitly determined whether a coefficient is non-zero) is not necessary to 

avoid arithmetical operations with non-zero coefficients during the decom

position of Q
8

; an envelope algorithm suffices. To compute therefore the 

non-zero coefficients of L and U we only need to apply envelope algorithms 

to obtain thematrices L
8 

and u
8 

(1 ss s m). But the decomposition of Q 

based on a p-partition results in the evaluation of expressiena with the 

same non-zero terms as any sparse matrix algorithm. Hence the decomposition 

of Q based on a perfect p-partition using envelope algorithms results also 

in the evaluation of expressiena with precisely the same non-zero terms as 

any sparse matrix algorithm to compute L and u. 

Next we will show that for every undirected graph, for every structurally 

symmetrie matrix a pp-partition exists. The trivial partition 

T = {{a(l)},{a(2)}, ••• ,{a(n)}} could be a pp-partition with the property 

* that every vertex of the palm Ga fT (except {a(1) }) has precisely one 

successor. To administer in that case all the envelopes of Q
8 

(1 ss s n), 

is essentially the same as to record for every coefficient of Q whether it 

is zero or not. There is then no essential difference between a sparse 

matrix algorithm and a decomposition based on T. Hence we will introduce 

proper p-partitions. 

2.3. Proper pp-partitions 

First we introduce the following definitions. A palm will be called proper 

if each vertex has either zero or more than one tree-successor. A p-parti-
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tion P of V will be called proper if the palm G* I P is proper. 
a 

THEOREM 1: For every non-decomposable, structurally symmetric'matrix there 

exists a proper pp-partition. 

To prove this theorem, we wil! first prove: 

LEMMA 6: If G = (V,E,a) is an undirected (not necessarily connected) graph, 

then there exists a perfect partition P = {vl, ••• ,vm} of v, with 

the property that G: I P is a forest of proper palms consistent 

with a., i.e. Vs e: V(Vr) + a.-1 (v) > a.-1(w) for v e: vr, we: Vs. 

Proof: We wil! prove this lemma by induction with respect to n, the number 

of vertices in V. The lemma obviously holds for n = 1, because a graph con

sisting of only one vertex is a proper palm. 

Now assume that n > 1. Let x = a.(n) be the vertex with the highest number 

inG. Let A(x) and A*(x) denote the adjacency set of x= a(n) in G and G: 

respectively; let moreover Hbe G(V \{x}), i.e. the graph obtained from G by 

removing x= a(n) and all edges connected to x. The ordering of H induced 

by the ordering of G wil! be called a. again. From the induction hypothesis 

applied to H, the existence fellows of a perfect partition P• = {Vl, ••• ,vm} 
* of V\ {x}, with the property that Ha I P• is a forest of proper palms con-

sistent with a: Pl, ••• ,Pz. Let C denote the colleetien of palms Pj, such 

that the vertex set of Pj has at least one vertex in common with A(x). We 

will distinguish three cases: ICI = O, IC! > 1 and ICI = 1. 

i) !Cl = 0. Define P = P• u {x}. Obviously P is a perfect partition of V. 

The graph Pt consisting of only one vertex, viz. x, is a proper palm 

consistent with a. From ICI = 0 it follows that A(x) = ~. Hence, from 

Lemma 2, A* (x) = ji!l. Therefore G: I P is a forest of proper palms 

Pl, ••• ,Pz,Pt, consistent with a. 

ii) ICI > 1. Define P = P• u {x}. Obviously Pis a perfect partition of V. 

The colleetien of palms C may be considered as a (disconnected) graph. 

The graph Pt is obtained from C by adding {x} to the vertex set of C; 

the edge setof Pt is obtained by adding ({x},Vs) to the edge set of C 

for those vs with a vertex w such that we: A*(x). Pt is a proper palm 

with root {x} and consistent with a. Obviously G: I P consists of the 

* palms Pt and Pj (1 s j s z, Pj 4 C) • Hence, Ga. I P is a forest of 

proper palms consistent with a. 



iii) ICI = 1. The partition P = P• u {x} does notmeet the requirements, 

because the palm Pt as defined in the preceding case is not proper. 

Therefore we have to distinguish this case ICI = 1 from the case 

ICI > 1. 
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C consists of only one palm, say Ps. Let Vt be the root of Ps. Define 

the following partition of V: P = {V1, ••• ,vtu{x}, ••• ,Vm}. G* lP con-a 
siste of the palms Pj (1 5. j 5. z, j :f. s) and P~, where P;; is obtain-

ed from Ps by joining x = a(n) to its root Vt. Ps obviously is a 

proper palm consistent with a. To prove that P is a perfect partition 

of V, it suffices (because P• is a perfect partition of V\ {x}) to 

show that there exists a vertex w € Vt and a path x= v0 , .•. ,vk =yin 
-1 -1 

G with a (vh) <a (y) for h = l, ... ,k-1. Vt is the root of the palm 

Ps, which is consistent with a. Let y be the highest numbered vertex 

of Ps, then y € Vt. From the definition of C we know that the vertex 

set of Ps has a vertex in common with A(x). Let v 1 be such a vertex. 

* Because v 1 and y both belong to the same connected component of Ba I P• , 
. . -1 -1 

there 1s a path v 1 , ••• ,vk = y w1th a (vh) <a (y) for h = l, ••• ,k-1 

in B. Bence x= v0 , ••• ,vk = y is a path inG. 

Proof of Theorem 1: The conneetion graph G = (V,E,a) associated with a 

structurally symmetrie, non-decomposable matrix is a connected undirected 

graph. From Lemma 6 the existence follows of a perfect partition 

P = {Vl, ••• ,Vm} of v, such that G* I Pis a forest of proper palms, with a 
the proparty 

0 

Because G is connected, G* I P is connected; hence G* I P is a palm. Let the a a 
partition elements V1, ••• ,Vm be ordered according toa post-order traveraal 

of the palm G* I P (i.e. of every subtree in the palm, the root is visited 
a * 

last), and let a denote the ordering a(s) = Vs, then (Ga I P> a is even a 

preserving palm. 

From the above we conclude: P is a proper perfect preserving partition. 0 
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2.4. Construction of a proper pp-partition 

The proof of Lemma 6 is constructive. A (worst case) 0 (n2) algorithm to 

construct a proper pp-partition could be derived from that proof. However, 

such a partition may also be obtained in still another way. 

Let P = {Vl, ••• ,Vm} (m > 1) be a proper pp-partition of the graph 

* G = (V,E,cx). It is easily verified that Vm, the root of Gcx lP, is a 

separator of G, containing the vertices with the highest numbers. On the 

other hand, if there is no separator s c: V of G with the property: 

I -1 
3l<kSn [S = {wE V ex (w) > k}] , 

then P' = {V} is a proper pp-partition of G. 

Proof: G I P' is a graph consisting of one vertex only, therefore it is a 

proper preserving palm. That P• is moreover perfect follows from the abser

vation that, if v would be a vertex for which no path v = v0 , •.• ,vk = w 
-1 -1 -1 exists with a (vh) <a (w) <a (v) for h = l, ••• ,k-1, then 

S ={wE V I a-1 (w) > cx-1 (v)} would be a separator of G. 0 

The following construction results in a proper pp-partition. Let initially 

P be empty. Determine a minimal separator S of G with the proparty 

(2.6) 3 1 [S={wEVIa-1 (w)>k}]; k >min{ a- (v)} 
VEV 

s is minimal if noother separator with the same property is contained inS. 

If no separator with property (2.6} exists, then set S =V. Next add S to P 

and apply the above recursively to each of the connected components of 

G(V\S}. 

With induction to the depth of G I P, it may be verified that P obtained in 

this way is a proper pp-partition. Using an 0(m} algorithm of [Tarjan '72], 

to determine the connected components of a graph consisting of m vertices, 

the above construction may be implemented ultimately resulting in an 0{n2) 

algorithm. 
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2.5. Example 

As an example we will use an undirected graph G, with vertex set 

V= {1,2, ••• ,16} and ordering a, with a(i) =i (i= 1, ••• ,16}. The edge set 

of G is represented in Figure 2; an edge is drawn from vertex v to 

vertex w if and only if (v,w) belengs to the edge set of G. 
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Figure 3 shows the zero/non-zero structure of an associated matrix. Both 

constructions as outlined in the preceding section result in a partition 

P = {V1, ••. ,V9} with Vl = {2,7}, V2 = {3,8}, V3 = {9,11}, V4 = {4}, 

V5 = {1,5,6}, V6 = {10,12}, V7 = {13,15}, V8 = {14}, V9 = {16}. 

* The graph Ga I P is depicted in Figure 4; Figure 5 shows the according to P 

reordered matrix. The decomposition based on P proceeds as follows: 

1) decompose 

q2,2 

q7,2 q7,7 

Ql = 0 q9,7 0 

q11,2 0 0 0 

0 q16,7 0 0 0 

with the first two pivots, giving 

1
2,2 

17,2 17,7 
1 

q9,9 

0 1
9,7 and Qr • 1 1 

Ll 1 ql1,9 qll,ll 

111,2 111,7 
1 1 1 

q16,9 q16,11 q16,16 

0 116,7 

2) decompose, in the same way, Q2 with the first two pivots giving L2 and 
r 

Q2. 

3} decompose 

1 2 
~.9 +q9,9 +~,9 

1 2 l 2 
ql1,9 +ql1,9 +q 11,9 qll,ll +qll,ll +qll,ll 

Q3 
2 2 

0 ql3,9 q13,11 

q15,9 0 0 0 

1 1 0 0 0 q16,9 q16,11 

with the first two pivots, giving 
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5) 

6} 

7) 
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R-9,9 

R-11,9 9.11,11 
3 

q13,13 

L3 113,9 R,13 1 11 and Qr 3 3 
3 q15.13 q15,15 

""15,9 R-15,11 
3 3 3 

q16,13 q16,15 q16,16 

116,9 R-16,11 

Note: the superscripts of the matrix coefficients refer to the step in 

which they were computed. 

decompose Q4 with its first pivot only; 

decompose Q5 with the first three pivots; 

decompose Q6 with the first two pivots; 

decompose 

3 5 6 
q15,15 +q15,15 +q15,15 +q15,15 

3 5 6 
q16,15 +q16,15 +q16,15 +q16,15 

with the first two pivots, giving 

113,13 

R.15,13 

R-16,13 

9,15,15 

R-16,15 

and 

0 

8) decompose 

with its first pivot, giving 

and Q~ 
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9) decompose 

( 
1 3. 5 6 7 8 ) 

Q9 = q16,16 + q16, 16 + q16 ,16 + q16,16 + q16,16 + q16, 16 + ql6 ,16 

with its first pivot, giving 

The coefficients of L which are not computed in the above steps, for in

stance t 14, 11, are zero. Note that steps 1, 2, 4, 5 and 8 are independent 

of each other and may be done in any order or even simultaneously. Another 

order of the steps corresponds with another post-order traversal through 

* Ga I P. 

2.6. Non-symmetrie equations 

The preceding sections dealt with structurally symmetrie matrices. If the 

set of equations to be solved is not structurally symmetrie, then the as

sociated conneetion graph is directed. Analogous, though less strong, 

results will be shown to hold. 

The matrix Q, with triangular decomposition Q = LU, will be assumed to be 

such that its conneetion graph G (V,E,a) is strongly connected (otherwise 

we would in fact be dealing with a number of sets of equations). As in the 

symmetrie case, we may try to find a separator S c V with the property: 

I -1 } 3 1<kSn [S = {w € V a (w) > k ] • 

It may be proven (with Lemma 1 and a reasoning as we used in Section 

2.4) that if env(L +U) contains zero elements, then such a separator 

exists. In the symmetrie case, the variables associated with the con

nected components may be eliminated in arbitrary order. This is not allowed 

in the non-symmetrie case as may be seen as follows. Consider the graph of 

Figure 6a withordering a defined by: a(i) =i (i= 1, ••• ,5). The separa

tor S = {5} yields the strongly connected components V1 = {1,3} and 

V2 = {2,4}. Eliminating first the variables associated with V2 leads to an 

eliminatien order which results in triangular factors different from L and 

U; this may be seen in figure 6b, where the vertices are renumbered accord

ing to this new ordering. Figure 6c shows that eliminating first the 

variables associated with V1 also leads to other triangular factors. 
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To guarantee obtaining the correct triangular factors we modify the con

struction of a partition in the following way. A separator s, consisting of 

vertices with the highest numbers, is looked for with the further property 

that the vertices in each strongly connected component are consecutively 

numbered. Applying this rule recursively to each of the strongly connected 

components, we obtain a partitioning P = {V1, ••• ,Vm} of v. The matrix Q may 

be partitioned into bleeks: 

Q= 

~1 

where Qrs denotes the matrix obtained from Q by deletien of all rows i for 

which a(i) t Vr and all columns j for whi~h a(j) i Vs. (Note that contrary 

to the symmetrie case, the rows and columns of Q are not permuted to obtain 

the 1.artitioned matrix.) 

Let the matrices L and U be partitioned in the same way. Defining 

min(r1 s) -1 

Qrs .. 2rs - l Lrt uts 
t=l 

it fellows that partial decomposition of 

2ss Qs,s+l Qsm 

Qs 
Qs+l,s 

0 

~s 

with Q as blook-pivots gives ss 

Q = Ls u + Qr 
s s s 

where 

L ss 

L 
Ls+l,s 

and u = (U ,u +l'"" .,u } s s ss s,s sm 

L ms 
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(see (1.2) and formulae for partial decomposition). Hence all coefficients 

of L and U can be obtained by {partial) decomposition of the matrices Qs 

(1 ~ s ~ m). The matrix Qs and hence Ls and Us can be computed once Lt and 

Ut are computed for all t with 1 ~ t < s. Note that contrary to the symme

trie case, the order of computing the matrices Qs is strictly determined. 

If the partitioning P is obtained as outlined above, it may happen that 

env {Ls +U s) , for some s ( 1 ~ s ~ m} , contains zero elements. In that case P 

may be refined. Let env(Lt +Ut) contain a zero element. Then the section 

graph G(Vt) contains a separatorS', with the properties that s• contains 

vertices with the highest number in Vt and the associated strongly connected 

components all contain consecutively numbered vertices. By removing Vt from 

P and adding s• and vertex sets of the associated strongly connected compo

nents, we get a refined partition. 

Let p* be a partition which needs not be refined any further. 'I'hen the com

putation of L and U may be based (in the above described way) upon p* in 

such a way that envelope algorithms suffice to avoid arithmetical opera

tions with zero coefficients. 

Note that contrary to the structurally symmetrie case, G* I p* is not a palm 
a 

or another type of a nicely structured graph. 'I'herefore non-symmetrie 

matrices exist for which there is hardly any difference between sparse 

matrix decomposition and decomposition based on a partition cónstructed in 

the above way. 

2.7. Nested dissectien 

In Sectien 2.4 we have pointed out how to construct a proper pp-partition 

for a given matrix Q. In this sectien we will show that if a so called 

nested dissectien ordering is used to arrange the rows and columns of a 

matrix, then a proper pp-partition is obtained trivially. Hence, to im

plement nested dissectien decomposition, no sparse matrix codes are needed 

for efficiency1 envelope algorithms suffice. 

'I'he set of equations Qw = f is equivalent with 
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where P1 and P2 are permutation matrices. If P1 = P
2

, symmetry is preser-Ved. 

Many papers (see [Duff '77]) are devoted to the subject of choosing the 

permutation matrices in such a way that some minimum or other is obtained. 

For instance, one may try to minimize the profile, envelope or fill-in of 

P 1 QP~. Unfortunately, these minimization problems are proven or conjectured 

to be NP-complete [Papadimitriou '76, Tarjan '76]. We are in agreement with 

the following quotatien from [Tarjan '76]: "In view of the NP-completeness 

results, we cannot hope to solve the general problem of efficiently impla

menting sparse Gaussian elimination. We can only try to solve the problem 

for special cases." 

One such special case is the class of symmetrie matrices arising in two or 

three dimensional fini te element equations. For these problems the nested 

dieseetion ordering has been developed [George and Liu '78oct, George '73], 

which has been proven to be a good ordering [Lipton e.a. '79]. We will show 

that a proper pp-partition is trivially obtained for such an ordering. 

A nested disseation ordering of a connected undirected graph G = (V,E) is 

formally defined as fellows [George and Liu '78 oct]. First, an algorithmic 

definition of a neeted dieeeation partition P of V is: 

0) Initially, set P empty. 

1) Choose a n:iinimal separator V' of G; if G does not contain a separator 

then set V' "'v. Add V' to P. 

2) If V "' V', then apply step 1 recursively to each of the cc;mnected com

ponent& of the sectien graph G (V \V'} • 

The set P = {Vl, ••• ,vm} thus obtained is a partition of V, a nested dissec

tien partition of v. A rooted disseation tree T = (P,E) is associated with 

P, where E is defined as fellows. Let Wr (1 s r s m} denote the edge set of 

the section graph separated by Vr; then (Vr,Vs) € E if and only if Vs has 

been chosen as the separator of one of the connected components of the 

section graph G(wr \ Vr); Vr is in that case the predecessor of Vs. An 

ordering a: {1, ... ,n} -..V is called neeted dieseetion ordering if it is 

consistent with the nested dissectien partition P in the following way: 

Vs € V(Vr) + a-1 (v) > a-1{w) for v € vr, w € Vs. 

Note that in finding a nested dissectien ordering, both a partition of V is 

created and a consistent ordering on it is chosen; whereas in finding a 
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proper pp-partition an ordering should be given beforehand, then a partition 

is constructed. We will now prove: 

TEEOREM 2: Let a he a nested dissectien ordering consistent with the nested 

dissectien partition P = {Vl, ••• ,Vm}, then Pis a proper pp

partition associated with a. 

Proof: Let T be the dissectien tree associated with P. Because T is a tree, 

the elementsof P may be arranged in such a way that cr: {1, ••• ,m} + P de

fined by cr{r) = Vr is an ordering of P with the property: 

It is easil;: verified that G: I P *is the tree with some fronds added to 

it; hence G
11 

I P is a palm and (Ga I Pl a is a preserving palm. Hence P is a 

preserving partition. Moreover, every vertex of T has either zero or more 

* than one successor, hence Ga I P is a proper palm and therefore P is a 

proper p-partition. From the construction of P and the connectedness of G 

it fellows that Pis a perfect,partition. Bence Pis a proper pp-partition 

associated with a. D 

Corollary 1: If a given algorithm determines a nested dieseetion partition 

and ordering, then no other algorithm to find a proper pp

partition associated with this ordering is requi~ed. 

Corollary 2: To implament a nested dissectien decomposition of a matrix, no 

sparse matrix codes are needed for efficiency; envelope algo

rithms suffice. 

It is well-known [Boffman e.a. '73] that nested dissectien applied to so 

called regular n x n grids may lead to an (asymptotically) optimal ordering 

(in the least-arithmetic or fill-in sense) • In view of our Corollary 1 

above, we do not support a quotatien from [George '74]: "In order to 

actually benefit from these orderings, it is necessary to use general 

sparse matrix techniques". A similar remark appears in [George and Liu '78 

apr]. All known implementations of nested dissectien decomposition use, at 

least for parts of the matrix involved, sparse matrix techniques, requiring 

considerable storage overhead for pointers etc. [George '77]. In Chapter 4 

we will show how to implement nested dissectien decomposition for n x m 

grids without storage overhead, using the concept of substructures. 
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CHAPTER 3 

FINITE ELEMENT EQUATIONS 

In applications of the finite element method (to the solution of partial 

differentlal equations) one often encounters large, sparse sets of linear 

equations. Many papers (see [Duff '77]) deal with the problem of solving 

those fini te element equations efficiently. A way to avoid large sets of 

equations is the use of the substructuring technique. In this chapter first 

the finite element method with the drawbacks of its traditional organiza

tion is outlined and next we discuss the relation between substructuring 

and perfect preserving partitions. 

3 .1. OUtline of the fini te element method 

We will outline the finite element method only briefly, since proofs and 

details may be found elsewhere [Strang and Fix '73, Zienkiewicz '77] • 

Suppose the problem to be solved is finding the function w which minimizes 

a given energy expression: 

where A is a differentlal operator, v an element from a function space B 

with domain 0, and (.,.) denotes the inner product in that space. A finite 

element solution is obtained as follows: the function w is approximated by: 

(3. 2) 

where the rpi are certain functions in H, called shape funations. Next the 

constant coefficients w
1 

will be determined so that (3.2) minimizes (3.1). 

Substitution of (3.2) in (3.1) yields: 

(3.3) 
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Defining the matrix Q by: q,. =(A~.,~.), was the vector consisting of the 
~J J ~ ~ 

coefficients wi and the vector f by fi = (f,~i)' (3.3) may be written in 

matrix notatien as: 

(3 .4) 

If Q is a symmetrie matrix, then (3.4) obtains its minimum for w satisfying: 

(3.5) Qw f • 

(If Q is not a symmeyric matrix, we may work with the symmetrie matrix 

Q'=i(Q+Qt).) 

(3.5) shows a set of n linear equations with n unknowns, which may be 

solved for w. In most applications Q is a positive definite matrix. 

In a similar way one can even solve differe~tial equations of quite general 

type: solve w, a function in the function space H, from 

Aw = f 

where A is a differential operator. A way to obtain an approximate solution 

is the follo~ing. Choose a set of n test functions ~iE H (i= 1, ••• ,n); 

approximate w by a linear combination of shape functions ~i E H: 

(3 .2') 

and require 

(1 s i s n) 

Substitution of (3.2') in the above gives 

(3 .3 I) 
n 
l (A~j'~i)wj = (f,~i) 

j=1 
(1 s i s n) • 

Defining the matrix Q by: q .. = (A~j'~.), was the vector consisting of the 
~J ~ 

coefficients wi and the vector f by fi = (f,~i), (3.3') may be written in 

matrix notatien as 

(3. 5') Qw = f • 

Again (3.5') shows a set of n linear equations in n unknowns. These equa

tions are not necessarily symmetrie or positive definite. We will not 

address the question under which conditions (3.2) or (3.2') is a reliable 

approximation of w. 
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The domain n of H is in finite element terminology usually called strua~. 

The matrix Q, respectively vector f, will be called strua~ mati'i:J:, 

respectively strue~ vector (in the literature aften called stiffness 

matrix, respectively laad vector) • 

In order to obtain the shape functions characteristic for the finite ele

ment method, 0 is divided into a finite number of elements. Each shape 

function is now chosen in such a way that its support (i.e. that part of n 
where it is different from zero) consists of a small number of elements. 

The choice of the elements and their shape functions is determined by the 

problem to be solved. 

Let ITe(i), for 1 sis ke' denote the indices of the shape functions whose 

support includes a certain element e. ·The ke x ke matrix Qe is defined by: 

where (.,.)e denotes the inner product restricted toe. Qe will be called 

element mati'i:J:. 

If Ce denotes the so called conneetion matri~ defined by: 

where o is the Dirac delta function, then Q is obtained by "ae;sembling" the 

element matrices Qe as follows: 

Inananalogous way the element veetors fe and structure vector f may be 

computed: 

Because the support of each shape function is restricted to only a few 

elements, many coefficients of Q are zero. In the finite element methad the 

shape functions are usually chosen in such a way that the coefficients wi 

in (3.2) have obvious physical interpretations; they may be identified with 
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the values of w or its derivatives at particular element positions, usually 

called nodes. 

3.2. Traditional organization 

In the actual computations the following consecutive steps are usually en

countered: 

1) choice of element types (i.e. shapes of elements and kind of shape 

functions) to be employed, 

2} mesh generation: division of the structure in elements, 

3) node numbering: determination of the order in which rows and columns of 

the structure matrix are arranged, 

4 a) computation of element matrices, 

b) assembly of element matrices into the structure matrix, 

c) computation of the structure vector, 

5) computation of the solution vector, 

6) computation of results determined by the solution vector. 

Steps 4a and 4b are usually not carried out strictly consecutively, but as 

follows: as soon as an element matrix is computed, it is assemblad into the 

already partially formed structure matrix. 

As steps 1, 4a and 6 depend upon the specific problem to be solved, we will 

in this thesis only be concerned with: mesh generation, node numbering, 

assembly and solution of the equations. First we will discuss some problems 

that are encountered when the finite element computations are organized in 

this traditional way. 

The partitioning of a structure in elements results in a mesh for that 

structure. Mesh generation is an important aspect of finite element calcu

lations. The shape and number of elements have to be chosen. Irregular 

structure boundaries must be approximated by element boundaries. The accu

racy of the calculations depends upon certain mesh characteristics, such as 

the slenderness of the elements [Strang and Fix '73]. Specifying the mesh 

often involves much work, in particular if the mesh is irregular and con

tains many nodes. Therefore, so called mesh generators [zienkiewicz and 

Phillips '71, Schoofs e.a. '79] have been developed, i.e. programs generat

ing the necessary geometrical input data for finite element programs. 
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Another difficulty is that the numberinq of the nodes, i.e. the ordering of 

rows and columns of the structure matrix Q affects the efficiency of the 

solution process [George '71]. A poer numbering results in triangular 

matricesLand U (defined by Q =LU), many coefficients of which are non

zero, whereas a good numbering results in much spareer L and u, thus re

ducing the required number of arithmetical operations to solve the asso

ciated set of equations. Saveral algorithms have been developed to minimize 

the bandwidth of a given matrix by rearranging rows and columns [cuthill 

'72]. Unfortunately the determination of the minimum bandwidth turns out to 

be an inherently hard problem, because it belengs to the class of so called 

NP-complete problems [Papadimitriou '76]. Instead of minimizing the band

width, it is usually better to try to minimize the profile [George '71]. 

This is however also an NP-complete problem [Garey e.a. '74]. One might 

also consider the fill-in as a measure of efficiency. However, it has been 

shown that minimizing the fill-in is again an NP-complete problem for non

symmetrie matrices and the same is conjectured to be true for symmetrie 

matrices [Rose and Tarjan '75]. 

A final difficulty is that in practica special measures are required to 

assemble Q and f, in particular when, for problems with many nodes, the 

matrices are too large for inteqral storage in central memory and the 

eperating system of the computer does not provide a virtual memory (see 

further [Irons '70]). 

3.3. Substructuring 

A sensible way to solve a problem in general is by dividing it into a 

number of simpler problems and then combining the solutions of these 

simplar problems to gat the solution of the overall problem. To split a 

finite element problem, the substructuring technique [Przemieniecki '68, 

Williams '73] bas been applied. Because our organization of finite element 

calculations is based upon the substructuring technique, we will describe 

that technique and prove that it leads to correct results. 

Let Q and f be the structure matrix and structure vector, respectively, 

associated with the structure S. Let S consist of elements with associated 

element matrices Qe and element veetors fe. Then the following relations 
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hold (see 3.1) 

where Ce are the conneetion matrices associated with the elements. Let w 

denote the solution vector to be solved from 

Qw ... f • 

When applyinq the substructuring technique to compute w one proceeds as 

follows. The structure S is divided into k suhst:r>uct;u.rea S1, ••• , Sk; i.e. 

every element of S belongs to precisely one substructure {the prefix sub 

willoften be omitted). Assembling the elementsof Sj (j = 1, ••• ,k) results 

in the substructure matrix: 

and substructure vector 

f == i: cj 
Sj einSj e 

where the conneetion matrices c; are obtained from Ce by deleting the rows 

which do noteerreapond with a node in Sj. All nodes of a substructure which 

beleng to only that substructure are called internal nodes; other nodes are 

called e:x:ternat. The equations associated with structure Sj 

(3.6) 

may be arranged in such a way that the external nodes are grouped together: 

(3.7) 

the subscripts Ij and Ej referring to the internal and external nodes of 

Sj, respectively. Partial elimination of (3. 7) with Qij Ij as block-pivot 

results in: 

(3 .8) 

The matrix 

(3 .9) 
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will be called reduaed struature matrix; Q~j is said to be obtained from 

Qsj by eliminating the internal nodes. The reduced struature vector is de

fined by 

(3 .10) 

Now suppose Ej (1 s j s k) contains mj nodes, numbered from 1 to mj; and 
k 

suppose U Ej contains n' different nodes, numbered from 1 ton'. Let for 
j=l k 

a node i from Ej ( 1 s i s m.) Ilj (i) denote the number of i in U E . , hence 
J j=1 J 

1 s Ilj(i} s n'. Let the conneetion matrix Cj (1 S j s k} be defined by 

The sets (3.6) may not be solved independently of each other; an external 

node occurring in, say, Sj and Si (j #- i) must have the same value in both 

substructures. More formally: the sets (3.6} must be solved subjected to 

the condition: 

(3 .11} 

Substitution of (3.9), (3.10) and (3.11) in (3.8) yields: 

Hence: 

(3.12) 

Qr ct ' fr 
Sj j w = Sj for all j : 1 ::; j ::; k • 

( r cj Q~j ct::) w' = Ï c. f~. • 
j=1 J j=1 J J 

From (3.12) it follows that w' can be solved after the reduced structure 

matrices and veetors have been assembled. If w' is known, then with (3.11} 

wEj may be computed for all j (1 ::; j :> k). Finally, wij can be obtained by 

sol ving: 

(3 .13) 

{this last equation follows from {3.7) and the definition of partial decom

position). 

Substructuring may also be viewed in another way. If instead of the reduced 

structure matrices, the element matrices were assembled toqether, the 
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resulting set of equations could have been arranged in the following way: 

QI1 I1 
t 

Qu El cl 

0 

(3 .14) 0 
Qikik 

t 
QikEkck 

k t 
Cl QEl I1 Ck QEk Ik L c. ~· E' cj 

j=1 J J J 

Partial eliminatien of (3.14) with 

0 

0 

as bleek pivot, results in 

{3 .15) ( 
k t k t) 
L c. QEj Ej cj - 1: cj ~. I. u1 j E. c. w' 

j=1 J . j=l J J J J 

Wil 

Wik 

w' 
k 

l C. fE. 
j=1 J J 

From {3.9) and {3.10) it fellows that (3.15) are precisely the equations 

(3.12). 

The partitioning of the structure s into substructures implies a certain 

ordering of the nodes: the internal nodes of the substructures are eliminat

ad first, the nodes belonging to more than one substructure are eliminated 

last. The order of processing the substructures, i.e. computing the reduced 

structure matrices and vectors, is irrelevant. 

If a substructure, say Sj, consiste of a number of elements, it is possible 

to partition also that set of elements. The substructure Sj is then parti

tioned into substructures s~, ... ,s~. To compute the reduced structure matrix 

of Sj, instead of element matrices, reduced structure matrices associated 

with sa {1 ;!; h ;!; .t) are then assembled together, and so on. Thus one may 

create a hierarchy of substructures. 
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Same advantages of using the substructuring technique are: 

- Instead of assembling all element matrices into one large, usually sparse, 

structure matrix, a number of smaller matrices is set up. 

- Sametimes identical substructures can be distinguished within a structure; 

obviously the calculations of identical reduced structure matrices need to 

be done only once, thus saving computations. 

- Substructures may be analyzed more ar less independently of each ether; 

the effect - on the complete structure - of changes of a substructure may 

be analyzed without a need te repeat all cemputations. 

As remarked before, substructuring implies a certain ordering of the nodes. 

The order of the nodes influences the number of arithmetical Operatiens 

with non-zero matrix coefficients required for the elimination. Hence a 

possible danger of the substructuring technique is that an inappropriate 

partitioning may lead to far more than the minimum number of arithmetical 

operations with non-zero coefficients. With a careful choice of the sub

structures, however, this danger can be avoided. This may be seen as fel

lows. 

Consider a structure S with structure matrix Q and ordering a. Let 

G = (V,E,a) be the associated conneetion graph, where V is the set of 

nodesof s. Suppose P = V1, ••• ,Vk (k > 1) is a proper pp-partition as

sociated with G. Hence Vk is a separator of G; let the connected components 

of the sectien graph G (V \ Vk) be denoted by G1 1 ••• 1 Gp. All coefficients of 

the element matrices are considered to be structurally non-zero. Hence two 

nodes (nat in Vk) helenging to the same element of S belang to the same 

connected component Gj. With each component Gj (1 $ j $ p) a substructure 

Sj of S is associated in the following way: all elements of S which have a 

node in common with Gj tagether form substructure Sj. The nodes of Sj which 

beleng to Vk are precisely the external nodes of Sj • By applying the above 

rule we do nat necessarily obtain a complete partitioning of all elements; 

there may be elements, all nodes of which occur in Vk only. Each of these 

elements may be considered as a separate substructure; they are substruc

tures consisting of one element only and without internal nodes. In the 

same way as S1 its substructures Sj may be partitioned; thus with P a 

hierarchy of substructures is associated. Computing reduced structure 

matrices, corresponds with partial decomposition of matrices Qs as indicat

ed in Sectien 2.1. From Sectien 2.3 we know that- irrespective of how well 
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the e.quations are ordered - we can find a proper pp-partition. From the 

above it now fellows that, if the ordering of the equations is such that it 

gives rise to the minimum amount of arithmetical operations and/or storage, 

substructures can be found which lead to the same minimum. Moreover, to 

avoid operations with zero coefficients envelope algorithms suffice. 

Now, conversely, suppose the structure S, with structure matrix Q and as

sociated unordered conneetion graph G = (V ,E), is partitioned into a hier

archy of substructures. With such a hierarchy a partitioning P = {Vl, ••• ,Vk} 

of the nodes V is associated: two nodes belong to the same partition element 

Vj if and only if they are internal nodes in the same substructure. The in

ternal nodes can be ordered in such a way that the associated env(Lijij) is 

de.rtse. Let a denote an ordering of V, thus induced by the hierarchy of sub

structures. It is now easily verified that P is a proper pp-partition for 

the graph G = (V,E,a). Hence it is not necessary to apply the algorithm of 

Sectien 2.4 in order to obtain a proper pp-partition associated with a. 
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CHAPTER 4 

A NOVEL FINI'l'E ELEMEN'I' ALGORI'l'BM FOR N x M GRIDS 

In this chapter we will develop an algorithm for finite element calcula

tions on a structure with an n x m mesh, that is to say: the structure con

sists of n rows and m columns of quadrilateral elements. each element com

prising four corner nodes. The most stmple example of such a structure is a 

rectangular plate which, in an obvious way, is partitioned irlto n x m uni

form rectangular elements (i.e. all elements are of the same size). Note, 

however, that by allowing arhitrary quadrilateral elements, the structure 

is not necessarily a rectangular plate. Deformations are permitted. It will 

be assumed that, as far as numerical stahility is concerned, the pivot

order of the associated set of equations is not of tmportance. We will 

moreover assume that the element matrices are symmetrie. 

0ur approach will be based upon the substructuring technique. The ohvious 

way to dissect a reetangle is to divide it into two reetangles of about 

equal size. Hence reduced structure matrices and veetors must then he com

puted, associated with each of the two smaller reetangles. 'l'o compute the 

reduced structure matrices, every substructure will in turn he divided into 

two (smaller) rectangles, unless the substructure is toe small to be dis

sected, i.e. consists of only one element. 

The tmplementation of this algorithm and the data structures involved will 

bedescribed with the programming lanquage PASCAL [Jensen and wirth '78]. 

A step-wise refinement approach [Wirth '71 comm.] will he employed to 

clarify the procedures developed. 

4.1 • Procedure Ul' 

The procedure Ul' produces the reduced structure matrix of a structure R 

provided with an n x m mesh. A corner node of R is a node helenging to 

preeisely one element, hence R has four corner nodes. In an ohvious way 

four sides of R may he distinguished; they will be identified by Zeft, 

uppel', :Pight and Zowel'. Only nodes on the sides of R are external. A side 
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will be called external if it contains external nodes only. Not all sides 

of R are necessarily external. On a non-external side at most the corner 

nodes are external. 

The procedure heading of UP is 

procedure UP (n, m: integer; e~t: set-of-sides); 

T.he type set-of-sides is defined as follows: 

~ set-of-sides • ~ <left, upper, right, Zower) 

The value parameter e~t refers to the external sides of R. T.he parameters n 

and m refer to the number of elements; their values equal the number of 

rows and columns, respectively. The body of ur is: 

1. procedure UP (n, m: integer; e~t: set-of-sidesl; 

2. var nl, ml, n2, m2: integer; el, e2: set-of sides; 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

{ni, mi are the number of elements along the sides of 

substructure i (i= 1,2); ei denotes the external sides} 

beging (n = 1) (m • 1) 

~ aompute-eZement 

else begin divide R into two reetangles Rl and R2, i.e. 

compute nl, ml, n2, m2, el, e2; 

end; 

deaompose 

ur (nl, ml, el); 

UP (n2, m2, e2}; 

asserrib Ze 

The procedure assemble performs the assembly of the two (reduced) structure 

matrices computed in lines 6 and 7. T.he procedure deaompose performs the 

partial decomposition of either the structure matrix assemblad in line 8, 

or the element matrix computed in line 4. This decomposition results in the 

reduced structure matrix Qr and the decomposed matrices L
11 

and ~I' where 

E denotes the external nodes of R and I stands for the internal nodes 

eliminated by the last call of deaompose; hence I are the nodes which are 

internal in R and external in Rl and R2; I does not denote all the internal 

nodes of R. 
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The correctness of Ul"r i.e. upon its terminatien Qr is correctly computed, 

is easily verified by induction [Dijkstra '72], taking the correctness of 

lines 4, 5, 8 and 9 for granted. It is trivial to verify that the execution 

of Ul" will always terminate. 

4.1.1. Element specificatien and storage of results 

In order to compute in line 4 an element matrix, it must be known which 

element is meant. Therefore we provide ur with the further parameters i and 

j, the row and column number of the lower left element of the structure 

whose reduced structure matrix must be computed. 

Another point where we want to be a bit more specific is the way in which 

the re sul ting matrix is recorded. For reasons to be explained in Chapter 7, 

all data are stored in a global one-dimensional array A of sufficient 

length. All that is necessary to retrieve data are their indices in A. 

Therefore we include a variable parameter 1' in Ul", whose value upon exit of 

the procedure is the position in A from where the computed results may be 

obtained. 

With these extensions the deelaratien of UP becomes: 

1. procedure ur (n, m, i, j: integeP; e~: set-of-sides; 

2. ~ 1': integeP); 

3. ~ nl, ml, il, jl, n2, m2, i2, j2: integeP; 

4. el, e2: set-of-sides; 

5. 1'1, 1'2: integeP; 

{Pi is the index in A where data of substructure i may be 

retrieved (i= 1,2}} 

6. begin assign value to 1' {initialize datastructure}; 

7. g (n = 1) ~ (m = 1) 

B. then corrrpute-element (i, j, P) 

9. else begin compute nl, ml, il, jl, n2, m2, i2, j2, el, e2; 

10. UP Cnl, ml, il, jl, el, Pl); 

11. UP (n2, m2, i2, j2, e2, P2); 

12. asserrib le 

end; 

13. decorrrpose 

end 
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4.1.2. Dissectien of the rectangle and representation of element matrices 

In line 9 the rectangular mesh is dissected into two smaller rectangular 

meshes. The way of dissecting affects the efficiency of the computations. 

Following intuition, it seems advisable to dissect the rectangle along a 

line roughly through the middles of the two long sides (that are the sides 

with the largest number of elements). Therefore line 9 becomes: 

if n > m 

then begin nl :::: n div 2; n2 := n - nl; 

ml := m; m2 := m; 

il := i; i2 := i + nl; 

jl := j; j2 := j; 

el := e:x;t + [upper]; e2 := e:x;t + [Zower] 

end 

else begin nl := n; n2 := n; 

ml := m div 2; m2 := m - ml; 

il := i; i2 := i; 

jl := j; j2 := j + ml; 

el := e:x;t + [right]; e2 := ext + EZeft] 

end 

Because the parameters to be passed in lines 10 and 11 are al~ called by 

value (except rl and r2), we may reeode lines 10-12 without using the 

intermediate variables declared in lines 3 and 4. To shorten the code a 

variable nml will be introduced to avoid repeated evaluation of n div 2 or 

m div 2. 

As stated before, we will not be concerned with the computation of element 

matrices. Therefore we assume that the procedure aompute-eZement will be 

supplied by others. An element matrix computed by aompute-eZement will 

subsequently be (partially) decomposed by deaompose; hence the representa

tion of an element matrix is determined by the specifications of the 

procedure deaompose following. In order to free the writer of aompute

eZement from the necessity to be aware of the special representation 

required by deaompose, we will introduce an auxiliary 2-dimensional array Q, 

to be passed as a parameter to aompute-eZement. After a call of aompute

eZement Q will then reprasent the element matrix in the usual way: the 

lower triangular part stored rowwise. Next the contents of Q must be 
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transferred to A. Due to restrictions imposed by PASCAL it is not possible 

to deelare Q locally (in line 8}; therefore Q is assumed to be declared 

globally. 

With these modifications the procedure deelaratien becomes: 

1. procedure UP (n, m, i, j: integer; ext: set-of-sides; 

2. ~ r: integer>}; 

3. !!!. nml, rl, r2: integer; 

4. begin assign value to r; 

5. if ( n = 1} and (m = 1) 

6. then begin compute-e lement (i, j, Q} ; 

7. transfer contents of Q toA 

end 

8. else begin if n > m 

9. then begin nml := n ~ 2; 

10. UP (nml, m, i, j, ext + [uppe:r>], :r>l); 

11 • UP (n - nml, m, i + nml, j, ea:t + [ lOIJJe:r>], :r2) 

end 

12. else begin nml := m div 2; 

13. u:r (n, nml, i, j, ext + [:right], :rl); 

14. u:r (n, m-nml, i, j+nml, ext + Cleft], :r>2) 

end; 

15 assemble 

~; 

16. decompose 

end 

4.1.3. Decompose 

Given an assemblad structure matrix, the procedure decompose computes a 

reduced structure matrix, whereas the procedure assemble has to assemble 

two given reduced structure matrices into one matrix. Hence, the procedures 

assemble and decompoee are closely related; there is a trade-off in the 

share of work that has to be performed by decompoee and assemble. Because 

assemble has a kind of bookkeeping function, we have tried to minimize the 

work to be done by decompose. Therefore the lower triangular part of the 

matrix to be decomposed is partitioned into two matrices: ~ (the part 
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that corresponds with external nodes only) and the rest. (Leaving the 

internal rows and columns intermixed with the external ones, would, on the 

other hand, simplify the procedure asaembZe.) 

As mentioned before, deaompoae decomposes a given structure matrix 

with QII as block-pivot into 

Let ni and ne denote the number of internal and external nodes, respective-

ly, and let 

~j 
denote (QII) ij for 1 s ;j si s ni, 

JL. denote (LII) ij for 1 s j s i s ni, 
1-J 

~j 
denote <~x>i-ni,j for 1 s j s ni, ni+1 s i s ni+ne, 

t .. denote (~I) ij for 1 s j 
1-J 

s ni, ni+1 s i s ni+ne, 

~j 
denote {QEE) i-ni,j-ni for ni+1 s j s i s ni+ne, 

r 
~j 

denote {Qr) •. for 1 s j s i s ne, 
1-J 

then the procedure body of deaompoae may be codedas fellows (see (1.2*)): 



var i, j, k: integer; h: real; 

begin {computation of (lower triangular part of) L
11 

and LEI} 

for i := 1 to ni + ne do 

end 

begin for j := 1 ~ min(i,ni) do 

begin h := q •• ; 
-- ""1-J 

for k := 1 ~j- 1 do h := h- iik *ijk; 

end 

end; 

g_ j <i 

then i .. := 
-- 1-J 
else i .. := 
-- 1-"l. 

h/i.. 
1-J 

sqrt(h) 

{computation of Qr = Q L Lt} EE - EI EI 
for i := 1 to ne do 

for j : = 1 to i do 

~h:=q .... ; 
-z-+n1-, J +n"l. 

for k := 1 to ni do h := h - i. . k * i. . k; 
"l.+n"l., J+n7-, 

caij := h 

end 

ss 

Remark: In the actual implementation the space occupied by Q11 , QEI and QEE 

will be overwritten by L11 , LEI and Qr, respectively. 

4 • 1. 4. Asserrib Ze 

r r The procedure asserrible must assemble two matrices, say QRl and QR2, into 

the structure matrix Q associated with R. A way to do this, is (see 3.12)): 

procedure asserrible; 

begin initialize Q with zeros; 
r t 

add c1 QRl c1 to Q; 

r t 
add c2 QR2 c2 to Q 

end 

where ei (i = 1,2) is the conneetion matrix associated with Ri. To compute 

c1 and c2, it is necessary to know how the nodes are numbered. The program 

as listed in [Peters '79] follows the (rather arbitrary) convention: the 

external nodes are ordered clockwise, starting with the lower left corner 
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node; the internal nodes are numbered either from left to right or from top 

to bottom, depending upon the way R is split into Rl and R2. Of course not 

the matrices c1 and c2 are computed, but instead two veetors vl and v2 

(with a length equal to the number of externals of Rl and R2, respectively) 

defined by: 

Vl[h] = t lff the hth external node of R1 is the tth external 

(if t > 0) or internal (if t < 0) node of R. 

An analogous definition holds for v2. The distinction between internal and 

external nodes of R is made because Q is part i tioned in QII, ~I and ~E. 

The values of n, m and e:ct are needed to compute Vl and v2. The coding of 

the computation of vl and v2 is straightforward, requiring an extensive 

case analysis. After assembly the veetors vl and v2 may be deleted. Further 

details may be found in [Peters '79]. 

4.1.5. Removal of reduced structure matrices 

A reduced structure matrix is, once it is assembled to another matrix, not 

needed any longer. The space it occupies in the global array A may then be 

used for other data. The array A will therefore be used in a stack-like 

manner. If the structure R, partitioned into all its substructures, is 

viewed as a tree, then the reduced structure matrices are stored consecu

tively in A in pre-order [KUnth '75], i.e. of every substructure Rj, first 

its "own" reduced structure matrix is stored, then all the reduced struc

ture matrices associated with its first substructure and next all those 

matrices of the second substructure. 

A global variable pv is intro.duced, indicating from which index in A on the 

next reduced structure matrices may be stored. From the parameters n, m and 

ext it can be determined precisely how much space is needed to store the 

reduced structure matrix of R. Hence the value needed to update pr is known 

and in line 4 of the program text in 4.1.2 the old value of pr is assigned 

to v. If every reduced structure matrix is removed as soon as it is not 

needed anymore (and if no other data are stored in A} , then the pre-order 

storage implies that the two reduced structure matrices, which are assem

bled together in line 15 are always the two last ones and removing them is 

simply achieved by updating pr. 
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Because the decomposed matrices LII and·LEI will be used for subsequent 

computations, they will not be removed; they (and hence QII and QEI) are 

stored in the same pre-order, but separated from the reduced structure 

matrices in another part of A. A second variable pd is then required to 

indicate from which index in A on the next decomposed matrices may be 

stored. Note that an extra parameter in ur to indicate where the decomposed 

matrices are stored is not needed. 

4.2. Procedures fur and bur 

4.2.1. Computation of reduced structure vector 

The computation of the reduced structure vector with the procedure fur is 

analogous to the computation of the reduced structure matrix with ur: 

1. procedure fur (n, m, i, j: integer; ext: set-of-sides; 

2. ~ r: integer); 

3. ~ nml, rl, r2: integer; 

4. begin assign value ro r; 

5. if (n "' 1) and (m "' 1) 

6. then begin aompute-element-veator (i, j, F); 

7. transfer contents of F to A 

end 

else begin if n > m 

then begin nml :"' n div 2; 

fur (nml, m, i, j, ext + [upper], rl); 

8. 

9. 

10. 

11. fur (n-nml, m, i+nml, j, ext + [Z.ower], r2) 

12. 

13. 

14. 

15. 

16. 

end 

end 

~begin nml :"'m~2; 

fur (n, nml, i, 

fur (n, m- nml, 

end; 

assembZ.e-struature veators 

end; 

forward-substitution 

j, ext + [right], rl); 

i, j + nml, ext + [ left], r2) 
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All parameters and variables play the same role as the corresponding ones 

in ur. Only the procedure forua.Pd-substitution and the parameter l' require 

some comments. 

This procedure foruard-substitution computes the reduced structure vector 
-1 

(see (3.10)) by calculating hl = LII fi and next subtracting ~I hi from fE. 

Because hi is needed again for the computation of the solution vector {see 

(3.13)), fi will be overwritten by hi, called the substituted stl'UatUl'e 

veatol'. The matrices ~I and LII are computed with the procedure Ul'. The 

execution of Ul' must then preeede the first call of fUl' and the array A 

must be global to both procedures. jUP needs access to both matrices and 

vectors. This is simply achieved {without having to extend the parameter 

list) by storing veetors and matrices together: the storage locations in A 

immediately succeeding those of LII will he used to store fi and later hl. 

Prior to the first call of fUr, the value of the global variable pd (as

sociated with A) is reset to the value it had immediately before the initi

a! call of Ul'. Bence the meaning of pd is slightly changed; it no longer 

indicates which part of A is free, but to which part of A the computations 

are advanced. 

As is the case with the'reduced structure matrices, also the reduced 

structure veetors may be removed (overwritten) as soon as they have.been 

used in assembZe-stl'UatUl'e-veatol's, 

From the observation that the matrices needed in line 16 of jUl' are precise

ly those computed in line 16 of Ul' it is clear, that both procedures may be 

combined to form one procedure. If line 4 of Ul' is changed into 

r :• pr; pr := pr + 'expression'; 

where the value of 'expression' is the number of storage locations needed 
r r for QEE and fE' and if, moreover, lines 6, 7, 15 and 16 of [Ul' are appended 

to the corresponding linea of Ul', then the resulting procedure computes 

correctly in an interleaved way both the reduced structure matrix and the 

reduced structure vector. 
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4.2.2. Computation of solution vector and derived results 

In the foregoing we have seen how the procedures ur and fur partition the 

structure R into substructures and compute the decomposed structure matrices 

and substituted strueture veetors assoeiated with those substructures. Given 

those decomposed structure matrices and substituted structure veetors (re

presented in a global array A as indicated before), the following procedure 

bur provides the solution vector associated with R. Moreover, bur provides 

(application dependent) quantities for the (strueture) elements; these 

quantities are obtained from the solution vector. 

1. procedure bur (n, m, i, j: integer; e::ct: set-of-sides; 

2. pwe: integer;~ d: integer); 

3. ~nml, pwl, pw2: integer; 

4. begin sol.ve; assign value to d; 

5. if (n = 1) and Cm = 1) 

6. then begin transfer data from A to F; 

7. process-sol.ution (i, j, F) 

end 

8. ~ begin if n > m 

9. then begin nml := n div 2; aeparute; 

{assigns value to pwl and pw2} 

10. bur Cnml, m, i, j, e;;t + [upper], pwl, dl; 

11. bur (n-nml, m, i+nml, j, e::ct + [ ZOl.ûer J, pw2, dl 

end 

12. 

13. 

14. 

end 

end 

else begin nml :== m div 2; separute; 

{assigns value to pwl and pw2} 

bur (n, nml, i, j, e;;t+[right], pwl, d); 

bur (n, m-nml, i, j+nm1, e::ct + [Ze ft], pu; 2, d) 

The parameters and other variables of bur play the same role as the eerre

sponding ones in UP and fur. The value parameter pwe indicates where the 

values of wE (see (3.13)) will be found in the global array A. For a struc

ture without external nodes, the value of pwe is irrelevant. Upon each 

entry of the procedure, the value of d must indicate where the decomposed 
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matrices Lil and LEI are stored7 an adjustment of d with the number of 

storage locations needed for LII' LEI and hi' assures, due to the storage 

sequence of these matrices, that d then indicates the decomposed matrices 

to be proceseed next. A simple induction argument shows that in this way d 

has also the correct value for the recursive call in line 11 or 14. 

t 
'l'he procedure eolve computes. wi (see (3 .13)) as follows: first1 UIE wE= LEI wE 

is subtracted from hi giving hÎ (in an actual implementation hi may be over-
t 

written by hi), next wi is computed from hi by back substitution with LII 

{and again hi is overwritten by wi). Obviously, if there are no external 

nodes, then hi • hi. 

In line 6, the solution vector of the element is transferred from A to an 

auxiliary global array F. 'l'he procedure proaess-solution next provides the 

quantities to be derived from that solution vector (usually geometrical 

data like node coordinates are required) • Just like the procedures aompute

element and aompute-element-veator in ur and fur, also proaese-solution de

pends upon the specific problem to be solved and has to be written by those 

working on an application. 

The procedures separate ·in lines 9 and 12 perform the opposite of assemble

etruature-veators in fur. 'l'he veetors wE and wi, as computed in line 4, are 

split into two veetors wEl and wE
2

, which are the solutions for the external 

nodes of the two substructures of R. 'l'he variables pû]1 and pû]2 denote the 

locations in A where the veetors wEl and wE2 may be found. 

Although the procedure bur has precisely the same control structure as ur 

and fur, it can not be combined with them to form one procedure, because 

the substructures are processed in opposite order. If the structure R is 

viewed as the root of a tree, of which its substructures are the nodes, 

then ur and fw> process the substructures in post-order, whereas bur pro

cessas them in pre-order. Moreover, bur needs the results of ur and [UP. 

Bence deeomposition and forward substitution cannot be interleaved with 

backward substitution, they must be carried out consecutively. 
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CHAPTER 5 

EFFICIENCY OF UR 

In this chapter we present some oparation and storage counts for the pro

cedure UP, as developed in the preceding chapter. It will be shown how the 

storage requirements of UP may be reduced. If applied to a square R, x R, 

qrid, then in total 2.8 R-
2 + 0(.9.) storage locations are required. 

5.1. Storage and operation counts 

In this section we will investigate the efficiency of the procedures de

veloped in the preceding chapter. The efficiency can be expressed in terms 

of the amount of storage required and processor time needed. These two 

quantities, however, depend upon the specific implementation on a particul

ar computer. Therefore, the - implementation independent - number of arith

metical operations with matrix coefficients and the number of matrix coef

ficients stored will be considered. 

If i and e denote the number of internal, respectively external nodes of 

the structure to be analyzed with UP, then in line 4 of UP inSection 4.1.2 

space is reserved for: 

(5.1) s(i,e) = !i(i + 1) + ie 

coefficients of the decomposed matrices. Space needed for the reduced 

structure matrices will be dealt with separately. The procedure deaorrrpoee 

in line 16 requires 

(5.2) t(i,e) = ~ 1
3 + ~ i

2
(e+1) + ~ ie(e+2) +ti 

multiplicative operations (i.e. multiplications, divisions and square 

roots) with matrix coefficients. The number of additive operations is about 

the same, therefore we will not consider them. 

In the procedure fUr space is reserved for i coefficients of the substi

tuted structure vector and ji(i + 1) + ie multiplicative operations are 

performed by fo~ard-subetitution (see also (3.10)). These numbers are 
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small compared with (5.1) and (5.2), rèspectively, therefore we will 

restriet our attention to ur. 

To determine the total number of multiplicative operations carried out and 

matrix coefficients stored by ur, wewill first restriet ourselves to the 

case 

(r <!: 0) • 

Let gt(~) denote the number of multiplicative operations for an ~ x i mesh 

with t adjacent external sides (t = 0,1,2,3,4). Let gt(~) denote the number 

of operations for an Jl, x 6t mesh, where gi, respectively 9.)• i's associated 

with a mesh, a long respectively one short side ofwhich is external. Similar

ly, 9j is the same function for an 1 x 61 mesh, all sides of which are ex

ternal, except for a long one; 92 belengs to an t x !t mesh, the two long 

sides of which are external. With these defi!U.tion we have the following 

set of recursive relations: 

g0 <t> = 2gi (R,} + t(t+l,O) 

=\292(1) + t{i,JI,+l} 
gl (t) 

+ 92W + t(.Hl,Hl) gi(Jl,) 

giW = 2g2{11} + t{l1,i+l) 

92(1) ... 92(1) + 9j (t) + t(1,2H1) 

92<1l ... g2{!i) + 93 <!~> + t(it, tHl) 

(5.3) 92(1} = 293(!tl + t( !.t-1, 21+2) 

-(93 (.t) 
+ t(1,31+1) 

93(i) 
+ 94(1) + t(f.-1,31+1) 93 (i) 

93(1) = 93 ( !.t) + 94 <!t> + t<it-1, ~.t+l) 

9j (t) = 293(!.tl + t<!t,21+1) 

94 (t) 294(-t) + t(t-1,41) 

94, (i) • 294 (i,t) + t<lt-1,3-t) 

For 91 there are two possibilities, each corresponds with a different split

ting. The first relation corresponds with a splitting from the external to 

a non-external side, the second one with a splitting parallel to the extern

al side. We will ultimately choose the splitting, which leads to the least 

number of operations. A similar remark applies to g3 • 
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Eliminatien of g~ and g'~ (j a 0,1,2,3,4) from the above set of relations, 
J J 

together with (5.2) gives: 

9"o<t> = 4g20tl + ~ .9,3 + 
24 

0(.9.2) 

~2g2(!t) + 2g3 {i i) + 65 1.3 + 0(!2) 
24 

gl (i) 

+ 2g3(itl 68 1.3 + 0(12) 2g2(l.i.l + 24 
(5.4) 

92 (i) = g2{it) + 2g3 (j.i.) +g4(j,t) + 22.. .9,3 + 0(1.2) 
6 

-(g3<h> 
+ 2g4(it) + 239 1.3 + 0(1.2) 

24 
9"3 (i) 

+ 2g4 <itl + 121 1.3 + 0(t2) 2g3 ( Îil 12 

g4W = 4g4 ( !tl + 371 .9,3 
24 - 1n2 

+ O<t> 

NOw it is clear which relations for q1 and q
3 

are the best ones; they both 

oorraspond to a splitting from an external to a non-external side. 

The set (5.4) contains recursive equations of the form: 

{5.5) g{i} = ag(tt) + p{t} , a = 1,2,4 

where p is a known polynomial. The following properties of this kind of 

equations are easily verified: 

1) additivity: if g{t) satisfies (5.5) and g{!) satisfies 

g(t) = ag{!t> + p(f.) 

then h(i) = g(.i.) + g(!) satisfies: 

h(i) = ah(i) + p(i) + p(i) 

2) non-uniqueness: if g(i) satisfies {5.5), then g'(i) = g{i) + c.t1og
2
a, 

with c an arbitrary constant, satisfies: 

q' {i)= ag'(!tl + p(t) 

3) if p(i) = (318
, the solution is: 

g(i) = __ 13_ • R.s + c.R.loq2a , if a #- 2s , 
1 - JL 

2s 
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with c an arbitrary constant; 

4} if p{R.} = aR.s log2R., the solution for Cl ,. 2s is: 

a s( Cl ) .log2a g{R.} =--a- • R. log2R. - -s-- + c ... 
1-- 2-a 

2s . 

with c an arbitrary constant. 

From the above properties it may be derived that the solution of {5.4} is 

given by: 

g4{R.} 371 R.3 -
12 

17R.2 log2 R. + 0{R.2} 

g3 {R.} 849 R.3 -
36 

17R.2 log2 R. + 0{R.2) 

{5.6) g2{R.) = 4491 R.3 -
252 

17R.2 log2 R. + 0 {R.;2) 

g1 {R.} =~R.3- 252 
17R.2 log2 R. + 0{R.2} 

go<R.> = 2487 R.3 -
252 

17R.2 log2R. + 0{R.2} 

From property 2 it fellows that initial values only affect the second and 

lower order coefficients of the solution polynomials. 

In a similar way we may de~uce from {5.1) that, if hj{R.) denotes the number 

of matrix coefficients stored for an R. x R. mesh, with j adjacent external 

sides, then: 

{5.7) 

The procedure ur needs space to store not only the decomposed matrices, but 

also the reduced structure matrices, notwithstanding the fact that these 

are all ultimately removed. Let r{e} ie{e+1) denote the number of coef-

ficients of a reduced structure matrix belonging to a structure with e 

external nodes. If fj{R.) denotes the maximum number of coefficients of 

reduced structure matrices stored at any time for an R. x R. me~h, with j 

{j = 0,1,2,3,4) adjacent external sides, then we may derive the following 

set of recurrence relations: 



+ r(~+ll 

+ r(~+1) 3 
+ r(2 ~ + 1) 

5 +r(n+l) +r(2~+1) 

+ r(4~) + r(31) • 

Solut1on of these equations y1elds: 

(5.6) 

Fr om 

f4 (I) - 50 12 + 0(1) 3 

f3 (I) - 283 12 + 0(1) 
24 

f2(~) "' 223 ~2 + 0(1} 
24 

fl (I) = 331 12 + 0(1) 
96 

fo<~> = 271 12 + 0(1) 
96 . 

t(i+l,e+l) - t(1,e) = 0(12) + 0(1e) + 0(e2J 

s(1+l,e+l) - s(1,e) = 0(1) + 0(e) 

r (e+l) - r(e) = 0(e) 

t.ogether w1th the properties 1 and 3 above, it follows that (5.6) 1 (5. 7) 

and (5.8) are generally valid, also 1f ~ is not a power of 2. 
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If n r m the set of recurrence relat1ons is much more intricate. The solu

tion of an n x m problem (n > m) requires less computations than that of an 

:o:~s~r::l~:>h:~c:a~fnn=>2~.~e:rg~(~~,a::e:j~: ::~t::::;a:
5

s:::::ure is 

by ur partitioned into 2r m ~ m substructures; solution of the correspond

ing set of recurrence relations yields: 

G
0

(n,m) e:; 21 nm2 + Ocm2J 

31 2 2 
H

0
(n,m) c.~. 4 nm + O(m ) 

F
0

(n,m) c.~. c223 + ir>m2 + O(m} 24 
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where G
0

, a
0 

and F0 denote the number of operations, decomposed and reduced 

matrix coefficients, respectively, for an n x m mesh without external sides. 

The recursion deptbof ur is 1 + entier(log2(n)) + entier(log2 (m)). All 

parameters and local variables of ur are simple, except ext, wbicb is of 

fixed size. Hence the stack associated with ur requires only 0(log(n.m)) 

storage locations or 0(log(t}} for n = m = t, which is smal! compared with 

(5.7) and (5.8}. 

All matrices are represented in the usual way, no special measures have 

been taken to deal with non-zero coefficients only. As we know from Sectien 

3.3, the envelopes of the decomposed matrices are dense; however, an en

velope does not necessarily camprise all its matrix coefficients. Assume 

that two reduced structure or element matrices are dense, i.e. do not con

tain a zero coefficient. If the two matrices are assemblad and (partially) 

decomposed, then the resulting decomposed and reduced matrices are dense 

again, unless there are no internalnodes (an.internal node would be as

sociated with both matrices). When applying ur, indeed substructures occur 

without internal nodes, hence the decomposed matrices of certain substruc

tures may contain zeros. As experience indicates, for an n x n mesh and n 

not too small (n > 13) ,· the number of zeros stored is less than 2% of the 

total number of coefficients and of all multiplications less than 2\ bas a 

zero multiplicant. Therefore it is not worthwhila to replace the full matrix 

algorithms in ur by envelope or profile algorithms. 

5.2. Reduction of storage requirements 

In [Eisenstat e.a. '76] it is suggested, that for certain finite element 

types of equations, it is advantageous to recompute certain data, instead 

of saving them. In subsectien 4.1.5 it bas been pointed out that the pro

cedure ur saves the decomposed structure matrices requiring b.(t) = 
2 J = 0(t logt) storage locations {see (5.7)). At the expense of a two to six 

fold increase of the operations count, the storage requirements may be re

duced to 0 ( t 2> , by not sa ving the decomposed structure matrices. To that end 

the procedures are modified as follows: 



1. procedure mur (n, m, i, j: integer; eret: set-of-sides; 

2. !!:::. r: integer); 

3. !!:::. nml, rl, r2: integeP; 

4. begin assign value to 1'; 

5. (n = 1) and (m = 1) 

6. ~ begin aompute-e tement (i, j, Q) ; 

7. aompute-element-veato!' (i, j, F); 

8. transfer contents of Q and F to A 

end 

begin 1f n > m 

then begin nml := n div 2; 

mur (nm1, m, i, j, eret + [uppep], 1'1); 
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9. 

10. 

11. 

12 mur <n-nm1, m, i+nml, j, eret+[lOtJep], 1'2) 

end 

13. else begin nm1 := m div 2; 

14. mur (n, nml, i, j, eret + [!'ight], r1); 

15. mur (n, m-nm1, i, j+nm1, eret + ["left], r2) 

end; 

16 reserve space in A for L11 , Lgi and h1 ; 

17. assemble; assemble-stPUature-veators 

18. decompose; foruapd-substi tution; 

19. free space reserved for L11 , LEI and hi 

end 

This procedure computes both the reduced structure matrix and reduced 

structure vector, associated with the structure R, characterized by the 

parameters n, m, i, j and eret. The parameter r indicates where the computed 

results may be found in the global array A. Essentially mur is the proce

dure ur combined with fur, modified in such a way that the decomposed 

structure matrices and substituted structure veetors are not saved. 

The next procedure just computes the decomposed structure matrices and 

substituted structure vector of R: 
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1. procedure ZUP (n, m, i, j: integePi ext: set-of-sides; 

2. .!.!!:!. d: integePb 

3. .!.!!:!. nml, Pl, P2; 

4. begin (n = 1) and (m = 1) 

5. ~begin compute-eZement (i, j, Q); 

6. compute-eZement-vectoP (i, j, F); 

7. transfer contents of Q and F to A 

end 

8. else begin if n > m 

9. ~begin nml := n div 

10. mUP (nml, m, i, j, ext + [uppep], Pl); 

11. mUP (n-nml, m, i+nml, ;j, e:r:t + [lo!Jep], P2) 

end 

12. 

13. 

14. 

15. 

16. 

end; 

.!!!!. begin nml := m div 2; 

mUP (n, nml, i, ;j, e:r:t + [Pight], Pl); 

mUP (n, m- nml, i, j+nml, e:r:t + [Ze ft], P2) 

end; 

reserve space in A for L11 , Lui and h1 ; 

aeeembLe; aesembLe-stPUCtUPe-vectoPe 

17. decompoee; fo!'I.JaPd-eubeti tution 

end 

Note that the procedure ZUP itself is not recursive. 

As the number of arithmetical operations and the number of storage loca

tions required for the veetors are of a lower order than needed for the 

matrices, we may use g. {i) (see ( 5.6) ) also to denote the operations count 
J * for ZUP. The storage count fj(t) follows from the observation: 

r 
where s. (I.) is the number of storage locations needed for L11 , ~E' QEE' 

r J r 
QE1,E1 and QE

2
,E2, El and E2 are the externals of the substructures in 

which the R. x R. mesh is divided. Hence 

f*o<t> = 271 t2 + O<.t> 
96 

f~W .!2. .t
2 + ocu 

4 



f*2ct> = 223 t2 + OU> 
24 

f;Ul = 
5
; t

2
+0W 

f:(i) = 4i t
2

+0(R.). 
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The next procedure, which computes the solution vector, is a slight modifi

cation of bUl": 

1. procedure tuP (n, m, i, j: integeP; ~t: set-of-siàes; 

2. pwe: integeP); 

3. ~ nml, d, pwl, pw2: integeP; 

4. begin lUl" (n, m, i, j, e:ct, dl ; 

5. solve; 

6. (n = 1) and (m = 1} 

7. then begin transfer data from A to F; 

S. pPOaess-soZution <i, j, El 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

end 

end 

begin if n > m 

then begin nml := n div 2; sepai'ate; 

tUl" (nml, m, i, j, e:ct +[uppeP], pwll; 

tUl' (n-nml, m, i+nml, j, e:ct+CZoweP], pw2> 

end 

else begin nml := m div 2; sepapate; 

tUl" (nml, m, i, j, e:ct + [Pight], pwl); 

tUl" (n, m-nml, i, j+nml, e:ct + [Zeft], pw2) 

end 

end 

The storage requirements of tur are precisely those of Zur in line 4. The 

oparation count gj(1) may be deduced from: 

9o <t> = 2gi (JI.} + go(!/,} 

q 1 (!/,) 2g2 (!/,} + gl (1) 

9;_ (1) 2g2(lt> + gi (1) 

g2(i) g2(!/,} + 93 (1) + g2(t) 
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g2(R.) - 92 <1t> +g3(~R.) + g~{R.) 

g3(R.) - 2gj(.t) + 9'3 (R.) 

9j ( R.) = 93 <!.tl + g4 <itl + 9j (R.) 

g4(R.) - 2g' (R.) 4 + 9'4 (R.) 

94 ( R.) - 2g4{ÎR.) + 9'4 (R.) 

where g~ (j = 1, ••• ,4) is defined analogously to 9~· Eliminatien of gj' 
J J 

(j = 1, ••• ,4) from the above 9ives: 

g:o <t> = 4g2(ÎR.) + 9o < R.l + 29i(R.) 

91 (R.) - 292<lR.l + 2g3{ÎR.) + 91 (R.) + 2g2(R.) 

g2{R.) = g2(tR.) + 2q3 {iR.) + 94 ( l.tl + g2(R.) + 92<R.l + 9j<U 

g3 (R.) = 293 (jR.) + 294<1R.l + g 3 (R.) + 2gj (R.) 

g4 (R.) .. 4g4 ( !.tl + g4 (.t) + 294,<R-l • 

Combining the above with (5.3) yields: 

9o <t> .. 4g2(ÎR.) + 9o (R.l + 4g2 <1M + 2t(l.t,R.+1) 

91 (R.) = 2g2ClR.l + 2g3 <i.t) + g 1 ( R.) + 2g2(6R.l + 293 ( i.tl + 2t(iR., t.t+l) 

g2(R.) - g2(iR.l + 2Çj3 clt> + g4(ÎR.) + 92 (R.) + g2(tR.) + 2g3 ( itl + 

+ 9'4 ( itl + t( it,3R.+1) 
5 

+ t(ÏR.-1, 21+1) 

g3(JI.) = zg3(ÎR.) + 2g4 ( i.tl + g3(1) +2g3 (itl +2g4 (Î.t) +2t(iR.-1,tH1) 

g4(R.) = 4g4{iR.) + g4 {R.) + 4g4(ÎR.) + 2t(it-1,31) • 

It is easily verified that the following may be added to the properties of 

equations {5.5): 

5) if p(R.) = a.ts log2R., the salution for a - 2s is: 

(cis an arbitrary constant); 

6) if p(.tl = ats(log2.tl 2, the salution for a F 2s is: 



Hence, solution of the above set of recursive equations 

94 w .. 62o R.3 _ .!2. -t2<109z-t>2 + ou2 
6 2 

log R.) 

9 3 ( R.) .ê.Ql R. 3 - .!2. R. 2 (log2 R.) 2 + 0 ( R. 2 
9 2 

log R.) 

(5.9) g 2 ( R.) = 34106 R.3 _ .!2. R.2(log2JI.)2 + 0(R.2 log R.) 
441 2 

91 ( R.) = ~R.3 147 
_ .!2. R.2(log2R.)2 

2 + 0{R.2 log R.) 

9o < R.l 
= 25684 R.3 

441 
_ .!2. R.2 (log2 R.) 2 

2 + 0(R.2 log R.) 

From (5.9) and (5.6) it follows: 

g4(R.) /g4(t) <:o! 3.3 

9o<U /go<t> <:o! 5.9 • 
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gives: 

. 

Hence for a structure with four external sides we have, at the expense of a 

three-fold increase in the number of computations, reduced the storage 

count from l!. t 2 log2t to 43 t 2 (there is also a reduction if R. < 8); for 
4 2 

structures without external sides the storage count is even reduced to 

~: t 2, requiring a six-fold increase of the operations count. Note that 

the complete structure matrix associated with a square t x .11. grid contains 

st2 + 0(t) non-zero coefficients. By other, more intricate, modifications 

it is possible to restriet the increase in the number of computations to a 

factor 2 yieldinq a storage count of 3
4
1 

R. 
2 for a structure without ex

ternal sides. 
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CHAPTER 6 

ADAPTATION TO MORE COMPLICATED STRUCTURES 

Applications of the algorithms presented in the preceding chapters are not 

restricted to simple rectangular plates with a uniform mesh. We will in

dicate in this chapter how the algorithms may be adopted for more general 

two-dimensional solid as well as frame structures. 

The algorithms (or variants of them) are in particular useful if (parts of) 

the structure to be analyzed can be provided with a "topologically" regular 

mesh. Irregular element partitionings are often encountered if triangular 

elements are used to refine grids locally. It will be shown how locally 

refined grids are most efficiently analyzed. 

6.1. Frame structures 

A structure will be called fPame st~ucture if it consists of.elements with 

two nodes only. Let the elements of the frame structure F be arranged to 

form a rectangular n x m grid, such that the (n + 1) x (m + 1) nodes àre the 

grid points and each element is a horizontal or vertical edge joining two 

neighbouring grid points. It is not immediately obvious how to decompose F 

into two similar substructures (how to partition the elements into two 

sets). One may want to dissect F along a line roughly through the middles 

of the two sides with the most elements, but then the dissection line 

passes through some elements and for every element along the dissection 

line a choice must be made to which substructure that element belongs. Two 

possibilities for a sensible decision are: 

i) every element along the dissection line belongs to the same, say first, 

substructure; 

ii) starting at one end of the dissection line, the elements alternatingly 

belong to the first or the second substructure. 

In both cases the number of different kinds of substructures increases. In 

the first case we obtain substructures, an external side of which may or 

may not be "notched". In the second case all external sides are "dashed", 

but the first two nodes of an external side may or may not belong to a same 



74 

element. Hence in both cases there are two types of external sides. This 

can be accounted for by extending the procedures ur, ~ and bur with an 

extra parameter (or by extending the parameter eret) to indicate the type of 

each external side. Of the procedure ur only the procedures assemb ~e and 

compute-e~ement need be adapted to these extensions, leading to an increase 

of the amount of code required. The efficiency of the computations is not 

adversely affected; only the length of the program text increases due to a 

more extensive case analysis. The number of arithmetic operations and 

matrix coefficients stored is precisely the same as in the quadrilateral 

element case. However, the matrices associated with frame structures con

tain more zero coefficients. This may be seen as follows. 

An element.111ëltrix associated with a quadrilateral four node element is a 

4 x 4 matrix without zeros, whereas in the frame structure case, each call 

of aompute-e~ement yields a 4 x 4 matrix M, which is assemblad from at most 

four 2 x 2 matrices and hence the envelope of M does not contain all the 

coefficients of M. As may be estimated (see also [Duff e.a. '76]) the 

savings may amount to about 25% of storage and to about 30% of arithmetical 

operations by storing only the envelopes of the matrices. In these percent

ages, the overhead in using envelopes only is not included. 

6.2. Solid quadrilateral structures 

The procedures as developed in Chapter 4 apply to finite element calcula

tions for structures with an n x m mesh. To derive the element matrices, 

one usually needs geometrical data, like node coordinates. In this 

section we will describe how these geometrical data are obtained from the 

row and column number of the element concerned. 

6.2.1. Reetangles 

Let the rectangle Rbe determined by the following x, Y coordinates of its 

four corner nodes: (0,0), (a,O), (a,b), (O,b), where the nodes are listed 

clockwise, starting with the lower left node (a,b ~ 0). Suppose the mesh is 

uniform, i.e. all elements are rectangular and of the same sirz:e. If there 

are N and M elements along the sides parallel to the x- and Y~axis, re

spectively, then the coordinates of the lower left node of the element in 

row i and column j are: 



(a . b .) 'N J., ii J (0 $. i < N, 0 S j < M) • 

'I'he coordinates of the other element nodes may be obtained from similar 

expressions. Because i and ~ may be considered as global constants for 

the procedures ur>, fur> etc., each coordinate requires in fact only one 

multiplication. 

In order to ensure that the results of the fini te element computations are 

sufficiently accurate, the size of the elements must be small enough 
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[Strang and Fix '73]. 'I'he smaller the size of the elements, the larger the 

number of nodes, hence the more computations. For several finite element 

problems, it is not necessary that all elements have the same size. By 

allowing elements with different sizes, one may achieve sufficient accuracy 

with only a modest amount of computations. Hence, it is useful to provide a 

facility to "grade" the mesh. For the rectangle R, to be divided into rect

angular elements, grading is simply achieved by choosing two monotone func

tions cp: {0, ••• ,N-1} + [O,a) and tp: {0, ••• ,M-1} + [O,b) with cp(O) = 1)1(0) = 0 

and defining the coordinates of the lower left node of the elements in row 

i and column j to be 

(cp(i),tp(j)} • 

For example: 

a i 
fll (i) = -N-- (p - 1) 

p - 1 
(i o, ... ,N-1> 

with p a suitably chosen constant, is such a monotone function. 

As is well known, the accuracy of the results of .the finite element com

putation depends also upon the shape of the elements: the more a reetangu

lar element deviates from a square, the less accurate the results of the 

computation are [Strang and Fix '73]. Grading the mesh in the above way may 

lead to elements which are too slender. 'I'o avoid those too slender elements 

the grading technique as outlined in Beetion 3 is more appropriate. 

6.2.2. Quadrilaterals 

In this subsectien we will considet a (curvilinear) quadrilateral structure 

C with a mesh consisting of rows and columns of (not necessarily rect

angular) elements. We will describe how, in this general case, the node 
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coordinates can be obtained from the row and column number of the elements 

concerned. A transformation ~ will be constructed, which is a one-to-one 

map from a suitably chosen rectangle R onto the quadrilateral c. {In the 

sequel x, y will denote coordinates of a point in R and ~' n will be used 

for points in C.) The map ~ transforma a mesh of R with rectangular ele

ments into a mesh of C with quadrilateral elements. The coordinates of the 

element nodes of c are obtained by applying ~ to the coordinates of the 

corresponding element nodes of R. In which way the node coordinates of R 

are derived from the row and column number of the element concerned, has 

been shown in the preceding subsection. 

6.2.2.1. Quadrilateral given by points 

If the quadrilateral C has straight sides a~d is given by the coordinates 

of its corner nodes ei= {~i'nil {i= 1,2,3,4), bilinear shape functions 

[Zienkiewicz '77] may be used to construct ~. If for R the unit square with 

corner nodes r 1 = {-1,-1), r 2 = {-1,1), r 3 = {1,1) and r 4 = {1,-1) is 

taken, then 

{6.1) ~{x,y) 

with 

N1 i {1 -x) {1 - y) 

N2 i {1 -x) { 1 + y) 
{6.2) 

N3 !{1 +x) {1 +y) 

N4 1{1 +x) {1 -y) 

It is easy to verify that 

{i = 1,2,3,4) • 

Asufficientcondition that such a transformation, using bilinear shape 

functions, is a one-to-one map from R onto C is that no internal angle of C 

be larger than 1r [Strang and Fix '73]. {This implies that the; transforma

tion may even be used if c degeneratea into a triangle.) 

~ as defined by {6.1) and {6.2) is bilinear; hence straight boundary and 

inter-element line segments are transformed into straight segments. There-
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fore the image of a rectangular element in R is a quadrilateral with 

straight boundaries. 

Let now the quadrilateral c be given by m successive points, to be denoted 

(in clock-wise order) by c 1 = (~ 1 ,n 1 ) , ••• ,cm= (~m'nm). Let c 1 = cbl' cb2 , 

cb3 and ~ 4 be (in clock-wise order) the corner points of c. For R we 

choose a rectangle with sides parallel to the coordinate axes. On the sides 

of R we choose (in clock-wise order) m points r 1 = (x1,y1) , ••• ,rm = (xm,ym) 

in such a way that rbl' rb2, rb3 and rb4 are the corner points of R. To 

construct ~ we choose the shape functions of the "serendipity family" of 

finite elements [Zienkiewicz '77]. The idea is the following. Let ~ be 

defined by 

where Ni are functions still to be specified. If we manage to choose those 

functions in such a way that they satisfy: 

(6.3) 1Si,jSm, 

then obviously the following relations hold: 

Lagrangaan interpolation is now used to obtain the functions N
1 

satisfying 

(6.3): 

1) Let ri (not a corner point) lie on a side S parallel to the Y-axis and 

let rk be a point on the side parallel to s, then 

y - yk 
=---· 

x- x. 
n ----2 

x1 -xj rj ons 

If s is parallel to the x-axis, then x and y are interchanged: 

x- xk 
=---· 

2) If r
1 

is a corner point lying on the sides s and t, parallel to the x

and Y-axis respectively, and rk is a corner point not on s and t, then 
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x - xk Y - yk 
=---

xi -xk Y1 -yk I 
rj on s 

except corners 

I 
rj on t 

except corners 

x-~ 

~N.(x,y) 
xi -~ J 

If ~ as defined in this way (depending amongst others upon the choices 

of r 1, •.• ,rm) is a one-to-one map from R on c, then ~ transforma a mesh 

of R into a mesh of c. Whether, however, ~ is one-to-one and whether the 

mesh obtained is appropriate, cannot be stated in general. Intuition and 

grapbics facilities must be resorted to. 

6.2.2.2. Quadrilateral given by parametrie functions 

Assume that the four sides of the quadrilateral c are given by the para

metrie functions: 

2 
fj : (0,1] "+- JR 1 j = 1,2,3,4 

with the corner points of c given by 

Blending function interpolation [Gordon and Hall '73] can be used to con

struct a transf9rmation from the rectangle R determined by the corner 

points (0,0), (1,0), (1,1) and (0,1) to C: 

~(x,y) = (1-x)f
1

(y) +xf
2

(y) + (1-y)f
3

(x) +yf
4

(x) 

- x(l -y)f
2

(0) - xyf
2

(1) 

- (1·-x){1-y)f
1
{0)- (1-x)yf

1
(1) 

~ transforma the straight line segment { (O,t) I 0 s t s 1} in the curved 

line segment {f1 (t) I 0 st s 1} and the line {(t,O) I 0 st s 1} into 

{f3 (t) I 0 st s 1}, etcetera. Hence the four sides of Rare transformed in 

the four sides of c. 

Again it is difficult to state in general, whether the parametrie functions 

fj (j = 1,2,3,4) lead to an appropriate mesh for c. So far one is best 



guided by experience, geometrie intuition and inspection. The aid of 

computer grapbics facilities seems indispensable. 

6.3. Local mesh refinements 
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In Section 6.2.1 we have indicated how grading of a mesh may be achieved. 

For problems which allow very different element sizes in different parts of 

the structure, grading in that way leads to elements which are too slender. 

Therefore, in practica triangular elements are popUlar, because they are 

more suited to achieve local mesh refinements. A serious drawback of using 

triangular elements for that purpose is that they may give rise to irregular 

meshes. The merite of the procedures as outlined in Chapter 4 are due to 

exploiting regularity. To obtain local mesh refinements, however, one does 

not need to reeort to irregular meshes. For the ease of presentstion we 

will in the following apply rectangular elements, more specifically blended 

elements [Cavendish '75]. Blended elements differ from standard elements in 

that node to node conneetion for two adjacent elements is not required and 

thus that two or more smaller elements are allowed to abut against the edge 

of a larger element. In an obvious way the meshes described can also be 

obtained by applying (standard) triangular elements. 

6.3.1. Procedure tm 

Let us consider, to start with, a rectangular structure R with a mesh, 

locally refined around the lower left corner of R. Consider a partitioning 

of R into rectangular elements obtained in the following way: 

first partition R into four similar subrectangleSi 

next perform n times 

partition the left, lower subrectangle into four similar subreetang les. 

This partitioning leads to a mesh with 2 elements along the upper and right 

· side of R and with n + 2 elements along the lower and left side. Altogather 

there are 3n + 4 elements and Sn + 9 nodes. 

The elements of R will be identified with two integers, a "row" and a 

"column" number, in the following way: the three largast elements are (in 

clock-wise order, starting with the left most one) identified by (n+l,O), 

(n+l,n+l) and (O,n+l), respectively; of the remaining elements the three 
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largest ones are, in the same way, identified with (n,O), (n,n) and (O,n); 

and so on. The lower left element is identified by (0,0), 

Let Rm (0 s m s n) denote the substructure containing the elements of which 

the row and column number do not exceed m + 1 • We then have R • R • Moreover 
n 

the elements (m+l,O), (m+1,m+1) and (O,m+1) assembled with Rm_1 yield 

precisely ~· Hence assembling the three element matrices to the reduced 

structure matrix of Rm_1 gives a structure matrix consisting of five in

ternal and five external nodes. Eliminatien of the five internal nodes 

results in the reduced structure matrix of Rm. 

A procedure computing in the same vein as in Chapter 4 the reduced structure 

matrix associated with R if the five nodes along the upper and right side 

are external, is: 

1. procedure Lm (n: integer; var r: integer); 

2. .Y.êE. h, rl: integer; 

3. begin ur (2, 2, 0, 0, [upper, right], rl); 

4. h :• 0; 

5. while h < n do 

6. begin h :• h+ 1; 

7. compute-eZement Ch+1, 0); 

a. compute-eZement (0, h+1); 

9. compute-eZement (h+1, h+1); 

10. assembZe; 

11. deaompQse; update rl 

12. end; r := rl 

end 

The parameter n indicates the number of times a lower, left subrectangle of 

R was partitioned in order to obtain the complete partitioning of R. The 

value of the parameter r upon exit of the procedure is the address of the 

reduced structure matrix of R in the global array A. 

The values of the auxiliary variables h and rl are such that always at the 

beginning and the end of the repeated compound statement the following re

lation holds: 

rl is the address of the reduced structure matrix of Rh 
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The procedure assembZe assembles the three element matrices, computed in 

the preceding lines, with the reduced structure matrix of Rh_1; eliminatien 

of the five internal nodes with the procedure decompose gives the reduced 

structure matrix of Rh. When execution of the while-statement is completed, 

it yields h = n and hence rl is the address of the reduced structure matrix 

R = R. 
n 

It is straightforward to develop in a similar fashion procedures to compute 

the (reduced) structure and solution vectors. 

As is the case with ur, Zm may be applied to reetangles as well as to 

general quadrilateral structures. 

The procedure Zm resembles ur in that decomposition of the structure matrix 

is interleaved with partitioning the structure, computing the element 

matrices, assembling and ordering the equations. The traditionally con

secutive steps are carried out interleaved. 

6.3.2. Storage and operation counts of Zm 

If the matrices are represented as full matrices, then the procedure 

decompose in line 11 réquires (see S.2) 

multiplicative operations with i = e = S. Hence, the while-statement 

requires 18S n multiplicative operations with matrix coefficients. The 

procedure ur requires 130 such operations, therefore the total number is 

18S n + 130 • 

By applying profile algorithms that number may be reduced to 

(6.4) 119 n + 67 • 

To store the matrix, assembled in line 10, as a full matrix requires SS 

storage locations; for the reduced structure matrix 1S locations are need

ed. Hence, if the decomposed and reduced structure matrices are overwritten 

once they are not needed any longer, Zm requires in total SS + 1S is 

70 

locations (ur in line 3 requires less). 
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If the decomposed matrices are retained·, then at most 

(6. 5) 40 n + 100 

storage locations are occupied. 

It should be noted that (6.4) shows also the operatien count associated 

with a more usual organization of the calculations, i.e. first assembling 

the complete structure matrix associated with R and next applying a profile 

algorithm to compute the reduced structure matrix. 

Let N denote the total number of nodes of R, then N = Sn + 9. It follows 

from (6.4) and (6.5) that the eperation and storage counts are about 

24N - 147 and SN + 28, respectively. Hence both time and space required are 

0(N}, i.e. linear in the number of nodes. An asymptotically faster algo

rithm does not exist, because writing down the solution alone requires 0(N) 

space and time. Remamber that the corresponding counts for za> are 0(Ni"N) 

and O(N log Nl, respectively, with N the total number of nodes of the 

structure concerned. 

If the rectangle R would have been partitioned uniformly with all elements 

in size equal to the smallest element of the locally refined grid, then the 

total number of multiplicative operations with matrix coefficients would 

have been 0(8n). Comparing this with (6.4) shows the computational advan

tages of local mesh refinement. 

6.4. General plane and curved surfaces 

For more general surfaces, which for instanee may contain appendages or 

holes, an approach as outlined in [Zienkiewicz and Phillips '71] may be 

followed. 

The surface, say S, is divided into a number of quadrilaterals Vi 

(i= l, ••• ,r). With Sa so called key diagram is associated. A key diagram 

is a rectangular configuration of {possibly empty) rectangle~. There is a 

one-one correspondence between the non-empty reetangles Ri {i = 1, ••• ,r) 

and the quadrilaterals Vi. Moreover, Ri and Rj (i ~ j) are adjacent in the 

key diagram only if Vi and Vj are adjacent in s. For every pair Ri, Vi a 

transformation ~i is constructed, as outlined in Sectien 6.2, which trans

forma a partitioning of Ri into a partitioning of Vi. Of course, if Ri and 
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Rj have a common boundary b, then the nodes of Ri and Rj on b must coincide; 

moreover 41i and <lij applied to b must be the same transformation. 

To complete the versatility.of the scheme it is important to include one 

further feature, namely to express that two seemingly different boundaries 

in the key diagram are identical. It is of course necessary to ensure that 

the transformation conditions just described for common boundaries, are 

satisfied for such identical boundaries. By including this feature it is 

even possible to deal with such three--dimensional surfaces like tori and 

ball surfaces. Key diagrams are in [Zienkiewicz and Phillips '71] used to 

generata an element partitioning for s only. However, it is just as well 

possible to apply procedures as described in Chapters 4 and 5 to compute 

immediately the reduced structure matrices ~i and veetors f~i associated 

with the quadrilaterals Vi (1 = l, ••• ,r). 

To asseuwle the matrices ~i and veetors ~i and to compute the associated 

parts of the total salution vector, one may proceed in the traditional way. 

The fini te element system FEMSYS [Peters '76] is very well suited not only 

to perferm such matrix calculations, but also to handle the necessary book

keeping. FEMSYS is well suited because of its facilities for specifying 

structures consisting of arbitrary substructures; moreover its possibility 

to identify nodes with different numbers is necessary in this case. 



84 



7 .1 • Other implementations 

CHAPTER 7 

CLOSING REM.!\RKS 
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A discuesion of various strategies to solve a set of linear finite element 

equations efficiently by direct methode may be found in [George '77, George 

and Mcintyre '78]. Those papers deal only with ordering of the equations, 

LU.-decomposition (or factorization as it is called} and forward and back

ward substitution; they are not concerned with the assembly of the struc

ture matrix. COmparing figures from those papers with Table 1 indicates 

(taking into account the different processor· speeds and the efficiency of 

the code produced by the respective compilers} that our solution (by apply

ing the procedures from Chapter 4} is far more efficient (by about a factor 

4). This may be due tothefact that reordering as wellas overhead storage 

and bookkeeping are avoided. For a better appraisal we must compare our 

program with one that executes aZZ the relevant steps. 

For another comparison we have taken a popular finite element program for 

structural analysis in use on several computer installations all over the 

world. From Table 2 it is obvious that our program saves a factor greater 

that 50 of the processor time. Moreover, our program uses only central 

memory, whereas the other needs auxiliary disk space. The structural ana

lysis program is intended to be a general purpose one, suited for all kinds 

of meshes. Therefore the comparison may not be quite fair; still it indi

cates very clearly which gains in efficiency may be achieved. 

7.2. Data retrieval 

One of the reasens why the procedures as developed in this thesis are so 

efficient is undoubtedly that no other data than coefficients of structure 

matrices and veetors are stored. Whenever the value of a coordinate is 

required, it is computed. This is easily done, because the regularity of 

the problem is fully exploited. For instance, if the structure is a rect

angle with a uniform mesh, the computation of a coordinate takes only one 

addition and one multiplication with simple variables as operands, which is 
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n 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

number of 
unknowns 

36 

121 

256 

441 

676 

961 

1296 

1681 

2116 

2601 

number of decomposition I total 
multiplications time* time* 

817 0.018 0.06 

6829 0.10 0.30 

24848 0.31 0.83 

62744 0.72 1. 73 

123429 1.43 3.12 

216323 2.40 4.77 

350184 3.81 7.07 

544868 6.00 10.5 

772081 8.48 14.3 

1057805 10.7 17.7 

storage and operations counts 

decomposi ti on and total time 

of 

number of coefficients 
of decomposed matrices 

220 

1170 

3200 

6561 

11230 

17314 

25065 

35189 

46350 

59142 

procedure ur applied to n x n grids 

* times are seconds on IBM 370/165 with double length reals 

TABLE 1 

number of 
unknowns 

450 

882 

3200 

STRUDL 

224 

377 

1247 

2 

5 

23 

total processing times 

in seconds on IBM 370/165 

TABLE 2 
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no more expensive than the evaluation of a subscripted variable. Bence, it 

is cheaper to compute than to retrieve the coordinates every time they are 

needed. For less regular structures the topologies of {parts) of the ele

ment meshes are the same. To compute the coordinates of the nodes, trans

formations as described in Chapter 6 are applied. These transformations are 

simple, easy to compute functions, if the structure does not deviate too 

much from that of a uniform rectangle. 

7.3. Triangular dissections 

The computational steps of ur, fu:t' and bUI' resemble the traveraal of a binary 

tree. Going from a tree vertex to its successor, all information relevant 

for the successar is easily derived from the information concerning its 

predecessor. 

Such information includes not only the n\ll11ber of internal and external 

nodes, but also the ordering of them. Procedures analogous to ur, fur and 

bur may be developed for other kinds of structures. For instance, a tri

angular structure T can be dissected into four similar triangles, each of 

which can be dissected into four ••• , and so on. The associated tree of 

substructures is then a quaternary tree. 

7. 4. One- and three-dimensional problems 

It is straightforward to develop procedures analogous to ur, fur and bur 

for one- or three-dimensional structures: a line segment can be dissected 

into two line segments, a brick into two bricks. The adaptations as de

scribed in Chapter 6 may be extended to the one- or three-dimensional case 

as well. 

aowever, for one-dimensional structures it proves to be cheaper both in 

starage and in number of arithmetical operations not to dissect the line 

into two lines of about equal size, but to split off just one el~ent at 

one of the ends. In this way the nodes are successively eliminated from one 

end of the structure to the other. 

The above remark is also valid for two-dimensional structures with an n x m 

mesh if n >> m. For those structures it is advantageous, as far as efficien

cy is concerned, to consider them as one-dimensional strings of substruc-



88 

tures with m x m meshes. To compute the·matrices and veetors associated 

with those substructures, the procedures ur, jUP and bur may be applied. 

7.5. Structures with more than one structure vector 

In some applications of the finite element method, many sets of equations 

having the same coefficient matrix must be solved. If the procedures from 

Chapter 4 are used, then the decomposed structure matrices associated with 

the structure, say R, need to be computed only once by a call of ur and 

each structure and solution vector for R requires the execution of the 

procedures fur and bur. We have seen that the amount of time needed to 

execute fur and bur is small compared with ur. 

Also the storage space saving procedures of Chapter 5 may be applied if a 

nUlliber of structure veetors is presented simultaneously. A ;f1acility to 

handle simultaneously more than one structure vector instead of only one at 

a time must be added to 'lur. In the same way also tur must be accommodated 

to handle more than one solution vector. The facilities are easily imple

mented. If the structure veetors are presented consecutively, then for each 

structure vector the procedure 'lur must be executed, which implies that for 

each structure vector the assembly and decomposition of the matrices as

sociated with R are repeated. 

7.6. Iterative methods 

Direct and iterative methods to solve partial differential equation pro

blems are compared in [Axelsson '77]. Second and fourth order problems with 

two-dimensional n x n and three-dimensional n x n x n grids are considered. 

A comparison is made between the asymptotic nUlliber of arithmetical opera

tions required by the "SSOR preconditioned conjugate gradient method" and 

the nested dissectien method. It turns out that for a three-dimensional 

second order problem the iterative methods are asymptotically faster than 

the backward substitution phase in the direct method. For a fourth order 

two-dimensional problem the direct method is superior. In other problems 

the superiority of one metbod over another is not clear. The size of the 

problem and the nUlliber of structure veetors may influence the choice of the 

method. It should be noted, however, that direct methods are more generally 

applicable than iterative ones. 
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7.7. Data structuring facilities of PASCAL 

The data structuring facilities of PASCAL are judged to be among its more 

attractive features [Wirth '71 acta]. Nevertheless, to repreaent all the 

structure matrices and veetors associated with an n x m grid, we have used 

only the most simple data structure (apart from a simple variable), viz. 

the one-dimensional array. The reason is the following. 

A call of the procedure UP results in a hierarchy of substructures with 

corresponding matrices. Therefore, a tree like data organization with in 

every vertex the matrices associated with a substructure could be very ap

propriate. Such dynamic data structures could then be used to reprasent all 

matrices. However, PASCAL requires that the sizes of the arrays contained 

in the vertices of dynamic trees are declared statically, thus requiring 

setting of fixed limits. This is inefficient for the storage of matrices of 

various sizes, as generated by the procedure UP. These matrices can neither 

be stored in local arrays, because they are needed outside the block where 

they are computed, nor in as many global arrays as there are matrices or 

substructures, because their number and sizes would then have to be de

clared statically. The only remaining possibility is to store all matrices 

together into one or twó global arrays of sufficient length. 

If it were possible to define dynamically the sizes of the arrays in the 

tree vertices, then tree structures could be considered. However, for 

the procedure UP, trees would result in a less efficient data organiza

tion, because pointer variables would be required as well as information 

concerning the sizes. On the other hand in our data representation as set 

up for UP only matrix coefficients are stored, nothing else. 

In nearly every programming language one-dimensional arrays occur; moreover 

the iterative counterparts of the recursive procedures in Chapter 4 are 

easily obtained [Peters '78]. Hence the procedures as described in this 

thesis may be coded in nearly all programming languages. 

7.8. Generalized element method, element merge tree 

Although one may be tempted to do so, our method for finite element com

putations must not be confounded with the generalized element method 

[Speelpenning '78] (a generalization and improvement of the frontal solution 
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method [Irons '70]). Nor should a proper preserving palm be confused with an 

element merge tree [Eisenstat e.a. '78]. 

The generalized element method is different in the following aspects: 

- it is motivated by an efficient use of "backing store"; 

- nodes of a structure are eliminstad one at a time; 

- the eliminstion order of the nodes is assumed to be determined in advance; 

- the way in which a structure is dissected into substructures is completely 

controlled by the eliminstion order of the nodes; 

- it requires overhead storage and bookkeeping; 

- element matrices are assumed to have been computed in advance. 

Similarities between the method and our way of erganizing finite element 

computations are that assembly and decomposition of the structure matrix 

are interleaved (substructures may be distinguished) and that only full 

matrices are manipulated, 

The generalized element method is only applicable to so called "netwerk 

equations", which are equations whose associated matrix can be considered 

to be assembled from (smaller) element matrices. In this sense the MSSE 

method [Eisenstat e.a. ~78] is a generalization, it applies to arbitrary 

symmetrie positive definite matrices. Bowever, this method deals only with 

LU-decomposition and forward and backward substitution; assembly of the 

matrix is not considered. 'l'he principal advantages of MSSE are described to 

be "the ability to solve problems in significantly less core and to trade 

off an increase in execution time fora decrease in core". To achieve this 

a so called "element merge tree" is constructed. such an element merge tree 

depends on the ordering of the equations and variables. In an obvious way a 

pp-partition can be associated with such an element merge tree. Hence the 

results of Chapter 2 apply also to those element merge trees. The partition 

associated with an element merge tree is not always a proper one, however. 

As a consequence, if the MSSE method is applied to a dense band matrix, it 

results in highly inefficient moving around of data. In all èases the 

method requires extensive bookkeeping. The claim "for a nine-point problem 
7 2 with the nested dieseetion ordering on an n x n grid fewer than 2n non-

zeros must be saved versus Î; n 2 log2n for sparse eliminstion, while the 

work required at most doubles".is incorrect. 
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It should be noted that Williams was the first to point out the equivalence 

of substructuring and sparse matrix algorithms [Williams '73]. He showed 

that it is always possible to choose the substructures so that the sub

structure method will lead to precisely the same computations as any sparse 

matrix solution, with the minor difference that some additions are perform

ed at different stages of the solution. He showed this, however, in such a 

way that he was led to the conclusion: "It appears that a sparse matrix 

method will always be preferable to a substructure metbod ••• ". We have 

shown in this thesis that this conclusion is not valid any longer. 

7.9. Parallel computation 

Let us consider the procedure ur in 4.1.2. Execution of the recursive call 

in line 11 (or line 14) does not depend upon, the execution of the immedia

tely preceding call in line 10 (or line 13), except for the determination 

of the position to store the computed matrices! Hence both recursive calls 

may be done in either order or even simultaneously by two different pro

cessors. In the last case, each processor in its turn may set to work two 

other processors. The processors do not need access to common data. The 

procedure ur is therefore well suited for implementation on a computer with 

many processors. The way in which the processors communicate with each 

other is independent of the finite element problem being solved. The pro

cessors may be linked as a binary tree. 

The same remark applies to the procedures fur, bur, 711U1' and tur. 
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Á(v) 

Ä(v) 

adjacency set 

ancestor vertex 

assembte 

backward substitution 

bandwidth 

blended element 

blending interpolation 

block-matrix 

block-pivot 

bur 

Cholesky decomposition 

connected component 

connected graph 

conneetion graph 

conneetion matrix 

consistent ordering 

CQ 
V(v) 

V(v) 

D{V) 

decomposable matrix 

deaompose 

decomposed (structure) matrices 

decomposition graph 

deficiency 

dense 

descendant vertex 

directed graph 

dissectien tree 

edge 

element 

element matrix 

element vector 

INDEX 

12 

12 

11 

11 

55 
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6 
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11 

12 

41 

15 

8 

12 

12 

13 

13 

55 

57 

13 

13 

9 

11 

10 

37 

10 

41 

41 

41 

eliminatien graph 

envelope 

external node 

fill-in 

forward substitution 

frame structure 

frond 

fur> 

* G 
ex 

graph 

internal node 

key diagram 

leaf vertex 

LU-decomposition 

Zur> 

mesh generation 

mur 

nested dissectien ordering 

nested dissectien partition 

node 

ordered graph 

palm 

palm forest 

partial decomposition 

partition 

path 

perfect partition 

p-partition 

pp-partition 

predecessor vertex 

preserving palm 

preserving partition 

profile 

proper palm 

93 

13 

a 
44 

13 

6 

73 

11 

57 

13 

11 

44 

82 

11 

80 

1 

68 

42 

67 

37 

37 

42 

12 

11 

11 

6 

12 

11 

23 

20 

24 

11 

17 

20 

9 

25 
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proper p-partition 25 strongly connected graph 11 

quotient graph 12 structure 41 

reduced structure matrix 45 structure matrix 41 

reduced structure vector 45 structure vector 41 

reducible matrix 13 substituted structure vector 58 

root 11 substructure 44 

rooted tree 11 successor vertex 11 

rQ 8 tree 11 

section graph 11 tUI' 69 

separator 11 undirected graph 10 

serendipity element 77 U!' 53 

shape function 39 vertex 10 

sparse matrix algorithm 10 
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SAMENVATTING 

De oplossing van een stelsel van n lineaire vergelijkingen in n onbekenden 

kan (onder zekere voorwaarden) worden verkregen met behulp van Gaussische 

eliminatie of van (wat in feite op hetzelfde neerkomt) LU-decompositie. 

Hierbij worden een benedendriehoeksmatrix L en een bovendriehoeksmatrix u 

bepaald, zodanig dat LU = Q, waarbij Q de bij het stelsel behorende matrix 

is. Grote stelsels vergelijkingen zijn doorgaans ijl, dat wil zeggen dat 

slechts een gering aantal coöfficiênten van de matrix Q ongelijk aan nul is. 

Bovendien zijn de driehoeksmatrices L en u meestal eveneens ijl. In de loop 

der tijden zijn er ingewikkelde zogenaamde ijle matrix algorithmen ontwik

keld, teneinde die driehoeksmatrices op een efficiênte wijze te verkrijgen, 

waarbij efficiëntie inhoudt dat arithmetische operaties met coëfficiënten 

die nul zijn, worden vermeden. Het is bekend dat de volgorde van de varia

belen en vergelijkingen niet alleen van invloed is op de ijlheid van de 

driehoeksmatrices, maar ook op het vereiste aantal arithmetische operaties 

met coëfficiënten die ongelijk nul zijn. 

In dit proefschrift tonen we met behulp van grafentheoretische terminologie 

aan dat het (bij de gegeven ordening van de vergelijkingen en onbekenden) 

altijd mogelijk is om de verzameling variabelen zo te partitieneren dat de 

driehoeksmatrices L en U verkregen kunnen worden door het decomponeren van 

kleinere matrices, die bepaald zijn door de partitie. Omdat er geen nullen 

voorkomen in de zogenaamde enveloppen van de bij de kleinere matrices beho

rende driehoeksmatrices, zijn geen ingewikkelde ijle matrix algorithmen no

dig om arithmetische operaties met nullen te vermijden. We kunnen volstaan 

met eenvoudiger (namelijk envelop-) algorithmen en daarmee toch de coêffi

ciënten van L en u met het geringste aantal arithmetische bewerkingen ver

krijgen. 

Grote, ijle stelsels vergelijkingen komt men onder andere tegen in de 

eindige-elementenmethode, een wijdverbreide methode om zekere typen parti

ele differentiaalvergelijkingen op te lossen. De hierboven beschreven re

sultaten voor het oplossen van lineaire stelsels geven aanleiding tot een 

nieuwe organisatie van eindige-elementenberekeningen. In plaats van één 

groot stelsel wordt een aantal kleinere opgesteld, of, in eindige-elemen-
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tenterminologie, in plaats van aan één grote structuur wordt aan een aantal 

kleinere substructuren gerekend. 

Voor (niet noodzakelijkerwijs homogene) n x m netwerken worden algorithmen 

in PASCAL beschreven. Deze nieuw ontwikkelde recursieve algorithmen onder

scheiden zich van bestaande doordat een aantal traditioneel opeenvolgende 

stappen verstrengeld zijn. Bovendien is het onnodig andere gegevens dan 

matrixcoëfficiënten expliciet op te slaan. Met name worden geen administra

tieve gegevens zoals verwijzingen, tellers enz. gebruikt. De algorithmen 

zijn conceptueel eenvoudig. Een implementatie van deze algorithmen bleek 

meer dan een factor 50 sneller dan een veel gebruikt programma pakket voor 

technische berekeningen. Besparingen in geheugengebruik zijn eveneens aan

zienlijk. De algorithmen zijn bruikbaar voor willekeurige tweedimensionale 

structuren. Op overeenkomstige wijze kunnen algorithmen voor driedimensio

nale structuren echter ook ontwikkeld worden. 
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STELLINGEN 

1. 

De opmerking van George en Liu dat de pseudo-diameter van een ongerichte 

graaf weinig afwijkt van de diameter is niet waar. 

A. George en J.W.B. Liu, An automatic nested dissectien algorithm 

for irregular finite element problems. SIAM J. Numer.Anal.15 

(19i3), 1053- 1069. 

2. 

Zij a(M) het aantal arithmetische bewerkingen met niet-nul matrixcoëffi

ciënten dat nodig is voor de LU-decompositie van een matrix M. Als Q een 

volle bandmatrix is, dan geldt voor iedere permutatiematrix P: 

3. 

Zij B een n x n matrix met volle band en een bandbreedte die klein is ten 

opzichte van n. Laat T de tijd zijn die nodig is voor LU-decompositie van 

B met E!!én processor. Als er. p ( 1 < p « n) onafhatikeli jke processoren, ieder 

met een eigen geheugen, zijn, dan kan voor bepaalde permutatiematrices 

P de LU-decompositie van PBPt bepaald worden in een tijd ongeveer T/p. 

Alleen als p = 2 kan die reductie in tijd bereikt worden zonder dat het 

totale aantal arithmetische operaties groter is dan met één processor. 



4. 

Het gebruik van met een random generator voortgebrachte testmatrices bij 

het onderzoek van ijle matrix algorithmen is zi.nloos. 

I.S. Duff, A survey of sparse matrix research. 

Proc.IEEE 65 (1977), 500- 535. 

s. 

Dat Rose en Whitten's algori.thme, in tegenstelli.ng tot het algorithme 

van Duff e.a., de vi.er hoekpunten van een rechthoekig netwerk het eerst 

nummert, is geen verklari.ng voor de geconstateerde verschillen in het 

aantal arithmeti.sche operaties. 

l.S. Duff, A.M. Erisman en J.K. Reid, On George's nested dis

sectien method. SIAM J. Numer. Anal. g (1976), 686 - 695. 

6. 

Ondanks het belang dat Zienki.ewi.cz hecht aan "blendi.ng processes" zijn 

in diens leerboek de formules (8.40) tot en met (8.43) die daarop betrek

king hebben, fout. 

o.c. Zienkiewicz, The finite element method. 

Tni.rd edition. Londen, Me Graw-Hi.ll, 1977. 

7. 

Naast een analogon van de procedure ur uit dit proefschrift voor drie

hoeki.ge structuren bestaat er ook een analogon voor L-vormige structuren. 



8. 

De procedures uit hoofdstuk 4 van dit proefschrift zijn geschikt als lei

draad bij het ontwerp van een eindige-elementenautomaat bestaande uit een 

groot aantal samenwerkende, onderling identieke machines. 

9. 

Het is onvoldoende bekend dat een computer geen informatie scheppende, 

doch integendeel een doorgaans uiterst effectieve informatie vernietigen

de machine is • 

10. 

Als men bij de aangifte voor de inkomstenbelasting giften aan instellingen 

aftrekt, dan komt dat in feite neer op subsidiêring van die instellingen 

met geld van een ander, namelijk de overheid. Het fiscaal aftrekbaar stel

len van giften is derhalve verwerpelijk. 

11. 

De ui tapraak "parapsychologische verschijnselen zijn hersenspinsels" wordt 

niet weerlegd in de literatuur die wordt aanbevolen bij de cyclus Para

psychologie van het Studium Generale. 
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