
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3120051, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Sparse Matrix-based Low-complexity,
Recursive, Radix-2 Algorithms for
Discrete Sine Transforms

SIRANI M. PERERA1, LEVI E. LINGSCH2

1
Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA (e-mail: pereras2@erau.edu)

2
Department of Aerospace Engineering, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA (e-mail: lingschl@my.erau.edu)

Corresponding author: Sirani M. Perera (e-mail: pereras2@erau.edu).

This work was supported by the Faculty Innovative Research in Science and Technology Grant 13238 at Embry-Riddle Aeronautical

University, USA

ABSTRACT This paper presents factorizations of each discrete sine transform (DST) matrices of types

I, II, III, and IV into a product of sparse, diagonal, bidiagonal, and scaled orthogonal matrices. Based

on the proposed matrix factorization formulas, reduced multiplication complexity, recursive, and radix-

2 DST-I/II/III/IV algorithms are presented. We will present the lowest multiplication complexity DST-

IV algorithm in the literature. The paper fills a gap in the self-recursive, exact, and radix-2 DST-I/II/III

algorithms executed via diagonal, bidiagonal, scaled orthogonal, and simple matrix factors for any input

n = 2t (t ≥ 1). The paper establishes a novel relationship between DST-II and DST-IV matrices using

diagonal and bidiagonal matrices. Similarly, a novel relationship between DST-I and DST-III matrices is

proposed using sparse and diagonal matrices. These interweaving relationships among DST matrices enable

us to bridge the existing factorizations of the DST matrices with the proposed factorization formulas. We

present signal flow graphs to provide a layout for realizing the proposed algorithms in DST-based integrated

circuit designs. Additionally, we describe an implementation of algorithms based on the proposed DST-II

and DST-III factorizations within a double random phase encoding (DRPE) image encryption scheme.

INDEX TERMS Discrete sine transforms, self/completely recursive and radix-2 algorithms, complexity

and performance of algorithms, sparse and orthogonal matrices, signal flow graphs

I. INTRODUCTION

Discrete sine transforms are real-valued transform matrices

and a subclass of the discrete Fourier transform (DFT) matri-

ces, extracting the imaginary part of the complex trigonomet-

ric form. The DFT matrix can be described as a Vandermonde

matrix having nodes as the primitive nth roots of unity, where

n is a positive integer. The fast Fourier transform (FFT) is an

algorithm that can be used to compute the DFT and its inverse

efficiently.

For a given vector x = [x0, x1, · · · , xn−1]
T ∈ R

n, its DST

can be expressed as y = Sx, where S is the DST matrix.

The DST matrix has four main variants, i.e., I-IV as defined

below

SI
n−1 =

√
2

n

[
sin

(j + 1)(k + 1)π

n

]n−2

j, k =0

,

SII
n =

√
2

n

[
ǫn(j + 1) sin

(j + 1)(2k + 1)π

2n

]n−1

j, k =0

,

SIII
n =

√
2

n

[
ǫn(k + 1) sin

(2j + 1)(k + 1)π

2n

]n−1

j, k =0

,

SIV
n =

√
2

n

[
sin

(2j + 1)(2k + 1)π

4n

]n−1

j, k =0

,

where ǫn(0) = ǫn(n) = 1√
2

, ǫn(j) = 1 for j ∈
{1, 2, · · · , n − 1} and n ≥ 2 is an even integer. Here,

we use the superscript to denote the type of a given DST

matrix and the subscript to denote the order of a DST

matrix. Among the DST I-IV matrices, SI
n−1 and SIV

n were

introduced in [1], [2], and SII
n and its inverse SIII

n were

introduced in [3] to digital signal processing. The complete

VOLUME, 2021 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3120051, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

set of even discrete cosine transform (DCT) and DST variants

was originally presented in [4]. DST-II is a complementary or

alternative transform to DCT-II, which is used in transform

coding. Like the DFT and DCT, these DST matrices hold

linearity, convolution-multiplication, orthogonality, and shift

properties. Moreover, the DSTs of types II and III are

related via SIII
n =

[
SII
n

]T
. In this paper, we will establish

relationships between SII
n and SIV

n as well as SI
n−1 and

SIII
n . The matrix factorization for DST-I in [5] used the

results from [6] to decompose DST-I into the DCT and DST.

Though one can find orthogonal matrix factorizations for the

DCT and DST in [7], the resulting algorithms in [7] are

not completely recursive and hence do not lead to simple

recursive algorithms. An alternative factorization for DCT

I in [8] and DST-I in [9] can be seen in [10], [11], but the

factorizations in the latter papers do not solely depend on

DCT I-IV or DST I-IV. Moreover, [11] has used the same

factorization for DST-II and IV as in [7]. The authors in [9],

[12], however, produce radix-2, completely recursive, and

stable DST I-IV algorithms. Furthermore, [12] established a

connection between algebraic operations used in the sparse

and scaled orthogonal factorization of DST I-IV matrices

and signal flow graphs. We refer to many more historical

remarks on DST factorizations and the corresponding signal

flow graphs in [12]. We note here that the DCT algorithms

in [8], [9], [13] and the relationship between cosine and sine

transform matrices in [10] can be used to obtain the DST

algorithms in [12]. On the other hand, one can use an elegant

factorization for Chebyshev-like Vandermonde matrices to

factor the DCT and DST matrices as described in [14].

However, there are no simplest sparse factors, no explicit

algorithms, and no complexity analysis to compute DCT and

DST matrices by a vector in [14]. In this paper, we obtain

simple factors, i.e, diagonal, bidiagonal, sparse, and scaled

orthogonal factors, to compute DST matrices by a vector.

Additionally, we present self-recursive/completely-recursive

and radix-2 DST algorithms with the lowest multiplication

complexity in the literature.

In recent years, developments in calculating the DST have

widely broadened the algorithm’s applications. Methods

based upon the recursive nature of Chebyshev-polynomials

have led to a drastic decrease in hardware complexity for

applications which only require the transmission of a few

key transform coefficients, creating a DST algorithm that is

suitable for very large scale integrated circuits (VLSI) [15]–

[17]. Similarly, a first-order moment-based approach has

been developed which is able to calculate the 1-dimensional

DST-II without the need for multiplications by using special

accumulator arrays and without having explicit factors for the

DST-II to decrease computation time for certain applications

[18]. For complex inputs, sparse factorization-based methods

offer an extremely reduced flop count when compared to the

brute-force method. The DST-II algorithms proposed in [19]

take this a step further by developing a radix-2 based even-

odd output vector at each stage, but without having explicit

factorization for the DST-II matrix for any n.

The development of the convolution-multiplication property

for the families of DSTs and DCTs led way for the DST

to become an alternative to the DFT in many filtering

applications [20]. Similarly, the duality theorem proposed in

[21], [22] now allows for the avoidance of calculating the

inverse DST (IDST) in applications where similar signals are

commonly encountered. Recently, the DST has expanded to

applications including underwater signal transmission [23],

[24], analysis and noise estimation of speech [25], finite

impulse response (FIR) frequency filtering [26], and feature

extraction of modulated signals in orthogonal frequency divi-

sion multiplexing (OFDM) systems [27]. Similarly, the noise

filtering capabilities have led to a new DST-based approach

to measuring the volatility of stock prices [28], [29]. In

hardware applications, the DST provides advantages over

DCT-based approaches for statistical processes like the first-

order Markov sequences with specific boundary conditions,

and it achieves a lower bit error rate (BER) than the DCT

for signals with low correlation [30]. It has also been shown

that the DST may be implemented in the design of fractional

order differentiators [31]. With the ability to develop DST

algorithms with regularity, modularity, pipelining capability,

and local connectivity, the DST will continue to expand its

role in VLSI implementation [15]–[19], [26], [30], [31].

Although the DCT has traditionally played the pivotal role

of frequency decomposition for data compression in methods

like JPEG and MPEG, recent works have suggested that the

DST may be applied to develop new methods of compression

with increased performance for image and audio analysis

as well as high-efficiency video encoding (HEVC) [22],

[32]–[35]. The DST has proven to be an effective tool in

the medical field as well, combining multiple images of

different modes into a singular, highly detailed image for

more accurate diagnoses [36], [37]. Expansion upon the

fractional DST has also broadened the transform’s role in

the field of cyber security, particularly for applications in

image encryption [38]–[40]. It was shown in [38] that the

DST increases the entropy of encryption schemes that rely

on processing within transform domains. This paper explores

this concept further in Section VIII.

We have observed that the lowest multiplicative complexity,

radix-2, and recursive DST algorithms having diagonal, bidi-

agonal, sparse, and scaled orthogonal matrices are missing

elements in the literature. Thus, in this paper, we follow

a similar approach in deriving DCT II/III algorithms in

[41] and the DCT I/IV algorithms in [42] to obtain novel

lowest multiplication complexity, recursive, and radix-2 DST

algorithms execute via diagonal, bidiagonal, sparse, and

scaled orthogonal matrices. We also obtain novel relation-

ships between DST-II and DST-IV matrices, and DST-I and

DST-III matrices in terms of diagonal, bidiagonal, and sparse

2 VOLUME, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3120051, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

matrices.

We first introduce frequently used notation in Section II. In

Section III, we obtain simple, diagonal, bidiagonal, sparse,

and scaled orthogonal factors for the DST matrices. In

Section IV, we derive relationships between DST-I and DST-

III matrices, and also between DST-II and DST-IV matrices,

using bidiagonal, diagonal, and sparse matrices. Next, in

Section V, we state recursive and radix-2 DST algorithms

to compute the DST matrices by a vector based on the

factorization of the DST matrices described in Section III. In

Section VI, we establish arithmetic complexities for comput-

ing the proposed DST algorithms. Within the same section,

we compare the arithmetic complexities in computing the

proposed DST algorithms with some known DST algorithms.

In Section VII, we show the connection between the algebraic

operations used to compute the proposed DST algorithms

and the signal flow graph building blocks to provide an

architecture for the DST based integrated circuit design.

Finally, we describe in Section VIII an application of the

proposed DST algorithms within a DRPE image encryption

scheme.

II. FREQUENTLY USED NOTATIONS

First, we provide notations in [14] to distinguish and show

the novelty of the proposed DST matrix factorization in

comparison to the results in [14]. Next, we will introduce

additional notations that we use throughout the paper.

A. FACTORIZATION FOR DST-I AND DST-II IN [14]

Here, we provide formulas in computing DST-I/II matrices

in [14]. The relationship Fn = WQ · VQ, where Fn is the

DCT or DST matrix of types I-IV, WQ is the weight ma-

trix, and VQ is the Chebyshev-like polynomial Vandermode

matrix for the DCT or DST matrices, was first introduced

in [43]. Later in [14], the polynomial Vandermonde matrix

VQ = [Qk(xj)]
n,n−1
j,k=1,0 was further split into self contained

factors to obtain factorization for the DCT and DST matrices.

The weight matrix for DST-I in [14], [43] for odd N is given

by

WQSI
=
√

2
N+1diag

[
sin
(

π
N+1

)
, sin

(
2π

N+1

)
, · · · , sin

(
Nπ
N+1

)]
.

(1)

The weight matrix for DST-II in [14], [43] for even n is

given by

WQSII
=
√

2
ndiag

[
sin
(

π
2n

)
, sin

(
π
n

)
, · · · , sin

(
(n−1)π

2n

)
, 1√

2
sin
(
π
2

)]
.

(2)

The self-contained factorization for the Chebyshev-like poly-

nomial Vandermode matrix for DST-I (for odd N) and DST-II

(for even n) was derived in [14] and stated as follows

VQ
SI/II

=

[
odd− even

permutation

][
Veven

Vodd

]
HSI/II , (3)

where

HSI =

[
ǏN−1

2 ,N+1
2

−IN−1
2 ,N−1

2

IN+1
2 ,N+1

2
−ÎN+1

2 ,N−1
2

]
, (4)

ÎN+1
2 ,N−1

2
=

[
IN−1

2 ,N−1
2

0

]
, and ǏN−1

2 ,N+1
2

=
[
IN−1

2 ,N−1
2

0
]
,

and

HSII =

[
In

2 ,n2
−Ĩn

2 ,n2

In
2 ,n2

Ĩn
2 ,n2

]
, (5)

Ĩ is the anti-diagonal matrix. Moreover, the Chebyshev-like

polynomial Vandermonde matrix Veven = [Q2j(d2k)]
N−1

2

j,k=1

is defined using Qk(d) = Uk(d) for DST-I and Veven =

[Q2j(d2k)]
n
2

j,k=1 is defined using Qk(d) = Uk(d)− Uk−1(d)
for DST-II with respect to the classical Chebyshev polynomi-

als Uk(d) =
sin((k+1) arccos(d))

sin(arccos(d)) for k = 0, 1, · · · , N − 1 or

n− 1, respectively for DST-I and DST-II.

The factorization for Vodd was derived for DST-I (for odd N)

and has the form

Vodd = GSI

[
Veven 0

0 1

]
ĜSI , (6)

where

GSI =




sin(arccos d2)
sin(arccos d1)

(−1)0

sin(arccos d1)
sin(arccos d2)
sin(arccos d3)

sin(arccos d4)
sin(arccos d3)

(−1)1

sin(arccos d3)

. . .

. . . sin(arccos dN−1)
sin(arccos dN−2)

(−1)
N−3

2

sin(arccos dN−2)

sin(arccos dN−1)
sin(arccos dN)

(−1)
N−1

2

sin(arccos dN)




,

(7)

and

ĜSI =
1

2
diag

[
1

T1(d1)
,

1

T2(d1)
, · · · , 1

TN−1
2

(d1)
, 1

]
,

(8)

with respect to the nodes

{dk}Nk=1 =

{
cos

(
kπ

N + 1

)}N

k=1

, (9)

and the classical Chebyshev polynomials Tk(d) =
cos(k arccos d).
The factorization for Vodd was derived for DST-II (for even

n) and has the form

Vodd = GSIIVevenĜSII , (10)

where

GSII =




sin(arccos d2
2)

sin(arccos d1
2)

sin(arccos d2
2)

sin(arccos d3
2)

sin(arccos d4
2)

sin(arccos d3
2)

. . .

. . .

sin
(

arccos dn−2
2

)

sin
(

arccos dn−1
2

)

sin(arccos dn
2)

sin
(

arccos dn−1
2

)




,

(11)

VOLUME, 2021 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3120051, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

and

ĜSII =
1

2
diag


 1

cos
(

π
2n

) , 1

cos
(
3π
2n

) , · · · , 1

cos
(

(n−1)π
2n

)


 ,

(12)

with respect to the nodes

{dk}nk=1 =

{
cos

(
kπ

n

)}n

k=1

. (13)

By using the above factorization formulas for the

Chebyshev-like polynomial Vandermonde matrices and the

relationship Fn = WQ ·VQ in [43], the following results were

obtained in [14] to factor DST-I (for odd N) and DST-II (for

even n) matrices

SI
N = WQSI

[
odd− even

permutation

]−1 [
W−1

N−1
2

I

]


S

I
N−1

2

GSI W−1
N−1

2

SI
N−1

2

ĜSI


HSI ,

(14)

and

SII
n = WQSII

[
odd− even

permutation

]−1 [
W−1

n
2

I

]

[
SII

n
2

GSII W−1
n
2

SII
n
2
ĜSII

]
HSII .

(15)

The factorization formulas (14) and (15) were obtained

by using the factorization formula (3) with the replace-

ment of VQ
SI/II

by W−1
Q

SI/II
SI/II (from [43]), VN−1

2
by

W−1
N−1

2

SI
N−1

2

and Vn
2

by W−1
n
2

SI
n
2

(from [43]), respectively.

Although it says in [14] that the first matrix in the factor-

ization (3) is the odd-even permutation matrix, it must actu-

ally be the transpose (inverse) of the odd-even permutation

matrix. We also note here that the factorization formulas to

compute DST-III/IV matrices in [14] are not included be-

cause the proposed DST-III/IV matrix factorization formulas

are completely different from the factorization formulas in

[14].

B. OTHER NOTATION

We state here diagonal, bidiagonal, sparse, and orthogonal

matrices which are frequently used in this paper. For a given

vector x ∈ R
n and an integer n ≥ 3, let us introduce

an even-odd permutation matrix Pn by

Pnx =

{
[x0, x2, · · · , xn−2, x1, x3, · · · , xn−1]

T , if n is even

[x0, x2, · · · , xn−1, x1, x3, · · · , xn−2]
T , if n is odd,

an odd-even permutation matrix P̃n by

P̃nx =

{
[x1, x3, · · · , xn−1, x0, x2, · · · , xn−2]

T , if n is even

[x1, x3, · · · , xn−2, x0, x2, · · · , xn−1]
T , if n is odd.

For even n s.t. n ≥ 4,

we introduce a sparse matrix

B̄n
2
=




1 1

1 1 −1
. . .

. . . 1

1 1
...

1 −1




, (16)

a bidiagonal matrix

Bn
2
=




1

1 1
. . .

. . .

1 1

1
√
2



, (17)

diagonal matrices

W̄n
2
=


diag

[
csc(

(n−2k)π
2n)

2

]n
2 −1

k=1

0

0 1


 (18)

and

Wn
2
= diag

[
csc((n−2k+1)π

2n)

2

]n
2

k=1

, (19)

sparse and orthogonal matrices

H̃n =
1√
2

[
In

2
−Ĩn

2

In
2

Ĩn
2

]
, (20)

Hn =
1√
2

[
In

2
Ĩn

2

In
2

−Ĩn
2

]
=

1√
2
Hs

n,

H̄n−1 =
1√
2




In
2 −1 −Ĩn

2 −1

In
2 −1 Ĩn

2 −1√
2


 , (21)

Ĥn−1 =
1√
2




In
2 −1 Ĩn

2 −1√
2

In
2 −1 −Ĩn

2 −1


 =

1√
2
Hs1

n−1,

(22)

Vn =




1

1√
2

[
In

2 −1 −In
2 −1

−In
2 −1 −In

2 −1

]

−1




[
Ĩn

2

Jn
2

]
,

(23)

4 VOLUME, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3120051, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

where Jn = diag
[
(−1)k

]n
k=0

,

a rotational-reflection matrix

Qn =

[
Jn

2

In
2

][
diag Sn

2

(
diag Cn

2

)
Ĩn

2

−Ĩn
2

(
diag Cn

2

)
diag

(
Ĩn

2
Sn

2

)
]

=

































sin
π

4n
cos

π

4n

−sin
3π
4n

−cos
3π
4n

.
.

−sin
(n−1)π

4n
−cos

(n−1)π
4n

−cos
(n−1)π

4n
sin

(n−1)π
4n

. .
. . . .

−cos
3π
4n

sin
3π
4n

−cos
π

4n
sin

π

4n

































,

(24)

where

Cn
2
=

[
cos

(2k + 1)π

4n

]n
2 −1

k=0

,

Sn
2
=

[
sin

(2k + 1)π

4n

]n
2 −1

k=0

,

and a matrix with three liftings (we will show later that the

following sparse and orthogonal matrix i.e. Q̃n is the same as

the matrix Qn with three lifting steps performed)

Q̃n

=

[

Jn
2

Jn
2

(

diag Tn
2

)

Ĩn
2

0 −In
2

][

In
2

0

−Ĩn
2

(

diag Sn
2

)

In
2

][
(

diag Tn
2

)

Ĩn
2

Ĩn
2

0

]

,

(25)

where Tn
2
=
[
tan (2k+1)π

8n

]n
2 −1

k=0
.

III. SPARSE, ORTHOGONAL, BIDIAGONAL, DIAGONAL,

AND SELF-CONTAINED FACTORS FOR DST MATRICES

In this section, we will propose formulas to factor DST

I/II/III/IV matrices into the product of sparse, diagonal, bidi-

agonal, and orthogonal matrices. Among the factorization

formulas, the self-contained factorization of DST-II matrix

will be used to establish a factorization formula for the

DST-III matrix. Also, an orthogonal matrix with three lifting

steps and the factorization formula of the DST-II matrix are

utilized to obtain a factorization formula for the DCT-IV

matrix.

A. SPARSE, ORTHOGONAL, DIAGONAL, AND

SELF-CONTAINED FACTORS TO COMPUTE DST-I

MATRIX

Let us state a novel self-enclosed factorization to compute the

DST-I matrix using simple, diagonal, sparse, and orthogonal

matrices.

Lemma III.1. (Self-enclosed DST-I factorization) For an

even integer n ≥ 4, the matrix SI
n−1 can be factored into the

form

SI
n−1 = P̃T

n−1

[
In

2 −1 0

0 B̄n
2

]



SI
n
2 −1

SI
n
2 −1 √

2
n




[
In

2 −1 0

0 W̄n
2

]
H̄n−1.

(26)

Proof. We factor the weight matrix WQSI
defined in the

equation (1) into the product of matrices s.t.

WQSII
=

√
2

n
P̃T
n−1

[
Weven 0

0 Wodd

]
P̃n−1, (27)

where Weven = diag
[
sin(2kπn)

]n
2 −1

k=1
and Wodd =

diag
[
sin((2k−1)π

n)
]n

2

k=1
. Now, we use the trigonometric

identities to factor GSI in equation (7) and ĜSI in equation

(8) into the product of diagonal and sparse matrices s.t.

GSI = W−1
oddB̄n

2

[
Weven 0

0 1

]
(28)

and

ĜSI =
1

2

[
Ĩn

2 −1

1

][
W−1

h 0

0
√
2

][
Ĩn

2 −1

1

]
, (29)

where Wh = diag
[
sin(kπn)

]n
2 −1

k=1
and B̄n

2
is defined in (16).

Hence by (27), (28), (29), SI
n−1 = WQSI

VQSI
, VQSI

=

P̃T
n−1

[
Veven

Vodd

]
HSI , and using the Vodd defined in (6),

we can obtain

SI
n−1 =

√
2
n P̃

T
n−1



WevenVeven 0

0 B̄n
2

[
WevenVeven 0

0 1

]
W̄n

2


 H̄n−1.

(30)

By simplifying Ĩn
2 −1W

−1
h Ĩn

2 −1 and HSI (defined in (4)),

we can obtain W̄n
2

in (18) and H̄n−1 in (21), respectively.

By following [43], we can obtain SI
n
2 −1 =

√
4
nWevenVeven.

Thus, we substitute this relationship into the equation (30)

and modify the last entry in the (2,2) block of the middle

matrix in (30). This is modified to fix the scaling because the(
n
2 ,

n
2

)
entry of ĜSI is 1√

2
and scaling factor of SI

n
2 −1 is

√
4
n .

Then, we add a scaling factor of 1√
2

to H̄n−1 (i.e. modify

the
(
n− 1, n

2

)
entry of H̄n−1) to obtain the factorization

proposed in (26).

Remark III.2. By comparing the factorizations of the DST-

I matrix in (14) and (26) (i.e. distinguishing the proposed

self-contained factorization of the DST-II matrix from the

DST-I factorization in [14]) one can observe that (a). the

weight matrix is congregated in (26) as opposed to scattered

weight matrices in (14), (b). the weight matrix WQSI
in (2)

was factored into the product of permutation and odd/even

weight matrices in (27), (c). the matrix GSI in (29) has

been simplified and factored into the product of sparse and

diagonal matrices as opposed to the matrix GSI in (7), (d).

the matrix ĜSI in (29) has been simplified and factored into

the product of diagonal matrices as opposed to ĜSI in (8),

(f). the matrix H̄n−1 in (26) is orthogonal as opposed to the

nonorthogonal matrix HSI in (4). Thus, the proposed self-

contained factorization of the DST-I matrix in (26) is in the

simplest form as opposed to the factorization of the DST-I

VOLUME, 2021 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3120051, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

matrix in (14).

Remark III.3. The factorization of the DST-I matrix estab-

lished in Lemma III.1 also yields to the following alternative

factorization formula through a permutation

SI
n−1 = PT

n−1

[
B̄n

2
0

0 In
2 −1

]



SI
n
2 −1 √

2
n

SI
n
2 −1




[
W̄n

2
0

0 In
2 −1

]
Ĥn−1,

(31)

where Pn−1 is an even-odd permutation matrix and Ĥn−1 is

defined in (22).

B. BIDIAGONAL, DIAGONAL, ORTHOGONAL, AND

SELF-CONTAINED FACTORS TO COMPUTE DST-II

MATRIX

Let us state a novel self-contained factorization to compute

the DST-II matrix using sparse, bidiagonal, diagonal, and

orthogonal matrices.

Lemma III.4. (Self-enclosed DST-II factorization) For an

even integer n ≥ 4, the matrix SII
n can be factored into the

form

SII
n = P̃T

n

[
In

2
0

0 Bn
2

][
SII

n
2

0

0 SII
n
2

][
In

2
0

0 Wn
2

]
H̃n.

(32)

Proof. We factor the weight matrix WQSII
defined in the

equation (2) into the product of matrices s.t.

WQSII
=

√
2

n
P̃T
n

[
Weven 0

0 Wodd

]
P̃n, (33)

where Weven = diag{
[
sin(kπn)

]n
2 −1

k=1
, 1√

2
} and Wodd =

diag
[
sin((2k−1)π

2n)
]n

2

k=1
. Now, we can use the inverse, recip-

rocal, and cofunction trigonometric identities to factor GSII

in the equation (11) and ĜSII in the equation (12) into the

product of bidiagonal, diagonal, and sparse matrices s.t.

GSII = W−1
oddBn

2
Weven and ĜSII = 1

2 Ĩn
2
W−1

oddĨn
2
,
(34)

where Bn
2

is defined in (17). While factoring the ma-

trix GSII , the
(
n
2 ,

n
2

)
entry of Bn

2
is modified into

√
2

because the
(
n
2 ,

n
2

)
entry of Weven is defined as 1√

2
in

(33). Hence by (33), (34), SII
n = WQSII

VQSII
, VQSII

=

P̃T
n

[
Veven

Vodd

]
HSII , and using the Vodd defined in (10),

we can obtain

SII
n =

√
2
n P̃

T
n

[
WevenVeven 0

0 1
2Bn

2
WevenVevenĨn

2
W−1

oddĨn
2

]
H̃n,

(35)

where H̃n is given in (20). By following [43], we can obtain

SII
even =

√
4

n
WevenVeven. (36)

Thus, from the equations (35) and (36) we get

SII
n = P̃T

n

[
SII

n
2

0

0 1
2Bn

2
SII

n
2
Ĩn

2
W−1

oddĨn
2

]
H̃n,

= P̃T
n

[
In

2
0

0 Bn
2

][
SII

n
2

0

0 SII
n
2

][
In

2
0

0 1
2 Ĩn

2
W−1

oddĨn
2

]
H̃n.

(37)

Finally, by using the above equation and the trigonometric

identities to simplify the formula Ĩn
2
W−1

oddĨn
2

, we can obtain

the factorization formula proposed in (32).

Remark III.5. By comparing the factorizations of the DST-II

matrix in (15) and (32) (i.e. distinguishing the proposed self-

contained factorization of the DST-II matrix from the DST-

II factorization in [14]) one can observe that (a). there are

not many weight matrices spread in (32) like in (15), (b). a

factorization for WQSII
is presented via a permutation and

odd/even weight matrices in (33) as opposed to WQSII
in

(2), (c). a factorization for GSII is presented via a simple

bidiagonal and diagonal matrices in (34) as opposed to

GSII in (11), (d). a factorization for ĜSII is presented via

antidiagonal and diagonal matrices in (34) as opposed to

ĜSII in (12), (e). an orthogonal matrix H̃n is given in (20)

as opposed to the scaled orthogonal matrix HSII in (15),

and (f). identified the exact permutation matrix for VQSII

within the Lemma III.4 as opposed to VQSII
in (3). Thus,

we have expressed an exact, simplified, and self-contained

factorization formula to compute the DST-II matrix using

bidiagonal, diagonal, sparse, and orthogonal factors in (32)

as opposed to (15).

Remark III.6. The factorization of the DST-II matrix estab-

lished in Lemma III.1 also yields to the following alternative

factorization formula through a permutation

SII
n = PT

n

[
Bn

2
0

0 In
2

][
SII

n
2

SII
n
2

][
Wn

2
0

0 In
2

]
Hn,

(38)

where Pn is an even-odd permutation matrix and Hn =

1√
2

[
In

2
Ĩn

2

In
2

−Ĩn
2

]
.

C. BIDIAGONAL, DIAGONAL, ORTHOGONAL, AND

SELF-CONTAINED FACTORS TO COMPUTE DST-III

MATRIX

Let us state a novel self-contained factorization to compute

the DST-III matrix using sparse, bidiagonal, diagonal, and

orthogonal matrices.

Corollary III.7. (Self-enclosed DST-III factorization) For

an even integer n ≥ 4, the matrix SIII
n can be factored into

6 VOLUME, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3120051, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

the form

SIII
n = HT

n

[
Wn

2
0

0 In
2

][
SIII

n
2

0

0 SIII
n
2

][
BT

n
2

0

0 In
2

]
Pn.

(39)

Proof. This is trivial by Lemma III.4, SIII
n =

[
SII
n

]T
, and

Remark III.6.

D. SPARSE, ORTHOGONAL, DIAGONAL, BIDIAGONAL,

AND RECURSIVE FACTORS TO COMPUTE DST-IV

MATRIX

We propose a novel factorization formula to compute the

DST-IV matrix using bidiagonal, diagonal, sparse, and or-

thogonal matrices. The proposed factorization of the DST-IV

matrix is based on the self-enclosed DST-II factorization in

Lemma III.4. Before we proceed, let us recall the DST-IV

matrix factorization formula in [9], [12] s.t.

SIV
n = PT

n Vn

[
SII

n
2

0

0 SII
n
2

]
Qn. (40)

To derive a novel factorization formula to compute the

DST-IV matrix, we will use the above factorization for-

mula and apply three lifting steps [44] for the rotation

matrix

[
cos θ sin θ

− sin θ cos θ

]
and the rotation/reflection matrix

[
cos θ sin θ

sin θ − cos θ

]
. Let us first derive a factorization formula

for the rotational/rotational-reflection butterfly matrix Qn

defined in (24).

Lemma III.8. (Butterfly matrix Qn is the same as the

matrix with three lifting steps Q̃n) Let n ≥ 2 be an even

integer. The matrix with three lifting steps, Q̃n, is the same

as the rotational/rotational-reflection matrix Qn and can be

factored in the form:

Q̃n =

[
Jn

2
Jn

2
diag(Tn

2
)Ĩn

2

0 −In
2

][
In

2
0

−Ĩn
2

diag(Sn
2
) In

2

][
diag(Tn

2
) Ĩn

2

Ĩn
2

0

]
,

(41)

where Tn
2
=
[
tan (2k+1)π

8n

]n
2 −1

k=0
.

Proof. Let us consider the block products in Q̃n explicitly:

Q̃n =[
Jn

2
diag(Tn

2
)(2I n

2
− diag(Sn

2
)diag(Tn

2
)) Jn

2
(I n

2
− diag(Tn

2
)diag(Sn

2
))Ĩ n

2
−Ĩ n

2
(I n

2
− diag(Tn

2
)diag(Sn

2
)) Ĩ n

2
diag(Sn

2
)Ĩ n

2

]
.

(42)

To verify the equivalency of Q̃n and Qn, we will consider

the corresponding blocks in both matrices.

We begin with the (1,1) block of Q̃n in (42) s.t.

Jn
2

diag(Tn
2
)(2In

2
− diag(Sn

2
)diag(Tn

2
))

= Jn
2

diag
[(

tan (2k+1)π
8n

)(
2− tan (2k+1)π

8n sin (2k+1)π
4n

)]n
2 −1

k=0

= Jn
2

diag

[
2 tan

(2k + 1)π

8n
cos2

(2k + 1)π

8n

]n
2 −1

k=0

= Jn
2

diag

[
sin

(2k + 1)π

4n

]n
2 −1

k=0

= Jn
2

diag(Sn
2
). (43)

Second, we consider the (1,2) block of Q̃n in (42) s.t.

Jn
2
(In

2
− diag(Tn

2
)diag(Sn

2
))Ĩn

2

= Jn
2

diag

[
1− tan

(2k + 1)π

8n
sin

(2k + 1)π

4n

]n
2 −1

k=0

Ĩn
2

= Jn
2

diag

[
1− 2 sin2

(2k + 1)π

8n

]n
2 −1

k=0

Ĩn
2

= Jn
2

diagCn
2
Ĩn

2
. (44)

Similarly, the (2,1) block of Q̃n in (42) can be expressed

as

− Ĩn
2
(In

2
− diag(Tn

2
)diag(Sn

2
))

= −Ĩn
2

diag

[
1− tan

(2k + 1)π

8n
sin

(2k + 1)π

4n

]n
2 −1

k=0

= −Ĩn
2

diag

[
1− 2 sin2

(2k + 1)π

8n

]n
2 −1

k=0

Ĩn
2

= −Ĩn
2

diagCn
2
. (45)

Finally, the (2,2) block of Q̃n in (42) can be expressed as

Ĩn
2

diag(Sn
2
)Ĩn

2

= diag

[
sin

(n− 2k − 1)π

4n
)

]n
2 −1

k=0

= diag(Ĩn
2
Sn

2
). (46)

Thus, from (43), (44), (45), and (46), we prove the claim.

Next, we use the immediate result to state a novel recursive

factorization formula to compute the DST-IV matrix using

the DST-II, sparse, and orthogonal matrices. We recall here

that DST-II matrix can further be factored into the product

of sparse, bidiagonal, diagonal, and orthogonal matrices as

shown in Lemma III.4 followed by Remark III.6.

Lemma III.9. (Recursive DST-IV factorization) For an

even integer n ≥ 4, the matrix SIV
n can be factorized into

the form

SIV
n = PT

n Vn

[
SII

n
2

0

0 SII
n
2

]
Q̃n, (47)

where Vn is defined in (23) and Q̃n is defined in (41).

VOLUME, 2021 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3120051, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Proof. Lemma III.8 shows that Q̃n in (41) is the same as Qn

in (24). This result together with the explicit derivation for

the factorization of the DST-IV matrix in [9], [12] gives the

result (47).

Remark III.10. The DCT I-IV matrix factorization proposed

in [41], [42] and the interweaving relationships among co-

sine and sine matrices in [10] can be utilized to obtain vari-

ants of the proposed DST I-IV matrix factorization formulas.

IV. RELATIONSHIP AMONG DST MATRICES AND

CONNECTION AMONG DST FACTORIZATIONS IN THE

LITERATURE

We first present a relationship between DST-I and DST-III

matrices and next between the DST-II and DST-IV matrices

using bidiagonal, diagonal, and sparse matrices. After these

relationships are established, we will observe connections

among the proposed DST matrix factorizations with the

existing factorization of the DST matrices.

Lemma IV.1. (Relationship between SI
n
2 −1 and SIII

n
2

) For

an even integer n ≥ 4, the matrix SIII
n
2

is related to the matrix

SI
n
2 −1 in the following way

SIII
n
2

= B̄n
2


S

I
n
2 −1 √

2
n


 W̄n

2
. (48)

Proof. Let us consider the product A = B̄n
2


S

I
n
2 −1 √

2
n


 W̄n

2

explicitly:

A = 1√
n




1 1

1 1 −1
. . .

. . . 1

1 1
...

1 −1







sin 2π
n

sin
(n−2)π

2n

sin 4π
n

sin
(n−4)π

2n

. . .
sin

(n−2)π
n

sin π
2n

0

sin 4π
n

sin
(n−2)π

2n

sin 8π
n

sin
(n−4)π

2n

. . .
sin

2(n−2)π
n

sin π
2n

0

...
...

...
...

sin
(n−2)π

n

sin
(n−2)π

2n

sin
2(n−2)π

n

sin
(n−4)π

2n

. . .
sin

2(n
2

−1)2π

n

sin π
2n

0

0 0 . . . 0
√
2




(49)

Let us evaluate the elements of A. First, we consider elements

in the first row, but the first to the second-to-last column of

(49), i.e., j = 0 and k = 0, 1, . . . , n
2 − 2.

[A]0,k =
1√
n
· sin 2(k+1)π

n

sin (n−2(k+1))π
2n

=
2√
n
· sin (k + 1)π

n

=
[
SIII

n
2

]
0,k

. (50)

Second, we consider elements in the last row, but the first

to the second-to-last column of (49), i.e., j = n
2 − 1 and

k = 0, 1, . . . , n
2 − 2.

[A]n
2 −1,k =

1√
n
· sin

2(n
2 −1)(k+1)π

n

sin (n−2(k+1))π
2n

=
2√
n
· sin

(n
2 −1)(k+1)π

n cos
(n
2 −1)(k+1)π

n

cos (k+1)π
n

=
2√
n
· sin (k + 1)π

n

=
[
SIII

n
2

]
n
2 −1,k

. (51)

Third, we observe elements in the last column of (49)

(from the first to last row), i.e., j = 0, 1, . . . , n
2 − 1 and

k = n
2 − 1.

[A]j,n2 −1 =
1√
n
· (−1)j ·

√
2

=
2√
n
· 1√

2
· sin (2j + 1)π

2

=
[
SIII

n
2

]
j,n2 −1

. (52)

Finally, we consider elements in the second to second-to-

last row and the first to second-to-last column of (49), i.e.,

j = 1, 2, . . . , n
2 − 2 and k = 0, 1, . . . , n

2 − 2.

[A]j,k =
1√
n

(
sin 2j(k+1)π

n + sin 2(j+1)(k+1)π
n

sin (n−2(k+1))π
2n

)

=
2√
n

(
sin (2j+1)(k+1)π

n cos (k+1)π
n

cos (k+1)π
n

)

=
2√
n
· sin (2j + 1)(k + 1)π

n

=
[
SIII

n
2

]
j,k

. (53)

Thus, from (50), (51), (52), and (53), we prove the claim.

The immediate result is true for any even integer n ≥ 2
satisfying the following relationship.

Corollary IV.2. (Relationship between SI
n−1 and SIII

n) For

an even integer n ≥ 2, the matrix SIII
n is related to the matrix

SI
n−1 in the following way

SIII
n = B̄n

[
SI
n−1

1√
n

]
W̄n. (54)

Proof. This is trivial from the Lemma IV.1.

Lemma IV.3. (Relationship between SII
n
2

and SIV
n
2

) For an

even integer n ≥ 4, the matrix SIV
n
2

is related to the matrix

SII
n
2

in the following way

SIV
n
2

= Bn
2
SII

n
2
[Wc]n

2
. (55)

8 VOLUME, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3120051, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Proof. Let us consider the product M = Bn
2
SII

n
2
[Wc]n

2

explicitly

M = 1√
n
·




1

1 1
. . .

. . .

1 1

1
√
2







sin π
n

sin
(n−1)π

2n

sin 3π
n

sin
(n−3)π

2n

· · · sin
(n−1)π

n

sin π
2n

sin 2π
n

sin
(n−1)π

2n

sin 6π
n

sin
(n−3)π

2n

· · · sin
2(n−1)π

n

sin π
2n

sin 3π
n

sin
(n−1)π

2n

sin 9π
n

sin
(n−3)π

2n

· · · sin
3(n−1)π

n

sin π
2n

...
...

...

sin
(n
2

−1)π

n

sin
(n−1)π

2n

sin
3(n

2
−1)π

n

sin
(n−3)π

2n

· · · sin
(n
2

−1)(n−1)π

n

sin π
2n√

2/2

sin
(n−1)π

2n

√
2/2

sin
(n−3)π

2n

· · ·
√
2/2

sin π
2n




(56)

Let us evaluate the elements of M . First, we consider el-

ements in the first row of (56), i.e., j = 0 and k =
0, 1, · · · , n/2− 1.

[M]0,k =
1√
n

sin
((2k+1)π

n

)

sin
((n−2k−1)π

2n

)

=
2√
n

sin
((2k+1)π

2n

)
cos
((2k+1)π

2n

)

cos
((2k+1)π

2n

)

=
[
SIV

n
2

]
0,k

. (57)

Second, we consider elements between the second and the

(n/2− 2)
th

rows of (56), i.e., j = 1, 2, · · · , n/2 − 2 and

k = 0, 1, · · · , n/2− 1.

[M]j,k =
1√
n

sin
(j(2k+1)π

n

)
+ sin

((j+1)(2k+1)π
n

)

sin
((n−2k−1)π

2n

)

=
2√
n

sin
((2j+1)(2k+1)π

2n

)
cos
((2k+1)π

2n

)

cos
((2k+1)π

2n

)

=
2√
n
sin
((2j + 1)(2k + 1)π

2n

)

=
[
SIV

n
2

]
j,k

. (58)

Finally, we consider elements in the last row of (56), i.e.,

j = n/2− 1 and k = 0, 1, · · · , n/2− 1.

[M]n
2 −1,k =

1√
n

1 + sin
((n

2 −1)(2k+1)π

n

)

sin
((n−2k−1)π

2n

)

=
1√
n

1 + cos
((2k+1)π

n

)

cos
((2k+1)π

2n

)

=
2√
n
cos
((2k + 1)π

2n

)

=
2√
n
sin
((n− 1)(2k + 1)π

2n

)

=
[
SIV

n
2

]
n
2 −1,k

. (59)

Thus, from (57), (58), and (59), we prove the claim.

The immediate result is true for any even integer n ≥ 2
satisfying the following relationship.

Corollary IV.4. (Relationship between SII
n and SIV

n) For

an even integer n ≥ 2, the matrix SIV
n is related to the matrix

SII
n in the following way

SIV
n = BnS

II
n [W]n . (60)

Proof. This is trivial from the Lemma IV.3.

A. CONNECTION BETWEEN THE PROPOSED DST

FACTORIZATION AND THE EXISTING DST

FACTORIZATIONS

In this section, we utilize the relationship among DST

matrices established in Section IV to identify a relationship

among the proposed DST factorization and the existing

factorization of DST matrices. The relationship between

DST-II and DST-IV will be utilized to establish a connection

between the proposed DST-II factorization with the existing

DST-II factorization in [7], [9], [11], [12], [45]–[47]. We will

also show the DST-III factorization in [7], [9]–[12], [46] can

be seen as the proposed self-contained DST-III factorization.

The relationship between DST-I and DST-III will be utilized

to establish a connection between the proposed DST-I factor-

ization with the existing DST-I factorization in [7], [9]–[12],

[46], [47].

The following result shows that the proposed factorization

of the DST-I matrix can be converted into the existing DST-I

factorization in [7], [9]–[12], [46], [47].

Corollary IV.5. (Connection between traditional DST-I

and the proposed DST-I) For an even integer n ≥ 4, the

matrix SI
n−1 can be factorized into the form

SI
n−1 = PT

n−1

[
SIII

n
2

0

0 SI
n
2 −1

]
Ĥn−1. (61)

Proof. This follows immediately from Lemma III.1, Remark

III.3, and Lemma IV.1.

The following result shows that the proposed factorization

of the DST-II matrix can be converted into the existing DST-

II factorization in [7], [9], [11], [12], [45]–[47].

Corollary IV.6. (Connection between traditional DST-II

and the proposed DST-II) For an even integer n ≥ 4, the

matrix SII
n can be factored into the form

SII
n = PT

n

[
SIV

n
2

0

0 SII
n
2

]
Hn. (62)

Proof. This follows immediately from Lemma III.4, Remark

III.6, and Lemma IV.3.

The following result shows that the proposed factorization

of the DST-III matrix can be converted into the existing DST-

III factorization in [7], [9]–[12], [46].

Corollary IV.7. (Connection between traditional DST-III

and the proposed DST-III) For an even integer n ≥ 4, the

VOLUME, 2021 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3120051, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

matrix SIII
n can be factored into the form

SIII
n = HT

n

[
SIV

n
2

0

0 SIII
n
2

]
Pn. (63)

Proof. Note that in Lemma IV.3, it was shown that

Bn
2
SII

n
2
[Wc]n

2
= SIV

n
2

. This, together with the facts
[
SII
n

]T
= SIII

n and
[
SIV
n

]T
= SIV

n , gives the result.

Remark IV.8. The derivation of the novel self-contained

DST-I/II/III factorizations, respectively (26), (32), and (39)

in this paper, are simpler than the existing interdependent

factorizations for the DST-I/II/III matrices. Moreover, the

proposed DST factorizations for the types I/II/III can be seen

as a real variant of the self-contained factorization of the

DFT matrices in [48], [49]. Also, the proposed DST-I/II/III

factorizations are easy to implement and establish a bridge to

the existing DST factorizations in [7], [9]–[12], [45]–[47].

We will see in Section V that the proposed algorithms are

self-recursive as opposed to completely recursive algorithms

in the literature. Moreover, the new algorithms require only

simple, sparse, scaled orthogonal, diagonal, and bidiagonal

matrices to compute the DST matrices by a vector as shown

in the next section.

V. SELF/COMPLETELY RECURSIVE AND RADIX-2

DST-I/II/III/IV ALGORITHMS

The factorizations of DST I-IV matrices established in

Section III lead to self/completely recursive and radix-

2 algorithms. These algorithms can be used to compute

DST matrices by a vector using simple, sparse, diagonal,

bidiagonal, and orthogonal matrices. In this section, we

present low-complexity, recursive, and radix-2 DST I-IV

algorithms. Similar to [12], we remove the scaling factor 1√
2

from Hn, Ĥn−1, Vn, SII
2 , and SIII

2 for further reduction of

multiplication complexity. Compared to most of the existing

algorithms, the proposed algorithms are easy to implement

and attain the lowest multiplication complexity.

Before stating the algorithms, let us define the following

notation to denote diagonal and bidiagonal matrices which

will be used hereafter for n ≥ 4.

B̄s
n−1 =

[
B̄n

2
0

0 In
2 −1

]
, W̄ s

n−1 =

[
W̄n

2
0

0 In
2 −1

]

Bs
n =

[
Bn

2
0

0 In
2

]
, W s

n =

[
Wn

2
0

0 In
2

]
. (64)

Also, from now onwards we call
√
2Vn = Ṽn. We recall here

from the notations that
√
2Ĥn−1 = HsI

n−1 and
√
2Hn = Hs

n.

Now we compute the scaled orthogonal DST I-IV ma-

trices by a vector via y =
√
nSI

n−1x, y =
√
nSII

n x,

y =
√
nSIII

n x, and y =
√
nSIV

n x, respectively. Here we

call the corresponding DST I-IV algorithms sin1(x, n− 1),
sin2(x, n), sin3(x, n), and sin4(x, n), respectively.

Algorithm V.1. sin1(x, n− 1)
Input: n = 2t(t ≥ 1), n1 = n

2 , x ∈ R
n−1.

1) If n = 2, then

y :=
√
2x.

2) If n ≥ 4, then
u :=Hs1

n−1 x,

[vj]
n−2
j=0 := W̄ s

n−1 u,

z1 := sin1
(
[vj]

n1−2
j=0 , n1 − 1

)
,

z2 := [vn1−1] ,

z3 :=sin1
(
[vj]

n−2
j=n1

, n1 − 1
)
,

w := B̄s
n−1

(
zT1 , z2, z

T
3

)T
,

y := PT
n−1w.

Output: y =
√
nSI

n−1x.

Algorithm V.2. sin2(x, n)
Input: n = 2t(t ≥ 1), n1 = n

2 , x ∈ R
n.

1) If n = 2, then

y :=

[
1 1

1 −1

]
x.

2) If n ≥ 4, then
u :=Hs

n x,

[vj]
n−1
j=0 :=W s

n u,

z1 := sin2
(
[vj]

n1−1
j=0 , n1

)
,

z2 := sin2
(
[vj]

n−1
j=n1

, n1

)
,

w :=Bs
n

(
zT1 , z

T
2

)T
,

y := PT
n w.

Output: y =
√
nSII

n x.

Algorithm V.3. sin3(x, n)
Input: n = 2t(t ≥ 1), n1 = n

2 , x ∈ R
n.

1) If n = 2, then

y :=

[
1 1

1 −1

]
x.

2) If n ≥ 4, then
u := Pn x,

[vj]
n−1
j=0 := [Bs]Tn u,

z1 := sin3
(
[vj]

n1−1
j=0 , n1

)
,

z2 := sin3
(
[vj]

n−1
j=n1

, n1

)
,

w := [W s]n
(
zT1 , z

T
2

)T
,

y := [Hs]Tnw.

Output: y =
√
nSIII

n x.

Algorithm V.4. sin4(x, n)
Input: n = 2t(t ≥ 1), n1 = n

2 , x ∈ R
n.

1) If n = 2, then

y :=

[√
2 sin π

8

√
2 cos π

8√
2 cos π

8 −
√
2 sin π

8

]
x.

10 VOLUME, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3120051, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

2) If n ≥ 4, then

[uj]
n−1
j=0 := Q̃n x,

z1 := sin2
(
[uj]

n1−1
j=0 , n1

)
,

z2 := sin2
(
[uj]

n−1
j=n1

, n1

)
,

w :=
(
Ṽn

) (
zT1 , z

T
2

)T
,

y := PT
n w.

Output: y =
√
n SIV

n x.

VI. ARITHMETIC COMPLEXITY OF THE DST-I/II/III/IV

ALGORITHMS

The arithmetic complexity of an algorithm tells us the num-

ber of additions/subtractions and multiplications/divisions

required to execute the algorithm. If we compute an order

n × n DST matrix by a vector in the usual way, it requires

O(n2) operations. Using the proposed DST algorithms,

it is possible to compute the DST matrices by a vector

using O(n log n) complexity with a significant reduction of

multiplication cost.

Here we compute the number of additions (say #a) and

multiplications (say #m) required to produce y =
√
nSI

n−1x
and y =

√
nSII/III/IV x. Note that we do not count

multiplication by ±1.

A. LOW-COMPLEXITY DST-I/II/III/IV ALGORITHMS

Here we analyze the arithmetic complexity of the self-

recursive and radix-2 DST-I/II/III algorithms and the

completely-recursive and radix-2 DST-IV algorithm pre-

sented in Section V.

Lemma VI.1. For a given n = 2t (t ≥ 2), the arith-

metic complexity in computing the DST-I algorithm, i.e.,

sin1(x, n− 1) is given by

#a (DST-I, n− 1) = 2nt− 4n+ 4,

#m (DST-I, n− 1) =
1

2
nt. (65)

Proof. Referring to the DST-I algorithm, we get

#a(DST-I, n− 1) = {2 ·#a
(

DST-I,
n

2
− 1
)
+#a

(
Hs1

n−1

)

+#a
(
W̄ s

n−1

)
+#a

(
B̄s

n−1

)
},

#m(DST-I, n− 1) = {2 ·#m
(

DST-I,
n

2
− 1
)
+#m

(
Hs1

n−1

)

+#m
(
W̄ s

n−1

)
+#m

(
B̄s

n−1

)
}.
(66)

Following the structures of Hs1
n−1, W̄

s
n−1, and B̄s

n−1, we get

#a
(
Hs1

n−1

)
= n− 2, #m

(
Hs1

n−1

)
= 1,

#a
(
W̄ s

n−1

)
= 0, #m

(
W̄ s

n−1

)
= n

2 − 1,

#a
(
B̄s

n−1

)
= n− 2, #m

(
B̄s

n−1

)
= 0.

Using the above result, we can rewrite (66) as

#a(DST-I, n− 1) = 2 ·#a
(

DST-I,
n

2
− 1
)
+ 2n− 4.

#m(DST-I, n− 1) = 2 ·#m
(

DST-I,
n

2
− 1
)
+

n

2
.

Since n = 2t, the above simplifies to the first order linear

difference equations with respect to t ≥ 2 s.t.

#a(DST-I, 2t − 1)− 2 ·#a
(
DST-I, 2t−1 − 1

)
= 2t+1 − 4.

#m(DST-I, 2t − 1)− 2 ·#m
(
DST-I, 2t−1 − 1

)
= 2t−1.

Solving the above first order linear difference equa-

tions using the initial conditions #a (DST-I, 1) = 0 and

#m (DST-I, 1) = 1, we can obtain

#a(DST-I, 2t − 1) = 2nt− 4n+ 4,

#m(DST-I, 2t − 1) =
1

2
nt.

Lemma VI.2. For a given n = 2t (t ≥ 2), the arithmetic

complexity in computing the DST-II algorithm sin2(x, n) is

given by

#a (DST-II, n) =
3

2
nt− n+ 1,

#m (DST-II, n) =
1

2
nt− 1. (67)

Proof. Referring to the DST-II algorithm sin2(x, n), we get

#a(DST-II, n) = {2 ·#a
(

DST-II,
n

2

)
+#a (Hs

n) + #a (W s
n)

+#a (Bs
n)},

#m(DST-II, n) = {2 ·#m
(

DST-II,
n

2

)
+#m (Hs

n) + #m (W s
n)

+#m (Bs
n)}. (68)

Following the structures of Hs
n,W

s
n, and Bs

n, we get

#a (Hs
n) = n, #m

(
H̄n

)
= 0,

#a (W s
n) = 0, #m (W s

n) =
n
2 ,

#a (Bs
n) =

n
2 − 1, #m (Bs

n) = 1.

Using the above result, we can rewrite (68) as

#a(DST-II, n) = 2 ·#a
(

DST-II,
n

2

)
+

3

2
n− 1,

and

#m(DST-II, n) = 2 ·#m
(

DST-II,
n

2

)
+

n

2
+ 1.

Since n = 2t, the above simplifies to the first order linear

difference equations with respect to t ≥ 2 s. t.

#a(DST-II, 2t)− 2 ·#a
(
DST-II, 2t−1

)
= 3 · 2t−1 − 1.

and

#m(DST-II, 2t)− 2 ·#m
(
DST-II, 2t−1

)
= 2t−1 + 1.

Solving the above first order linear difference equations

using the initial conditions #a (DST-II, 2) = 2 and

#m (DST-II, 2) = 0, we can obtain

#a(DST-II, 2t) =
3

2
nt− n+ 1.

VOLUME, 2021 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3120051, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

and

#m(DST-II, 2t) =
1

2
nt− 1.

Hence the result.

Corollary VI.3. For a given n = 2t (t ≥ 2), the arithmetic

complexity in computing the DST-III algorithm sin3(x, n) is

given by

#a (DST-III, n) =
3

2
nt− n+ 1,

#m (DST-III, n) =
1

2
nt− 1. (69)

Proof. This is trivial as the factorization of the DST-III

matrix is obtained using the factorization of DST-II matrix

with the help of the transpose property.

Remark VI.4. The arithmetic complexity of the proposed

DST-II/III algorithms is exactly the same as that of the lowest

multiplication complexity DCT-II/III algorithms in [42]. This

is due to the fact that the DST-II/III and DCT-II/III matrices

are related to each other via transpositions, permutations,

and sign flips [50]–[53].

Lemma VI.5. For a given n = 2t (t ≥ 2), the arith-

metic complexity in computing the DST-IV recursively via

sin4(x, n) and sin2(x, n) algorithms is given by

#a (DST-IV, n) =
3

2
nt,

#m (DST-IV, n) =
1

2
nt+ n. (70)

Proof. The number of additions and multiplications required

to compute the DST-IV algorithm can be found by using the

number of additions and multiplications required to compute

the DST-II algorithm at n
2 .

By using the DST-IV algorithm, we get

#a(DST-IV, n) = {2 ·#a
(

DST-II,
n

2

)
+#a

(
Q̃n

)

+#a
(
Ṽn

)
},

#m(DST-IV, n) = {2 ·#m
(

DST-II,
n

2

)
+#m

(
R̃n

)

+#m
(
Ṽn

)
}. (71)

The structures of Q̃n and Ṽn gives us

#a
(
Q̃n

)
= 3

2n, #m
(
Q̃n

)
= 3

2n,

#a
(
Ṽn

)
= n− 2, #m

(
Ṽn

)
= 2.

(72)

Following the arithmetic complexity in computing DST-II

algorithm in Lemma VI.2 and using the equations (72) and

(71), we get

#a(DST-IV, n) = 2

(
3

2
· n
2
· (t− 1)− n

2
+ 1

)
+

5

2
n− 2.

#m(DST-IV, n) = 2

(
1

2
· n
2
· (t− 1)− 1

)
+

3

2
n+ 2.

(73)

Simplifying the above yields the multiplication complexity

of the modified DST-IV algorithm as in (70).

Remark VI.6. (a) The paper [54] presents the total lowest

arithmetic operations in calculating DST-IV using the DFT

and DCT-IV while leaving an open question: whether the

DST-IV algorithm in [54] leads to practical gains in perfor-

mance on real computers. To compute DST-IV, the authors of

[54] used twiddle factors but these factors can be overlapped

with other operations in the CPU [55]. Also to compute

DST-IV, authors in [54] have used scaled factors of the form

±1±i tan(2πk/n) and ± cot(2πk/n)±i, where i2 = −1 but

these factors contain singular functions. Hence, the practical

gains of the lowest flop count for DST-IV calculation in [54]

may lead to a numerically ill-posed problem. We will show in

Section VI-B, that the proposed DST-IV algorithm attains the

lowest multiplication complexity algorithm to compute the

DST-IV matrix by a vector.

(b) The arithmetic complexity of the proposed DST-IV is

exactly the same as that of lowest multiplication complexity

DCT-IV in [42] because DST-IV is exactly equivalent to a

DCT-IV in which the outputs are reversed and every other

input is multiplied by -1 (or vice-versa) [50], [54].

B. NUMERICAL ILLUSTRATIONS FOR THE

COMPLEXITY OF DST-I/II/III/IV ALGORITHMS

In this section, we compare the arithmetic complexity of

the proposed DST I-IV algorithms with the most existing

DST algorithms in the literature. Tables 1 through 4 provide

the number of additions and multiplications necessary to

compute the DST I-IV algorithms for input sizes ranging

from n = 8 to n = 4096.

Although the total flop count of the DST-I algorithm in

[47] is lower than all other DST-I algorithms in [7], [10],

[12] and the proposed algorithm, the sin1(x,n) algorithm is

presented using simple, sparse, diagonal, and scaled orthog-

onal matrices as opposed to the DST-I factorization in [47].

Based on the counts in computing DST-II/III algorithms, the

proposed DST-II/III algorithms have the lowest multiplica-

tion counts. We recall here that the authors in [53] calculated

the lowest flop count split-radix DST-II/III algorithms. By

considering the fact that the authors in [53] have reduced

the flop count only by cutting off multiplication counts

while preserving the same addition counts as in [56], the

explicit multiplication count in computing split-radix DST-

II/III algorithms in [53] is given via (7/18)nt+ (10/27)n−
(1/9)(−1)tt+(7/54)(−1)t+1/2. In this situation, the split-

radix DST-II/III algorithms attain the lowest multiplication

counts for n ≥ 32 but without using simple, sparse, diagonal,

bidiagonal, and scaled orthogonal matrices. Furthermore, the

split-radix DST-II/III algorithms leave a question based on

the practical gains in performance on real computers as the

algorithms in [53] use singular functions and hence may lead

12 VOLUME, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3120051, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1: Number of additions and multiplications required to compute DST-I algorithms.

n
sin1(x,n) [12] [47] [10] [7] [57]

#a #m #a #m #a #m #a #m #a #m #a #m

8 20 12 18 9 27 5 18 14 19 5 20 5

16 68 32 58 26 72 17 58 43 62 17 68 17

32 196 80 160 73 185 49 160 118 175 51 196 49

64 516 192 408 186 458 129 408 299 456 141 516 129

128 1284 448 990 457 1099 321 990 726 1129 367 1284 321

256 3076 1024 2326 1082 2572 769 2326 1707 2698 913 3076 769

512 7172 2304 5340 2505 5901 1793 5340 3926 6283 2195 7172 1793

1024 16388 5120 12052 5690 13326 4097 12052 8875 14348 5141 16388 4097

2048 36868 11264 26842 12745 29711 9217 26842 19798 32269 11799 36868 9217

4096 81924 24576 59145 28128 65552 20481 59154 43691 71694 26649 81924 20481

TABLE 2: Number of additions and multiplications required to compute DST-II algorithms.

n
sin2(x,n) [12] [47], [52], [57]–[59] [7] [56]

#a #m #a #m #a #m #a #m #a #m

8 29 11 26 16 29 12 29 13 29 13

16 81 31 72 46 81 32 83 35 81 33

32 209 79 186 112 209 80 219 91 209 81

64 513 191 456 270 513 192 547 227 513 193

128 1217 447 1082 624 1217 448 1315 547 1217 449

256 2817 1023 2504 1422 2817 1024 3075 1283 2817 1025

512 6401 2303 5690 3184 6401 2304 7043 2947 6401 2305

1024 14337 5119 12744 7054 14337 5120 15875 6659 14337 5121

2048 31745 11263 28218 15472 31745 11264 35331 14851 31745 11265

4096 69633 24575 61896 33678 69633 24576 77827 32771 69633 24577

TABLE 3: Number of additions and multiplications required to compute DST-III algorithms.

n
sin3(x,n) [12] [47], [52], [58], [59] [57] [7] [56]

#a #m #a #m #a #m #a #m #a #m #a #m

8 29 11 26 16 29 12 34 12 29 13 29 13

16 81 31 72 46 81 32 98 32 83 35 81 33

32 209 79 186 112 209 80 258 80 219 91 209 81

64 513 191 456 270 513 192 642 192 547 227 513 193

128 1217 447 1082 624 1217 448 1538 448 1315 547 1217 449

256 2817 1023 2504 1422 2817 1024 3586 1024 3075 1283 2817 1025

512 6401 2303 5690 3184 6401 2304 8194 2304 7043 2947 6401 2305

1024 14337 5119 12744 7054 14337 5120 18434 5120 15875 6659 14337 5121

2048 31745 11263 28218 15472 31745 11264 40962 11264 35331 14851 31745 11265

4096 69633 24575 61896 33678 69633 24576 90114 24576 77827 32771 69633 24577

VOLUME, 2021 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3120051, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 4: Number of additions and multiplications required to compute DST-IV algorithms.

n
sin4(x,n) [12] [47] [60] [7] [56] [57]

#a #m #a #m #a #m #a #m #a #m #a #m #a #m

8 36 20 30 30 36 20 - - 38 22 32 22 35 21

16 96 48 82 66 96 48 - - 104 56 84 56 95 49

32 240 112 206 158 240 112 - - 264 136 208 130 239 113

64 576 256 498 354 576 256 576 274 640 320 500 300 575 257

128 1344 576 1166 798 1344 576 2176 1058 1504 736 1168 670 1343 577

256 3072 1280 2674 1762 3072 1280 8448 4162 3456 1664 2676 1488 3071 1281

512 6912 2816 6030 3870 6912 2816 - - 7808 3712 6032 3258 6911 2817

1024 15360 6144 13426 8418 15360 6144 131584 65794 17408 8192 13428 7092 15359 6145

2048 33792 13312 29582 18206 33792 13312 - - 38400 17920 29584 15318 33791 13313

4096 73728 28672 64626 39138 73728 28672 - - 83968 38912 64628 32920 73727 28673

to ill-posed problems.

By considering the fact that the authors in [53] have reduced

the flop count in computing DST-IV matrix by a vector only

by cutting off multiplication counts, the explicit multiplica-

tion count in computing the split-radix DST-IV algorithm

in [53] is given via (5/9)nt + (37/27)n + (2/9)(−1)tt −
(10/27)(−1)t − 2. Even though the total flop count of the

split-radix DST-IV algorithm in [54] is lower than all the

other DST-IV algorithms in the literature, the multiplication

counts of the proposed sin4(x, n) algorithm and the DST-

IV algorithm in [47] is the lowest in the literature. Moreover,

the proposed DST-IV algorithm is presented using simple,

sparse, diagonal, bidiagonal, and scaled orthogonal matrices

as opposed to the DST-IV factorization in [47] and any

other existing DST-IV algorithms in the literature. Note that

if the factorization of the DCT or DST does not preserve

orthogonality, the resulting DCT or DST algorithms lead to

inferior numerical stability [61].

To sum up, the proposed self/completely recursive and

radix-2 sin2(x,n), sin3(x,n), and sin4(x,n) algorithms can

be computed via simple, sparse, diagonal, bidiagonal, and

scaled orthogonal matrices having the lowest multiplication

counts in the literature.

VII. SIGNAL FLOW GRAPHS FOR DST-I/II/III/IV

ALGORITHMS

Signal flow graphs can be used to represent a physical system

and its controllers with the help of a system of linear equa-

tions. We present signal flow graphs of the proposed DST

algorithms while illustrating the connection between system

components, associated equations, and the simplicity of the

proposed factorizations of the DST I-IV matrices. The signal

flow graphs are drawn using decimation-in-frequency. It is

possible to convert these signal flow graphs into decimation-

in-time flow graphs.

For a given input signal x, we present signal flow graphs

FIGURE 1: Signal flow graph for the 7-point scaled DST-I
algorithm, i.e.,

√

8SI

7 .

FIGURE 2: Signal flow graph for the 8-point scaled DST-II
algorithm, i.e.,

√

8SII

8 .

14 VOLUME, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3120051, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 3: Signal flow graph for the 8-point scaled DST-III
algorithm, i.e.,

√

8SIII

8 .

for the output signal y =
√
nSI

n−1 x, y =
√
nSII

n x, y =√
nSIII

n x, and y =
√
nSIV

n x. Fig. 1, Fig. 2, Fig. 3 and

Fig. 4 present the signal flow graphs for the msin1(x, n −
1), msin2(x, n), msin3(x, n), and msin4(x, n) algorithms,

respectively. The notation in the figures are defined as ǫ :=√
2, w̄j,k := 1

2 csc
(k−2j)π

2k , wj,k := 1
2 csc

(k−2j+1)π
2k , tj,k =

tan (2j+1)π
8k , sj,k = sin (2j+1)π

4k , and the dotted lines indicate

a multiplication by factor -1.

VIII. ENCRYPTION USING DST ALGORITHMS

In [62], a 4f encryption scheme was proposed which in-

troduces a chaotic mapping to the established double ran-

dom phase encoding (DPRE) scheme originally proposed in

[63]–[65]. The DPRE process applies to a phase image a

random phase mask followed by a Fourier transform twice

in series. While the DPRE scheme maximizes the entropy

of the encrypted image, the linearity of the scheme creates

vulnerabilities [66], [67]. Thus, [62] proposed an encryption

scheme that applies a chaotic pixel mapping based on the

famous 3D Lorenz System after the first Fourier transform.

The Lorenz system, also commonly known as the Lorenz

path or Lorenz attractor, was first described in [68]. The

path itself is the solution to the set of ordinary differential

equations
dx

dt
= σ(y − x),

dy

dt
= ρx− y − xz,

dz

dt
= xy − βz,

where σ, ρ, and β are system parameters and the initial

conditions are x(0) = x0, y(0) = y0, z(0) = z0. Given

time to diverge, this set of equations will produce completely

different paths with even the slightest difference in the system

parameters. This chaotic nature, along with the relative speed

by which the set of equations may be solved, makes the

Lorenz system a valuable tool for mapping and permutation

techniques.

In the following, we describe image encryption based on the

DPRE encryption technique in [62] and the proposed DST

algorithms.

1) An image with pixel values f(x, y), where x and y
are locations in the spatial domain, is converted into

a phase image p0(x, y) = eiπf(x,y).
2) A random phase mask is applied to each pixel as

defined by p1(x, y) = p0(x, y)e
2πir(x,y), where r is

a random matrix having the same size as the original

image.

3) The image is transformed into the Fourier domain

using the 2D DFT and the proposed sin2 algorithm in

2D.

4) A chaotic mapping technique is applied based on the

3D Lorenz system. The Lorenz system is solved using

Matlab’s ode45 function. First, the image is decom-

posed into n × n blocks, where n is a multiple of the

total length of the image. The red, green, and blue color

channels of each block are associated with the position

vectors of the Lorenz path in time. These blocks are

then sorted in ascending order row-major order based

on the value of the associated Lorenz system position.

This produces a new image pL.

5) A random phase mask is applied to each pixel as

defined by p2(u, v) = pL(u, v)e
2πis(u,v), where s is

a random matrix of the same size as the original image,

u and v are positions in the Fourier domain.

6) The proposed sin2 algorithm and the DFT are applied

to p2 to produce the fully encrypted image.

The final result is an image of high entropy with a Gaussian

distribution of pixel values across all channels. To decrypt the

image, the process is simply performed in reverse using the

same random phase mask keys, Lorenz system parameters,

and the inverse of the respective transform. For the decryp-

tion of the image, the proposed 2D sin3 algorithm and the

2D inverse-DFT are used. For a block length n less than

or equal to 1
8

th
of the total image length (i.e. n = 32 for

a 256 × 256 image), attempts to decrypt the image using

Lorenz system initial conditions with even the most minute

difference will fail. Blocks which are 1
4

th
the total image

length (i.e. n = 64 for a 256 × 256 image) will reveal some

information if transformed into the Fourier domain using the

DFT; however, we will show below that images transformed

using the proposed DST algorithms will withstand these

attacks. Figure 5 shows the original image which was used

for testing purposes and four attempts to decrypt using an

incorrect key for the Lorenz path. The corresponding image

histograms are also displayed. The Lorenz parameter key

used to encrypt the image is

[σ = 10, β =
8

3
, ρ = 28] (74)

VOLUME, 2021 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3120051, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 4: Signal flow graph for the 8-point scaled DST-IV algorithm, i.e.,
√

8SIV

8 .

and the decryption attack is simulated using the key

[σ = 10.000000000000001, β =
8

3
, ρ = 28] (75)

As shown in Figures 5.c through 5.f, the encryption

scheme remains secure for small block sizes when trans-

formed into the Fourier domain through either the proposed

sin2 algorithm or the DFT. This remains true for the en-

cryption scheme employing larger mapping blocks when

the proposed sin2 algorithm is used, as shown by Figures

5.g and 5.h. When the encryption scheme uses these block

sizes with the DFT, however, the scheme starts to become

liable to attack. As illustrated by Figure 5.j, the decryption

attack does not yield an even distribution of pixel intensities

across the channels. Likewise, Figure 5.i starts to reveal the

characteristic blue and red nose of the baboon in the original

image.

IX. CONCLUSION

We have proposed novel factorization formulas to compute

DST I-IV matrices using the product of simple, sparse,

diagonal, bidiagonal, and scaled orthogonal matrices. The

proposed DST matrix factorizations are used to establish

self/completely recursive and radix-2 DST algorithms. We

have also established a novel algebraic relationship between

DST-II and DST-IV matrices using diagonal and bidiagonal

matrices and described connections between traditional DST-

II/III algorithms and the proposed DST-II/III algorithms.

Moreover, we have established another novel algebraic re-

lationship between DST-I and DST-III matrices using sparse

and diagonal matrices. We have also described connections

between traditional DST-I algorithms and the proposed DST-

I algorithm. The arithmetic complexity of the proposed al-

gorithms is analyzed to show that the proposed algorithms

are much more efficient than the existing algorithms. Specifi-

cally, the DST-IV algorithm attains the lowest multiplication

complexity for all transform matrix sizes n ≥ 8 in the

literature. The DST-II/III algorithms are the lowest multi-

plication complexity, radix-2, and self-recursive algorithms

and execute using simple, sparse, diagonal, bidiagonal, and

scaled orthogonal matrices for the transform matrix sizes

n ≥ 8. The presented signal flow graphs illustrate the sim-

plicity of the proposed DST algorithms and provide a foun-

dational framework for the DST-based integrated circuits.

The robust performance of the proposed algorithms within

software applications is explored through implementation

within a DPRE encryption scheme with a chaotic Lorenz

path mapping. The proposed DST algorithms in 2D are able

to increase encryption performance when compared to an

implementation using the 2D DFT.

REFERENCES

[1] A. K. Jain, "A sinusoidal family of unitary transform," IEEE. Trans. Pattern

Anal. Mach. Intell., 1:356-365, 1979.

[2] A. K. Jain, "A fast Karhunen-Loeve transform for a class of stochastic

processes", IEEE. Trans. Commun., 24:1023-1029, 1976.

[3] H. B. Kekre and J. K. Solanki, "Comparative performance of various

trigonometric unitary transforms for transform image coding," International

Journal of Electronics, 44(3):305-315, 1978.

[4] Z. Wang and B. R. Hunt, "The discrete W transform," Applied Mathematics

and Computation, 16:19-48, 1985.

[5] P. C. Yip and K. R. Rao, "A fast computational algorithm for the discrete

sine transform," IEEE Trans. Commun., 28:304-307, 1980.

[6] W. H. Chen, C. H. Smith, and S. Fralick, "A fast computational algorithm

for the discrete cosine transform," IEEE Trans. Comm., 25: 1004-1009,

1977.

[7] Z. Wang, "Fast algorithms for the discrete W transform and the discrete

Fourier transform," IEEE Trans. Acoust. Speech Signal Process, 32:803-

816, 1984.

[8] S. M. Perera, "Signal Processing based on Stable radix-2 DCT I-IV Algo-

rithms having Orthogonal Factors," Electronic Journal of Linear Algebra,

31:362-380, 2016.

[9] S. M. Perera and V. Olshevsky, "Fast and Stable Algorithms for Discrete

Sine Transformations having Orthogonal Factors," in M.G. Cojocaru, I. S.

Kotsireas, R. N. Makarov, R. V. N. Melnik, and H. Shodiev (Eds.), Inter-

disciplinary Topics in Applied Mathematics, Modeling and Computational

Science, Springer International, Switzerland, 117:347-354, 2015.

[10] G. Plonka and M. Tasche, "Fast and Numerically stable algorithms for

discrete cosine transforms," Linear Algebra and its Applications, 394:309-

345, 2005.

[11] V. Britanak, P. C. Yip, and K. R. Rao, "Discrete Cosine and Sine Trans-

forms: General Properties, Fast Algorithms and Integer Approximations,"

Academic Press, Great Britain, 2007.

[12] S. M. Perera, "Signal Flow Graph Approach to Efficient and Forward

Stable DST Algorithms," Linear Algebra and Its Applications, 542: 360-

390, 2018.

16 VOLUME, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3120051, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Original baboon image of
size 256×256.

(b) Histogram of the original baboon
image.

(c) Decrypted baboon image
using the proposed DST-II/III al-
gorithms with 8×8 blocks.

(d) Histogram of encrypted baboon im-
age using the proposed DST-II/III algo-
rithms with 8×8 blocks.

(e) Decrypted baboon image
using the DFT with 8×8 blocks.

(f) Histogram of encrypted baboon im-
age using DFT with 8×8 blocks.

(g) Decrypted baboon image
using the proposed DST-II/III al-
gorithms with 64×64 blocks.

(h) Histogram of encrypted baboon im-
age using the proposed DST-II/III algo-
rithms with 64×64 blocks.

(i) Decrypted baboon image us-
ing the DFT with 64×64 blocks.

(j) Histogram of encrypted baboon im-
age using the DFT with 64×64 blocks.

FIGURE 5: Comparison of encryption performance using the
proposed DST-II/III algorithms and the DFT.

[13] S. M. Perera, A. Madanayake, N. Dornback, and N. Udayanga, "Design

and Digital Implementation of Fast and Recursive DCT II-IV Algorithms,"

Circuits, System, and Signal Processing, 38(2): 529-555, 2019.

[14] A. Olshevsky, V. Olshevsky, and J. Wang, "A comrade-matrix-based

derivation of the eight versions of fast cosine and sine transforms,"

in Fast Algorithms for Structured Matrices: Theory and Applications,

CONM/323:119-150, AMS publications, May 2003.

[15] P. Dahiya and P. Jain, "Realization of first-order structure for recursive

algorithm of discrete Sine transform," 2017 8th International Conference

on Computing, Communication and Networking Technologies (ICCCNT),

pp. 1-5, 2017, DOI: 10.1109/ICCCNT.2017.8204014.

[16] P. Jain, B. Kumar, and S. B. Jain, "Discrete sine transform and its inverse

- realization through recursive algorithms," International Journal of Circuit

Theory and Applications, 36(4), 2008.

[17] P. Jain and A. Jain, "Regressive structures for computation of DST-II and

its inverse," ISRN Electronics, 2012:1-4, 2012.

[18] T. Luo and J. G. Liu, "A fast algorithm for discrete sine transform using

first-order moment," 2011 International Conference on Image Analysis and

Signal Processing, pp. 10-15, 2011, DOI: 10.1109/IASP.2011.6108988.

[19] M. N. Murty, "Radix-2 algorithms for implementation of type-II discrete

cosine transform and discrete sine transform," International Journal of

Engineering Research and Applications, 3(3):602-608, 2013.

[20] V. G. Reju, S. N. Koh, and Y. Soon, "Convolution using discrete sine and

cosine transforms," IEEE Signal Processing Letters, 14(7):445-448, 2007.

[21] B. N. Madhukar and S. Jain, "A duality theorem for the discrete

sine transform - IV (DST - IV)," 2016 3rd International Conference

on Advanced Computing and Communication Systems (ICACCS), 2016,

doi:10.1109/icaccs.2016.7586322.

[22] B. N. Madhukar and S. Jain, "A duality theorem for the discrete sine trans-

form (DST)," 2015 International Conference on Applied and Theoretical

Computing and Communication Technology (iCATccT), IEEE, pp. 156-160,

2015.

[23] T. Binesh, M. H. Supriya and P. R. S. Pillai, "Discrete Sine Trans-

form based HMM underwater signal classifier," 2011 International Sym-

posium on Ocean Electronics, pp. 152-156, 2011, doi: 10.1109/SYM-

POL.2011.6170513.

[24] K. Ramadan, A. S. Fiky, M. I. Dessouky, F. E. A. El-Samie, "Equalization

and carrier frequency offset compensation for UWA-OFDM communication

systems based on the discrete sine transform," Digital Signal processing,

90:142-149, 2019.

[25] S. Dhamija and P. Jain, "Comparative Analysis for Discrete Sine Trans-

form as a suitable method for noise estimation," IJCSI International Journal

of Computer Science Issues, 8(5):162-164, 2011.

[26] C. Tseng and S. Lee, "Closed-form design of FIR frequency selective

filter using discrete sine transform," 2016 IEEE Asia Pacific Conference

on Circuits and Systems (APCCAS), pp. 591-594, 2016, doi: 10.1109/APC-

CAS.2016.7804039.

[27] M. E. Keshk, M. Abd El-Naby, S. Elrabie, M. I. Dessouky, and F. E. Abd

El-Samie, "Digital modulation recognition in OFDM systems using support

vector machine classifier," CiiT International Journal of Networking and

Communication Engineering, 5(12):516-525, 2013.

[28] G. Curci and F. Corsi, "Discrete sine transform for multi-scales realized

volatility measures," Quantitative Finance, 12(2):263-279, 2012.

[29] G. Curci and F. Corsi, "A Discrete Sine Transform Approach for Real-

ized Volatility Measurement," National Centre of Competence in Research

Financial Valuation and Risk Management, 2006.

[30] D. F. Chiper, M. N. S. Swamy, M. O. Ahmad and T. Stouraitis, "Systolic

algorithms and a memory-based design approach for a unified architec-

ture for the computation of DCT/DST/IDCT/IDST," in IEEE Transactions

on Circuits and Systems I: Regular Papers, 52(6):1125-1137, 2005, doi:

10.1109/TCSI.2005.849109.

[31] C. Tseng and S. Lee, "Design of digital fractional order differentiator

using discrete sine transform," 2013 Asia-Pacific Signal and Information

Processing Association Annual Summit and Conference, pp. 1-9, 2013, doi:

10.1109/APSIPA.2013.6694388.

[32] V. Britanak, "The fast DCT-IV/DST-IV computation via the MDCT,"

Signal Processing, 83(8):1803-1813, 2003, DOI:10.1016/S0165-

1684(03)00109-9.

[33] R. K. Chivukula and Y. A. Reznik, "Fast computing of discrete cosine and

sine transforms of types VI and VII," Proc. SPIE 8135, Applications of Dig-

ital Image Processing XXXIV, 8135:39-48, 2011, DOI:10.1117/12.903685.

[34] A. Al-Fayadh and H. Majid, "Singular value decomposition based clas-

sified vector quantization image compression method using discrete sine

VOLUME, 2021 17

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3120051, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

transform," ARPN Journal of Engineering and Applied Sciences, 11:12883-

12891, 2016.

[35] M. J. Kim and Y. L. Lee, "Discrete sine transform-based interpo-

lation filter for video compression," Symmetry (Basel), 9(11), 2017,

DOI:10.3390/sym9110257.

[36] V. P. S. Naidu, M. Divya, and P. Mahalakshmi, "Multi-modal image fusion

using multi-resolution discrete sine transform," Control and Data Fusion

e-Journal, 1(2):13-26, 2017.

[37] A. P. James and B. V. Dasarathy, "Medical image fusion: a survey of the

state of the art," Elsevier, 19:4-19, 2014.

[38] E. A. Naeem, M. M. Abd Elnaby and M. M. Hadhoud, "Chaotic im-

age encryption in transform domains," 2009 International Conference on

Computer Engineering & Systems, pp. 71-76, 2009, DOI: 10.1109/IC-

CES.2009.5383309.

[39] S. C. Pei and M. H. Yeh, "The discrete fractional cosine and sine trans-

forms," IEEE Transactions on Signal Processing, 49(6):1198-1207, 2001,

DOI: 10.1109/78.923302.

[40] H. Zhao, Q. Ran, G. Ge, J. Ma and L. Tan, "Image Encryption Based

on Random Fractional Discrete Cosine and Sine Transforms," 2009 First

International Workshop on Education Technology and Computer Science,

pp. 804-808, 2009, DOI: 10.1109/ETCS.2009.183.

[41] S. M. Perera and J. Liu, "Lowest Complexity Self Recursive Radix-2 DCT

II/III Algorithms," SIAM J. Matrix Analysis and Applications, 39(2): 664-

682, 2018.

[42] S. M. Perera and J. Liu, "Complexity Reduction, Self/Completely Recur-

sive, Radix-2 DCT I/IV Algorithms," Elsevier Journal of Computational

Applied Mathematics, 379, 112936: 1-16 2020.

[43] T. Kailath and V. Olshevsky. "Displacement structure approach to discrete

trigonometric transform based preconditioners of G.Strang and T.Chan

types," Calcolo, 33:191-208, 1996.

[44] I. Daubechies and W. Sweldens, "Factoring wavelet transforms into lifting

steps," J. Fourier Anal. Appl., 4(3):247-269, 1999.

[45] V. Britanak, "New generalized conversion method of the MDCT and

MDST coefficients in the frequency domain for arbitrary symmetric win-

dowing function," Digital Signal Processing, 23:1783-1797, 2013.

[46] S. M. Perera and V. Olshevsky, "Stable, recursive and fast algorithms for

discrete sine transformations having orthogonal factors," J. Coupled System

Multiscale Dynamics, 1(3):358-371, 2013.

[47] M. Püschel and J. M. F. Moura, "Algebraic signal processing theory:

Cooley-Tukey type algorithms for DCTs and DSTs," IEEE Transactions

on Signal Processing, 56(4):1502-1521, 2008.

[48] J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation

of complex Fourier series," Math. Comp. 19:297-301, 1965.

[49] R. Yavne, "An economical method for calculating the discrete Fourier

transform," in Proceedings of the AFIPS Fall Joint Computer Conference,

33:115-125, 1968.

[50] S. C. Chan, K. L. Ho, "Direct methods for computing discrete sinu-

soidal transforms," IEEE Proceedings F (Radar and Signal Processing),

137(6):433-442, 1990.

[51] Z. Wang, "A fast algorithm for the discrete sine transform implemented

by the fast cosine transform," IEEE Trans. Acoust. Speech Signal Process.,

30(5):814-815, 1982.

[52] P. Lee, F.-Y. Huang, "Restructured recursive DCT and DST algorithms,"

IEEE Trans. Signal Process., 42 (7): 1600-1609, 1994.

[53] X. Shao and S. G. Johnson, "Type-II/III DCT/DST algorithms with re-

duced number of arithmetic operations," Signal Processing, 88:1553-1564,

2008.

[54] X. Shao and S. G. Johnson, "Type-IV DCT, DST and MDCT algo-

rithms with reduced number of arithmetic operations," Signal Processing,

88(6):1313-1326, 2008.

[55] S. G. Johnson and M. Frigo, "A Modified Split-Radix FFT With Fewer

Arithmetic Operations," IEEE Trans. Signal Process., 55(1):111-119, 2007.

[56] Z. Wang, "On computing the Fourier and cosine transforms," IEEE Trans.

Acoust. Speech Signal Process., 33:1341-1344, 1985

[57] P. Yip and K. R. Rao, "Fast decimation-in-time algorithms for a family

of discrete sine and cosine transforms," Circuits, Syst., Signal Processing,

3:387-408, 1984.

[58] O. Ersoy and N. C. Hu, "A unified approach to the fast computation of all

discrete trigonmetric transforms," in Proc. IEEE Itl. Conf. Acoust., Speech,

Signal Processing, 1843-1846, 1987.

[59] Z. Cvetkovic and M. V. Popovic, "New fast recursive algorithms for the

computation of discrete cosine and sine transforms," IEEE Trans. Signal

Processing, 40(8):2083-2086, 1992.

[60] V. Britanak, "New universal rotation-based fast computational structure for

an efficient implementation of the DCT-IV/DST-IV and analysis/synthesis

MDCT/MDST filter banks," Signal Processing, 89:2213-2232, 2009.

[61] M. Tasche and H. Zeuner, in G. Anastassiou (Ed.), "Handbook of Analytic-

Computational Methods in Applied Mathematics," 357-406, Chapman and

Hall/CRC press, Boca Raton 2000.

[62] N. Sharma, I. Saini, A. K. Yadav, and P. Singh, "Phase-image encryption

based on 3D-Lorenz chaotic system and double random phase encoding,"

3D Res, 8:39, 2017.

[63] B. Javadi, "Optical and digital techniques for information security," Berlin:

Springer, 2006.

[64] B. Javadi, et al., "Roadmap on optical security," Journal of Optics, 18(8):

083001, 2016.

[65] P. Refregier and B. Javadi, "Optical image encryption based on input plane

and Fourier plane random encoding," Optical Letters, 20(7): 767-769, 1995.

[66] P. Kumar, J. Joseph, and K. Singh, "Known-plaintext attack-free double

random phase-amplitude optical encryption: Vulnerability to impulse func-

tion attack," Journal of Optics, 14(4): 045401, 2012.

[67] P. Kumar, J. Joseph, and K. Singh, "Double random phase encoding

based optical encryption systems using some linear canonical transforms:

Weaknesses and countermeasures," in J. J. Healy et al. (Eds.), Linear

canonical transforms, New York: Springer, pp. 367, 2016.

[68] E. N. Lorenz, "Deterministic nonperiodic flow," Journal of Atmospheric

Sciences, 20(2): 130-141, 1963.

18 VOLUME, 2021

