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SPARSE MATRIX METHODS IN OPTIMIZATION*

PHILIP E. GILL?, WALTER MURRAY’S, MICHAEL A. SAUNDERS?
AND MARGARET H. WRIGHT?

Abstract. Optimization algorithms typically require the solution of many systems of linear equations
Bkyk b,. When large numbers of variables or constraints are present, these linear systems could account
for much of the total computation time.

Both direct and iterative equation solvers are needed in practice. Unfortunately, most of the off-the-shelf
solvers are designed for single systems, whereas optimization problems give rise to hundreds or thousands
of systems. To avoid refactorization, or to speed the convergence of an iterative method, it is essential to
note that B is related to Bk_ 1.

We review various sparse matrices that arise in optimization, and discuss compromises that are currently
being made in dealing with them. Since significant advances continue to be made with single-system solvers,
we give special attention to methods that allow such solvers to be used repeatedly on a sequence of modified
systems (e.g., the product-form update; use of the Schur complement). The speed of factorizing a matrix
then becomes relatively less important than the efficiency of subsequent solves with very many right-hand
sides.

At the same time, we hope that future improvements to linear-equation software will be oriented more
specifically to the case of related matrices Bk.

Key words, large-scale nonlinear optimization, sparse matrices, sparse linear and nonlinear constraints,
linear and quadratic programming, updating matrix factorizations

1. Introduction.
1.1. Background. The major application of sparse matrix techniques in optimiz-

ation up to the present has been in the implementation of the simplex method for
linear programming (LP) (see, e.g., Dantzig (1963)). In fact, commercial codes for
large LP problems seem to have predated codes for sparse linear equations (even
though solving a sparse LP problem requires solving many sparse linear systems). In
the commercial world today, more sparse matrix computation is probably expended
on linear programs than on any other type of problem, and linear programs involving
thousands of unknowns can be solved routinely. Because of the great success of the
simplex algorithm and the wide availability of LP codes, many large-scale optimization
problems tend to be formulated as purely linear programs. However, we shall see that
this limitation is often unnecessary.

Before considering particular methods, we emphasize that methods for large-scale
optimization have a special character attributable in large part to the critical importance
of linear algebraic procedures. Since dense linear algebraic techniques tend to become
unreasonably expensive as the problem dimension increases, it is usually necessary to
compromise what seems to be an "ideal" strategy. (In fact, an approach that would
not even be considered for small problems may turn out to be the best choice for
some large problems.) Furthermore, the relative cost of the steps of many optimization
methods changes when the problem becomes large. For example, the performance of
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unconstrained optimization algorithms is often measured by the number of evaluations
of the objective function required for convergence. Although simplistic, this is a
reasonable gauge of effectiveness for most problems of low dimension because the
number of arithmetic operations per iteration tends to be small, and the amount of
work required for storage manipulation is negligible. However, as the size of the
problem grows, the "housekeeping" (cost of arithmetic and data structures) becomes
comparable to, and may even dominate, the cost of function evaluations.

Most optimization methods are iterative; we shall consider algorithms in which
the (k + 1)th iterate is defined as

(1.1) Xk+l Xk q- OZkPk,

where tk is a nonnegative scalar, and the n-vector Pk is called the search direction.
One of the primary applications of sparse matrix techniques in optimization is in solving
one or more systems of linear equations to obtain Pk.

It is usual for thousands of iterations to be required to solve a single large
optimization problem, and hence it might appear that the computation time required
would be enormous, even with the best available sparse matrix techniques. Fortunately,
the linear systems that define Pk/l are usually closely related to those that define Pk
(and the degree of closeness can be controlled to some extent by the choice of
algorithm). In addition, the sequence {Xk} will often converge to the solution with only
mild conditions on { Pk}. Consequently, there is a certain flexibility in the definition of
Pk. The design of algorithms for large-scale optimization problems involves striking a
balance between the effort expended at each iteration to compute Pk and the number
of iterations required for convergence.

1.2. Summary. The three main subdivisions of optimization are discussed in turn
(unconstrained, linearly constrained, and nonlinearly constrained). A common
denominator is the need to solve many systems of linear equations, and the need to
update various factorizations in order to deal with sequences of related equations. We
indicate situations where off-the-shelf software can be applied. Symmetric positive-
definite solvers are mainly useful for unconstrained problems, while unsymmetric
solvers are essential for dealing with linear constraints. There is an inevitable emphasis
on the latter because most large optimization problems currently being solved involve
sparse linear constraints.

The principal updating problem is that of replacing one column of a square matrix.
However, there exists only one generally available package for updating sparse factors
in situ. We therefore focus on methods that allow an off-the-shelf solver to be used
repeatedly on the same matrix with different right-hand sides. Such methods facilitate
more general updates to sparse matrices. In one instance, a sparse indefinite solver is
needed.

The final section on nonlinear constraints covers methods that solve a sequence
of simpler subproblems, to which the preceding comments apply.

2. Unconstrained optimization.
2.1. Methods for dense problems. The unconstrained optimization problem in-

volves the minimization of a scalar-valued objective function, i.e.

minimize F(x).

We assume that F is smooth; let g(x) and H(x) denote the gradient vector and Hessian
matrix of F.
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Many techniques are available for solving unconstrained problems in which n is
small (for recent surveys, see, e.g., Brodlie (1977), Fletcher (1980), Gill, Murray and
Wright 1981 )). The most popular methods compute the search direction as the solution
of a system of linear equations of the form

(2.1) HkPk --gk,

where gk is the gradient of F at xk, andH is a suitable symmetric matrix that is most
often intended to represent (in some sense) H(x,). If H is positive definite, the
solution of (2.1) is the step to the minimum of the local quadratic approximation to
F at x:

(2.2) minimize g[p + p’Hkp.

The major distinctions among algorithms involve the definition of Hk.
When Hk is the exact Hessian at Xk or a finite-difference approximation, the

algorithm based on solving (2.1) for Pk is called a Newton-type method. Newton-type
methods tend to be powerful and robust when properly implemented, and exhibit
quadratic convergence under mild conditions. However, certain difficulties arise when
Hk is indefinite, since the quadratic function (2.2) is unbounded below and the solution
of (2.1) may be undefined. Numerous strategies have been suggested for this case, and
often involve defining Pk as the solution of a linear system with a positive-definite
matrix that is closely related to the Hessian. These techniques include the modified
Cholesky factorization of Gill and Murray (1974) and various trust-region strategies
(see, e.g., Mot6 and Sorensen (1982)).

When an exact or finite-difference Hessian is unavailable or too expensive, a
popular alternative is to use a quasi-Newton method (see Dennis and Mor6 (1977) for
a survey). In a quasi-Newton method, the matrix Hk is an approximation to the Hessian
that is updated by a low-rank change at each iteration, based on information about
the change in the gradient. The hope is that the approximation will improve as the
iterations proceed. Quasi-Newton methods typically display a superlinear rate of
convergence in practice, and are often more efficient (in terms of computation time)
than Newton-type methods.

When n becomes very large, two related difficulties can occur with methods that
solve (2.1) directly: excessive computation time and insufficient storage for the n x n
matrix Hk. Fortunately, the Hessian matrices of many large unconstrained problems
are quite sparse, and density tends to decrease as n increases. Large problems can
thus be solved efficiently using techniques that exploit sparsity in Hk to save work
and/or storage, or that do not require storage of Hk.

2.2. Newton-type methods. When the Hessian is sparse and can be computed
analytically, a Newton-type method can be implemented by applying standard sparse
procedures to solve Hkpk --gk" In particular, when Hk is positive definite, any efficient
technique for computing a sparse Cholesky factorization may be applied in this context
(for a survey of available software, see Duff (1982)). Although many linear systems
may need to be solved before the method converges, all of them have the same sparsity
pattern, and hence the structure needs to be analyzed only once.

Indefiniteness in a sparse Hessian may be treated using the procedures mentioned
for the dense case. The modified Cholesky factorization (Gill and Murray (1974)) has
been adapted in a straightforward fashion to treat sparsity (see Thapa (1980)). One
advantage of the modified Cholesky approach is that indefiniteness can be detected
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and corrected while constructing the factorization of the positive-definite matrix to be
used in computing Pk; hence, only one sparse factorization needs to be computed at
each iteration. With trust-region methods, pk may be obtained using off-the-shelf
software for a sparse Cholesky factorization; however, these methods typically require
more than one factorization per iteration.

When the gradient is available, but the exact Hessian is not, a finite-difference
approximation to the Hessian may be used as H. In the general case, this requires n
gradient evaluations. However, if the sparsity pattern of the Hessian is known a priori
it is possible to choose special vectors that allow a finite-difference approximation to
H(x) to be computed with many fewer than n evaluations of the gradient.

For example, suppose that H(x) is tridiagonal"

/

H(x)

XXX

XXX

XX

Consider the vectors

1
Yi hit Zi112

(g(x + hzi)--g(Xk)), i= 1, 2,

where z (1, 0, 1, 0,. .), z2 (0, 1,0, 1,. .), and h is an appropriate finite-differ-
ence interval Let Yl.i denote the ith component of Yl, and similarly for Y2. The vectors

Yl and. Y2 are approximations to the sums of odd and even columns of Hk, respectively.
Therefore,

O2F O2F a2F 02F
+, and so on.Y1,1 02Xl, Yz,I OXIOX2, Y,2

OXlfX2 OX2fX3

Thus, for example,

a2F

In this fashion, all the elements ofH can be approximated with only two evaluations
of the gradient, regardless of the value of n.

The idea of analyzing the sparsity pattern of the Hessian in order to determine
suitable finite-difference vectors has been the subject of much recent interest. An
algorithm for finding finite-difference vectors for a general sparse (unsymmetric) matrix
is given by Curtis, Powell and Reid (1974), and is based on grouping together columns
in which there are no overlapping elements. In the unsymmetric case, the problem of
finding a minimum set of vectors can be viewed as a graph coloring problem in the
directed graph that represents the sparsity pattern. A proof that finding the minimum
set is NP-hard is given in Coleman and Mor6 (1983), along with practical algorithms
(see also Coleman and Mor6 (1982a)).

A similar relationship with graph coloring can be developed for the case of a
symmetric matrix. For example, the requirement of symmetry for a sparse matrix
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means that the associated column-interaction graph will be undirected. The problem
of finding a minimum set of finite-difference vectors for a symmetric matrix is NP-
complete (a proof for a particular symmetric problem is given in McCormick (1983);
see also Coleman and Mor6 (1982b)). Nonetheless, effective algorithms have been
developed based on graph-theoretic heuristics. The algorithms are based on principles
similar to those for the unsymmetric case, but are considerably complicated by exploit-
ing symmetry.

A finite-difference Newton-type method for sparse problems thus begins with a
procedure that analyzes the sparsity pattern in order to determine suitable finite-
difference vectors. Algorithms for finding these vectors have been given by Powell and
Toint (1979) and Coleman and Mor6 (1982b). Once a sparse finite-difference Hessian
approximation has been computed, a sparse factorization can be computed as with the
exact Hessian.

2.3. Sparse quasi-Newton methods. Because of the great success of quasi-Newton
methods on dense problems, it is natural to consider how such methods might be
extended to take advantage of sparsity in the Hessian. This extension was suggested
first for the case of sparse nonlinear equations by Schubert (1970), and was analyzed
by Marwil (1978). Discussions of sparse quasi-Newton methods for optimization and
nonlinear equations are given in Toint (1977), Dennis and Schnabel (1979), Toint
(1979), Shanno (1980), Steihaug (1980), Thapa (1980), Powell (1981), Dennis and
Marwil (1982) and Sorensen (1982). In the remainder of this section we give a brief
description of sparse quasi-Newton methods applied to unconstrained optimization.

In quasi-Newton methods for dense problems, the Hessian approximation Hk is
updated at each iteration by the relationship

H+ H + U.

The update matrices Uk associated with many dense quasi-Newton methods are of
rank two, and can be shown to be the minimum-norm symmetric change in Hk, subject
to satisfying the quasi-Newton condition

(2.3)

where Sk Xk+l--Xk and Yk gk+1--gk (see, e.g., Dennis and Mor6 (1977)). By suitable
choice of the steplength Ofk in (1.1), the property of hereditary positive-definiteness
can also be maintained (i.e., Hk+I is positive definite if Hk is). However, the update
matrices Uk do not retain the sparsity pattern of the Hessian.

The initial approach to developing sparse quasi-Newton updates was to impose
the additional constraint of retaining sparsity on the norm-minimization problem
(Powell (1976); Toint (1977)). Let 3c be defined as the set of indices {(i, ])lHij(x) -0},
so that represents the specified sparsity pattern of the Hessian, and assume that Hk
has the same sparsity pattern. A sparse update matrix Uk is then the solution of

minimize uIIu

(2.4)
subject to (Hk + U)Sk Yk,

t =t:

Uij=O for(i,j)Ac.
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Let r() denote the vector Sk with the sparsity pattern of the jth column of Hk
imposed. When the norm in (2.4) is the Frobenius norm, the solution is given by

(2.5) Uk
j-I

where ej is the jth unit vector and is the vector of Lagrange multipliers associated
with the subproblem (2.4). The vector A is the solution of the linear system

(2.6) QA Yk HkSk,

where

Q (r)r()+ [[r()l122ei)e.
j=l

The matrix Q is symmetric and has the same sparsity pattern as Hk; Q is positive-
definite if and only if IIr(J)l] > 0 for all j. (The sparse analogue of any quasi-Newton
formula may be obtained using a similar analysis; see Shanno (1980) and Thapa (1980).)

Thus far, sparse quasi-Newton methods have not enjoyed the great success of
their dense counterparts. First, there are certain complications that result from the
requirement of sparsity. In particular, note that the update matrix Uk (2.5) is of rank
n, rather than of rank two; this means that the new approximate Hessian cannot be
obtained by a simple update of the previous approximation. Second, an additional
sparse linear system (2.6) must be solved in order to compute the update. Finally, it
is not possible in general to achieve the property of hereditary pogitive-definiteness
in the matrices {Hk} if the quasi-Newton condition is satisfied (see Toint (1979) and
Sorensen (1982)); in fact, positive-definiteness may not be retained even if Hk is taken
as the exact (positive definite) Hessian and the initial Xk is very close to the solution
(see Thapa (1980)).

In addition to these theoretical difficulties, computational results have tended to
indicate that currently available sparse quasi-Newton methods are less effective than
alternative methods (in terms of the number of function evaluations required for
convergence). However, hope remains that their efficiency may be improvedmfor
example, by relaxing the quasi-Newton condition (2.3), or by finding only an approxi-
mate solution of (2.6) (Steihaug (1982)). For a discussion of some possible new
approaches, see Sorensen (1982).

2.4. Conjugate-gradient methods. The term conjugate-gradient refers to a class
of optimization algorithms that generate directions of search without storing a matrix.
They are essential in circumstances when methods based on matrix factorization are
not viable because the relevant matrix is too large or too dense. We emphasize that
there are two types of conjugate-gradient methodsmlinear and nonlinear.

The linear conjugate-gradient method was originally derived as an iterative pro-
cedure for solving positive-definite symmetric systems of linear equations (Hestenes
and Stiefel (1952)). It has been studied and analyzed by many authors (see, e.g., Reid
(1971)). When applied to the positive-definite symmetric linear system

(2.7) Hx -c,

it computes a sequence of iterates using the relation (1.1). The vector Pk is defined by

(2.8) Pk --(HXk + c) + flk-lPk-1,

and the step length ak is given by an explicit formula. The matrix H need not be
stored explicitly, since it appears only in matrix-vector products.
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With exact arithmetic, the linear conjugate-gradient algorithm will compute the
solution of (2.7) in at most m (m <= n) iterations, where m is the number of distinct
eigenvalues of H. Therefore, the number of iterations required should be significantly
reduced if the original system can be replaced by an equivalent system in which the
matrix has clustered eigenvalues. The idea of preconditioning is to construct a transfor-
mation to have this effect on H. One of the earliest references to preconditioning for
linear equations is Axelsson (1974). See Concus, Golub and O’Leary (1976) for details
of various preconditioning methods derived from a slightly different viewpoint.

The nonlinear conjugate-gradient method is used to minimize a nonlinear function
without storage of any matrices, and was first proposed by Fletcher and Reeves (1964).
In the Fletcher-Reeves algorithm, Pk is defined as in the linear case by (2.8), where
the term Hxk + c is replaced by g, the gradient at x. For a nonlinear function, a in
(1.1) must be computed by an iterative step-length procedure. When the initial vector

P0 is taken as the negative gradient and a is the step to the minimum of F along pk,

it can be shown that each p is a direction of descent for F.
Many variations and generalizations of the nonlinear conjugate-gradient method

have been proposed. The most notable features of these methods are:/3 is computed
using different definitions; p is defined as a linear combination of several previous
search directions; P0 is not always chosen as the negative gradient; and a is computed
with a relaxed linear search (i.e., ak is not necessarily a close approximation to the
step to the minimum of F along p). Furthermore, the idea of preconditioning may
be extended to nonlinear problems by allowing a preconditioning matrix that varies
from iteration to iteration.

It is well known that rounding errors may cause even the linear conjugate-gradient
method to converge very slowly. The nonlinear conjugate-gradient method displays a
range of performance that has not yet been adequately explained. On problems in
which the Hessian at the solution has clustered eigenvalues, a nonlinear conjugate-
gradient method will sometimes converge more quickly than a quasi-Newton method,
whereas on other problems the method will break down, i.e. generate search directions
that lead to essentially no progress. For recent surveys of conjugate-gradient methods,
see Gill and Murray (1979), Fletcher (1980) and Hestenes (1980).

2.5. The truncated linear conjugate-gradient method. Much recent interest has
been focussed on an approach to unconstrained optimization in which the equations
(2.1) that define the search direction are "solved" (approximately) by performing a
limited number of iterations of the linear conjugate-gradient method.

Consider the case in which the exact Hessian is used in (2.1). Dembo, Eisenstat
and Steihaug (1982) note that the local convergence properties of Newton’s method
depend on p being an accurate solution of (2.1) only near the solution of the uncon-
strained problem. They present a criterion that defines the level of accuracy in p
necessary to achieve quadratic convergence as the solution is approached, and suggest
systematically "truncating" the sequence of linear conjugate-gradient iterates when
solving the linear system (2.1) (hence their name of "truncated Newton method").
(See also Dembo and Steihaug (1980) and Steihaug (1980).)

This idea has subsequently been applied in a variety of situationsmfor example,
in computing a search direction from (2.1) whenH is a sparse quasi-Newton approxi-
mation (Steihaug (1982)). We therefore prefer the more specific name of truncated
conjugate-gradient methods. These methods are useful in computing search directions
when it is impractical to store Hk, but it is feasible to compute a relatively small number
of matrix-vector products involving H. For example, this would occur if Hk were the
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product of several sparse matrices whose product is dense (see 3.3.1). Truncated
conjugate-gradient methods have also been used when the matrix-vector product Hkv
is approximated (say, by a finite-difference along v); in this case, the computation of
pk requires a number of gradient evaluations equal to the number of linear coniugate-
gradient iterations (see, e.g., O’Leary (1982)). In order for these methods to be
effective, it must be possible to compute a good solution of (2.1) in a small number
of linear conjugate-gradient iterations, and hence the use of preconditioning is
important.

With a truncated coniugate-gradient method, complications arise when the matrix

H is not positive definite, since the linear coniugate-gradient method is likely to break
down. Various strategies are possible to ensure that p is still a well-defined descent
direction even in the indefinite case. For example, the coniugate-gradient iterates may
be computed using the Lanczos process (Paige and Saunders (1975)); a Cholesky
factorization of the resulting tridiagonal matrix leads to an algorithm that is equivalent
to the usual iteration in the positive-definite case. If the tridiagonal matrix is indefinite,
a related positive-definite matrix can be obtained using a modified Cholesky factoriz-
ation. Furthermore, preconditioning can be included, in which case the linear conjugate-
gradient iterates begin with the negative gradient transformed by the preconditioning
matrix. If the preconditioning matrix is a good approximation to the Hessian, the
iterates should converge rapidly. Procedures of this type are described in O’Leary
(1982) and Nash (1982).

Further flexibility remains as to how the result of a truncated conjugate-gradient
procedure may be used within a method for unconstrained optimization. Rather than
simply being used as a search direction, for example, p may be combined with previous
search directions in a nonlinear conjugate-gradient method (see Nash (1982)).

3. Linearly constrained optimization.
3.1. Introduction. The linearly constrained problem will be formulated as

LCP minimize F(x)

subject tox b,

l<=x<_<_u,

where the m n matrix is assumed to be large and sparse. For simplicity, we assume
that the rows of are linearly independent (if not, some of them may be removed
without altering the solution).

The most popular methods for linearly constrained optimization are active-set
methods, in which a subset of constraints (the working set) is used to define the search
direction. The working set at x usually includes constraints that are satisfied exactly
at xk; the search direction is then computed so that movement along p will continue
to satisfy the constraints in the working set.

With problem LCP, the working set will include the general constraints x- b
and some of the bounds. When a bound is in the working set, the corresponding
variable is fixed during that iteration. Thus, the working set induces a partition of x
into fixed and free variables.

We shall not be concerned with details of how the working set is altered, but
merely emphasize that the fixed variables at a given iteration are effectively removed
from the problem; the corresponding components of the search direction will be zero,
and thus the columns of corresponding to fixed variables may be ignored. Let A
denote the submatrix of corresponding to the free variables at iteration k; each
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change in the working set corresponds to a change in the columns of Ak. Let nv denote
the number of free variables, and the vector Pk denote the search direction with respect
to the free variables only.

By analogy with (2.2) in the unconstrained case, we may choose Pk as the step
to the minimum of a quadratic approximation to F, subject to the requirement of
remaining on the constraints in the working set. This gives Pk as the solution of the
following quadratic program:

minimize g[p + 1/2pTHkp
p

(3.1)
subject to Akp O,

where gk denotes the gradient and Hk the Hessian (or Hessian approximation) at Xk
with respect to the free variables.

The solution Pk and Lagrange multiplier Ak Of the problem (3.1) satisfy the nv + m
equations

which will be called the augmented system.
One convenient way to represent p involves a matrix whose columns form a basis

for the null space of A. Such a matrix, which will be denoted by Z, has nv-m
linearly independent columns and satisfies AZ 0. The solution of (3.1) may then
be computed by solving the null-space equations

(3.3) Z2HkZkPz --Z2gk

and setting

(3.4) Pk Zkpz.

Equations (3.3) and (3.4) define a null-space representation of Pk (SO named because
it explicitly involves Zk). The vector Zgk and the matrix ZHkZk are called the
projected gradient and projected Hessian.

3.2. Representation ot the null space. The issues that arise in representing Zk
when Ak is sparse illustrate the need to compromise strategies that are standard for
dense problems. In the rest of this section, we shall drop the subscript k associated
with the iteration.

In dense problems, it is customary to use an explicit LQ or some other orthonormal
factorization of A in order to define Z. If AQ (L 0), where the orthonormal matrix
Q is partitioned as (Y Z) and L is lower triangular, then AZ 0. In this case, Z has
the "ideal" property that its columns are orthonormal, so that formation of the
projected Hessian and gradient does not exacerbate the condition of (3.3) and (3.4).
Unfortunately, for large problems computation of such a factorization is normally too
expensive. (Some current research is concerned with efficient methods for obtaining
sparse orthogonal factorizations; see George and Heath (1981). However, the need
to update the factors is an even more serious difficulty; see Heath (1982) and George
and Ng (1982).)

If an orthogonal factorization is unacceptable, a good alternative is to reduce A
to triangular form using Gaussian elimination (i.e., elementary transformations com-
bined with row and column interchanges). This would give an LU factorization in the
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form

I
(L 0),

where P1 and P2 are permutation matrices, U is unit upper triangular, and L is lower
triangular. The matrices P1 and P2 would be chosen to make U well-conditioned and
W]I reasonably small. The required matrix

would no longer have orthonormal columns, but should be quite well conditioned,
even if A is poorly conditioned.

Unfortunately, it is not known how to update the factorization (3.5) efficiently in
the sparse case when columns of A are altered. However, (3.5) indicates the existence
of a square, nonsingular submatrix drawn from the rows and columns of A. We shall
assume for simplicity that this matrix comprises the left-most columns of A, i.e.

(3.7) A=(B S),

where B is nonsingular. (In practice, the columns of B may occur anywhere in A.) It
follows from (3.7) and (3.5) (with P1 and P2 taken as identity matrices) thatBW+ S O,
so that W =-B-1S. Thus, Z has the form

As long as B in (3.7) is nonsingular, the matrix Z (3.8) will provide a basis for the
null space of A. In the absence of the ideal factorization (3.5), the aim must be to
choose a B that is as well.conditioned as conveniently possible, since this will tend to
limit the size of wII and hence the condition of Z.

The partition of the columns of A given by (3.7) induces a partition of the free
variables, which will be indicated by the subscripts" and s". The rn variables x
are called the basic variables. The remaining s free variables (s- nv- m) are called
the superbasic variables. For historical reasons, the fixed variables are sometimes called
the nonbasic variables.

An advantage of the form (3.8) for sparse problems is that operations with Z and
Zr may be performed using a factorization of the matrix B; the matrix Z itself need
not be stored. For example, the vector Zrg required in (3.3) may be written as

(3.9) Zrg=-SrB-rgn+gs.

(The vector on the right-hand side of (3.9) is called the reduced gradient; note that it
is simply the projected gradient with a particular form of Z.) Thus, Zg may be
obtained by solving Brv gn, and then forming gs-S rv. Similarly, to form p Zpz,
we have

p=(-BI-1St pz.__(-B-1SPz,Pz /

which gives the system

BpB -Spz.
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With the reduced-gradient form of Z (3.8), the problems of representing a null
space and computing the associated projections reduce to the familiar operations of
factorizing and solving with an appropriate square B.

3.3. Solving for the search direction. At each iteration of an active-set method
for LCP, the search direction p with respect to the free variables solves the subproblem
(3.1). We have seen that there are mathematically equivalent representations of p;
the way in which p is computed for sparse problems depends on several considerations,
which will be discussed below.

3.3.1. Solving the null-space equations. For sparse problems, it will generally not
be possible to solve (3.3) by explicitly forming and then factorizing ZTHZ. Even if H
and B are sparse, the projected Hessian will generally be dense. Thus, if a factorization
of the projected Hessian is to be stored, the number of superbasic variables at each
iteration must be sufficiently small (i.e., the number of fixed variables must be
sufficiently large). Fortunately, for many large-scale problems there is an a priori upper
bound on the number of free variables. For example, if only q of the variables appear
nonlinearly in the objective function, the dimension of the projected Hessian matrix
at the solution cannot exceed q.

Furthermore, even if the dimension of Z’HZ is small, forming the projected
Hessian may involve a substantial amount of work; when Z is defined by (3.8),
computation of ZHZ requires the solution of 2s systems of size m m. For this
reason, a Newton-type method in which the projected Hessian is recomputed at each
iteration is not generally practical. By contrast, quasi-Newton methods can be adapted
very effectively to sparse problems in which the dimension of the projected Hessian
remains small, by updating a dense Cholesky factorization of a quasi-Newton approxi-
mation to the projected Hessian; this is the method used in the MINOS code of Murtagh
and Saunders (1977), (1980).

When the projected Hessian cannot be formed or factorized, the null-space
equations may be solved using an iterative method that does not require storage of
the matrix, such as a truncated conjugate-gradient method (see 2.5). In order for
this approach to be reasonable, the computation of matrix-vector products involving
Z and H must be relatively cheap (e.g., when H is sparse); in addition, a good
approximation to the solution of (3.3) must be obtained in a small number of iterations.
Even when the Hessian is not available, a truncated conjugate-gradient method may
be applied to (3.3) by using a finite-difference of the gradient to approximate the
vector HZv; an evaluation of the gradient is thus necessary for every iteration of the
truncated conjugate-gradient method. Note that this is one of the few methods in
which H is not required to be sparse.

Each of the above methods for solving the null-space equations can be adapted
to allow for changes in the working set ( 3.5).

3.3.2. Solving the range-space equations. The null-space equations provide one
means of solving for p in the augmented system (3.2), by eliminating &k. When H is
positive definite, a complementary approach is to solve for & first, via the range-space
equations

AH-1A T" AH-I g, Hp A T" g.

This method would be appropriate if H were sparse, and if A had relatively few rows.
The application of a range-space approach to quadratic programming is discussed by
Gill et al. (1982).
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3.3.3. Solving the augmented system. An alternative method for obtaining p
involves treating the augmented system directly. (Variations of this idea have been
proposed by numerous authors; see, e.g., Bartels, Golub and Saunders (1970)). The
most obvious way to solve (3.2) is to apply a method for symmetric indefinite systems,
such as the Harwell code MA27 (Duff and Reid (1982)). In order for the solution of
(3.2) to be meaningful, the matrix ZTHZ must be positive definite. Verifying positive-
definiteness in this situation is a nontrivial task, since of course the matrix ZTHZ is
not computed explicitly. However, the result may sometimes be known a priorimfor
example, when H itself is positive-definite.

Both H and A change dimension when the working set is altered. Updating
procedures for this case are discussed in 3.6.2.

3.4. Factorizing and solving a square system. The linear systems involving B and
B are typically solved today using a sparse LU factorization of B. Surveys of
techniques for computing such a factorization are given in Duff (1982) and Duff and
Reid (1983). The analyze phase of a factorization consists of an analysis of the sparsity
pattern alone (independent of the values of the elements), and leads to a permutation
of the matrix in order to reduce fill-in during the factorization. The factorphase consists
of computation with the actual numerical elements of the matrix.

We shall mention a few features of certain factorization methods that have
particular relevance to optimization (see Duff and Reid (1983) for more details). Since
active-set algorithms include a sequence of matrices that undergo column changes, the
factorization methods were typically developed to be used in conjunction with an
update procedure.

The p4 algorithm of Hellerman and Rarick (1971), (1972) performs the analyze
phase separately from the factor phase, and produces the well-known "bump and
spike" structure, in which B is permuted to block lower-triangular form with relatively
few "spikes" (columns containing nonzeros above the diagonal). This procedure is
very effective if B is nearly triangular. Also, the factor phase is able to use external
storage, since it processes B one column at a time. Column interchanges are used to
stabilize the factorization. (Row interchanges would destroy the sparsity pattern.) If
an interchange is needed at the ith stage, it is necessary to solve a system of the form
L/_ly ei and to compute the quantities yTaj for all remaining eligible spike columns
aj. This involves significant work and also degrades the sparsity of the factors. Thus,
a rather loose pivot tolerance must be used to avoid many column interchanges (e.g.,
I/zl < 104, where/x is the largest subdiagonal element in any column of L divided by
the corresponding diagonal).

The Markowitz algorithm (Markowitz (1957)), on the other hand, performs the
analyze and factor phases simultaneously, and hence must run in main memory. It
computes dynamic "merit counts" in order to determine the row and column permuta-
tions to preserve sparsity and yet retain numerical stability. The Markowitz procedure
can achieve a good sparse factorization even with a rather strict pivot tolerance (e.g.,

In order to indicate how these factor routines perform on matrices that arise in
optimization, we give results on five test problems. In the first three problems, the
matrix B has "staircase" structure (see, e.g., Fourer (1982)); constraints of this form
often arise in the modeling of dynamic systems, in which a set of activities is replicated
over several time periods. The fourth and fifth problems arise from the optimal power
flow (OPF) problem (see e.g., Stott, Alsac and Marinho (1980)). In this case, B is the
Jacobian of the network equations of the power system, and has a symmetric sparsity



574 P. GILL, W. MURRAY, M. SAUNDERS AND M. WRIGHT

TABLE
Summary of problem characteristics.

Stair Stair 2 Stair 3 OPF OPF 2

B rows 357 745 1,170 1,200 3,400

B nonzeros 3,500 3,600 7,100 9,000 29,000

p4 blocks 5 13

p4 spikes 66 101 157 715

pattern (which is not at all triangular!) Table 1 shows some of the relevant features
of the problems described, including the results of factorization with the p4 algorithm.

The number of nonzeros in the initial LU factorization of B is shown in the first
two rows of Table 2. The p4 algorithm is as implemented in the MINOS code of
Murtagh and Saunders (1977), (1980); the Markowitz procedure is the Harwell code
LA05 (Reid (1976), (1982)). Note that the large number of spikes in the first OPF
problem is bound to cause difficulties for the p4 algorithm.

TABLE 2
Number of nonzeros in initial LU factorization and after k updates.

Stair Stair 2 Stair 3 OPF OPF 2

LoUo with p4 (MINOS) 9,400 16,200 32,000 30,400

LoUo with Markowitz (LA05) 5,400 4,700 13,500 13,800 75,000

k 50 50 50 30 40

L U with LA05 7,800 6,000 17,100 15,300 83,000

3.5. Column updates. For problems of the form LCP, each change in the working
set involves changing the status of a variable from fixed to free (or vice versa). When
a previously fixed variable becomes free, a column of is added to A; this poses no
particular difficulty, since the new column can simply be appended to S. When a free
variable is to become fixed, a column of A must be deleted, and complications arise
if the column is in B. Since the number of columns in B must remain constant (in
order for B to be nonsingular), it is necessary to replace a column of B with one of
the columns of S.

Assume that we are given an initial B0, which thereafter undergoes a sequence
of column replacements, each corresponding to one of the free variables becoming
fixed on a bound. Let Ik denote the index of the column to be replaced at the kth
step, ak denote the lkth column of B, Vk denote the new column, and el denote the
lkth column of the identity matrix. After each replacement, we have

(3.10) Bk Bk-1 + Vk ak)e.

We shall consider several ways in which systems of equations involving Bk can be
solved following a sequence of such changes.
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3.5.1. The product-form update. The standard updating technique used in all
early sparse LP codes was the product-form (PF) update (e.g., Dantzig and Orchard-
Hays (1954)). It follows from the definition of Bk that

B B_ T,

where
T(3.11) Bk_lY v and T I + y elk) e

Note that Tk is a permuted triangular matrix (with only one nontrivial column);
equivalently, T is a rank-one modification of the identity matrix. The matrix T can
be represented by storing the index l and the vector

After k such updates we have

(3.12) B BoTIT2"" Tk.

Given a procedure to solve systems of equations involving Bo, (3.12) indicates that
solving Bv b is equivalent to solving the k + 1 linear systems

(3.13) Bovo=b, Tv=vo, ..., Tvk=v_

where the systems involving T are easy to solve. As k increases, the solution process
becomes progressively more protracted, and the storage required to store the updates
is strictly increasing. Therefore it becomes worthwhile to compute a factorization of
B from scratch. Most current systems use an initial triangular factorization Bo Lo Uo
(see 3.4), and recompute the factorization after k updates (typically k _-< 50).

The PF update has two important advantages for sparse problems. First, the
vectors {y} may be stored in a single sequential file, so that implementation is
straightforward. Second, any advance in the methods for linear equations is immediately
applicable to the factorization of Bo, since the update does not alter the initial
factorization. Thus, Bo may be represented by a "black box" procedure for solving
equations (involving both Bo and BoT).

Unfortunately, the PF update has two significant deficiencies. It is numerically
Tunreliable if lelkykl is too small (since T is then ill-conditioned), and the growth of

data defining the updates is significantly greater than for alternative schemes.

3.5.2. The Bartels-Golub update. The instability of the PF update was first made
prominent by Bartels and Golub (1969), who showed as an alternative that an LU
factorization can be updated in a stable manner (see also Bartels, Golub and Saunders
(1970); Bartels (1971)). Given an initial factorization Bo=LoUo, the updates to L
are represented in product form, but the sparse triangular matrix U is stored (and
updated) explicitly. Thus, instead of the form (3.12) we have

(3.14) B LoT1 T2 TqUt =- LU,

where each T represents an update whose construction will be discussed below.
At the kth step, replacing the /th column of B-I gives

B L_ U,

where /_) is identical to Uk-1 except for its /th column. Since Uk-1 is stored as a
sparse matrix, it is desirable to restore U to upper-triangular form U without causing
substantial fill-in. To this end, let P denote a cyclic permutation that moves the /th
row and column of U to the end, and shifts the intervening rows and columns forward.
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We then have

pT/p

The nonzeros in the bottom row of PTIQP may be eliminated by adding multiples
of the other rows. However, it follows from the usual error analysis of Gaussian
elimination (e.g., Wilkinson (1965)) that this procedure will not be numerically stable
unless the size of the multiple is bounded in some way. Hence, we must allow the last
row to be interchanged with some other row. Formally, the row operations are stabilized
elementary transformations (Wilkinson (1965)), which are constructed from 22
matrices of the form

or /--
1 1 x

(Note that the transformation//includes a row interchange.) Each such transformation
is represented by the scalar x, and is unnecessary if the element to be eliminated is
already zero. Numerical stability is achieved by choosing between M and//so that
the multiplier x is bounded in size by some moderate number (e.g., Ixl <- 1, 10 or
100). The matrices {T} in (3.14) are constructed from sequences of matrices of the
form (3.15).

Unfortunately, elimination of the nonzeros is easier said than done" in the sparse
case. Any transformation of type r amounts to a form of fill-in, since the location of
nonzeros in the interchanged rows is unlikely to be the same. A complex data structure
is therefore needed to update U without losing efficiency during subsequent solves.
(Holding individual nonzeros in a linked list, for example, would not be acceptable in
a virtual-memory environment.)

The implementation of the BG update by Saunders (1976) capitalizes on the
bump and spike" structure revealed by the p4 procedure (see 3.4). Each triangular
factor is of the form

and fill-in can occur only within Fk. If Uo contains s spikes, the dimension of Fk will
be at most s + k. StoringF as a dense matrix allows the BG update to be implemented
with maximum stability (11--< 1 in (3.15)), and the approach is efficient as long as s
is not unduly large (say, s-< 100). This implementation has been used for several years
in the nonlinear programming system MINOS (Murtagh and Saunders (1977), (1980)).
During that period, the number of spikes in U0 has proved to be favorably small for
many sparse optimization models. However, two important applications are now known
to give unacceptably large numbers of spikes: time-period models (for which B has a
staircase structure) and optimal power-flow problems (for which B has a symmetric
sparsity pattern). Some statistics for these problems are given in Table 1 ( 3.4).
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Another implementation of the BG update has been developed by Reid (1976),
(1982) as the Fortran package LA05 in the Harwell Subroutine Library. It strikes a
compromise between dense and linked-list storage by using a whole row or column
of Uk as the "unit" of storage. Thus, the nonzeros in any one row of Uk are held in
contiguous locations of memory, as are the corresponding column indices, and an
ordered list points to the beginning of each row. To facilitate searching, a similar data
structure is used to hold just the sparsity pattern of each column (i.e., the row indices
are stored, but not the nonzeros themselves; see Gustavson (1972)). This storage
scheme is also suitable for computing an initial LU factorization using the Markowitz
criterion and threshold pivoting--a combination that has been eminently successful in
practice, particularly on the structures mentioned above. Table 2 ( 3.4) shows the
sparsity of various initial factorizations B0 LoUo computed by subroutine LA05A,
and the moderate rate of growth of nonzeros following k calls to the BG update
subroutine LA05C.

Given the row-wise storage scheme for the nonzeros of Uo, it was natural in
LA05A for the stability test to be applied row-wise. (Thus, each diagonal of U0 must
not be too small compared to other nonzeros in the same row.) This standard threshold
pivoting rule is appropriate for single systems, but unfortunately is at odds with the
aim of the BG update. The effect is to control the condition of U0, with no control
on the size of the multipliers/x defining L0.

A preferable alternative is to apply the threshold pivoting test column-wise, in
order to control the condition of L0. The resulting Lo, and hence all subsequent factors
Lk, will then be a product of stabilized transformations T. It follows that the factors
of Bk are likely to be well conditioned if Bk is well conditioned, even if Bo is not.

In order to apply the column-wise stability test efficiently, the data structure for
computing U0 needs to be transposed. This and other improvements will be incorpor-
ated in a new version of LA05 (Reid, private communication).

At the Systems Optimization Laboratory we have recently implemented some
analogous routines as part of a package LUSOL, which will maintain the factorization
LkBk--Uk following various kinds of updates. The matrices Bk may be singular or
rectangular, and the updates possible are column replacement, row replacement,
rank-one modification, and addition or deletion of a row or a column. The condition
of Lk is controlled throughout for the reasons indicated above. We expect such a
package to find many applications within optimization and elsewhere. One example
will be to maintain a sparse factorization of the Schur-complement matrix Ck (see

3.5.4-3.6.2), often called the working basis in algorithms for solving mathematical
programs that have special structure. GUB rows and imbedded networks are examples
of such structure; see Brown and Wright (1981) for an excellent overview.

3.5.3. The Forrest-Tomlin update. The update of Forrest and Tomlin (1972)
was developed as a means of improving upon the sparsity of the PF update while
retaining the ability to use external storage where necessary. In fact the FT update is
a restricted form of the BG update, in which no row interchanges are allowed when
eliminating the bottom row of pTOp. This single difference removes the fill-in difficulty
(but at the expense of losing guaranteed numerical stability).

Algebraically, a new column Wk is added to Uk-1, the Ikth column and row are
deleted, and the transformations M are combined into a single "row" transformation
Rk I + e rk elk) T. It can be shown that the required vectors satisfy

(3.16) Lk-l Wk Vk, and U-lrk elk,
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and the new diagonal of Uk is rTWk Most importantly, the multipliers tz are closely
related to the elements of rk, and these can be tested a posteriori to determine whether
the update is acceptable (see also Tomlin (1975)). In practice a rather undemanding
test such as [tzl -< 106 must be used to avoid rejecting the update too frequently. The
FT update is now used within several commercial mathematical programming systems.

3.5.4. Use of the Schur complement. The work of Bisschop and Meeraus (1977),
(1980) has recently provided a new perspective on the problem of updating within
active-set methods. Suppose that for each update a vector vj replaces the/jth column
of B0. A key observation is that the system BkX b is equivalent to the system

(3.17) (B0 Vk)
where

Vg (/)1/)2"" Vk), I (el, el2"’" elk) T.
Note that the rectangular matrix I is composed of k rows of the identity matrix
corresponding to indices of columns that have been replaced. Since the equations
Iky 0 set k elements of y to zero, the remaining elements of y and z together give
the required solution x. Similarly, the system B[y d is equivalent to

if d and d; are constructed from d appropriately (with the aid of k arbitrary elements,
such as zero).

The matrix in (3.17) may be factorized in several different ways. In the next two
sections we consider the simplest factorization

(3.19) (BVk)
where

(.a0) B0Y , C -I
The k x k matrix C is the Schur complement for the partitioned matrix on the left-hand
side of (3.19). It corresponds to a matrix of the ubiquitous form D-WB-V (e.g.,
see Cottle (1974)).

3... slee-e. From (3.17) and (3.19) we see that the
vectors y and z needed to construct the solution of Bx b may be obtained from
the equations

(3.21a) Bow b,

(.b) Cz -,
(3.21c) y w- Yz.
Similarly, the solution of By d is obtained from the two linear systems

(.al c2z -(3.22b) Bgy=d-I2z.

Assuming that Y is available, the essential operations in (3.21) and (3.22) are a solve
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with Bo and a solve with Ck. If k is small enough (say, k-<_ 100), Ck may be treated
as a dense matrix. It is then straightforward to use an orthogonal factorization QkCk
Rk Q Qk L Rk upper triangular) or an analogous factorization LkCk Uk based on
Gaussian elimination (Lk square, Uk upper triangular). These factorizations can be
maintained in a stable manner as Ck is updated to reflect changes to Bk. (The updates
involve adding and deleting rows and columns of Ck; see Gill et al. (1974).) The
stability of the procedures (3.21) and (3.22) then depends essentially on the condition
of Bo. In other words, if B0 is well conditioned, we have a stable method for solving
BkX b for many subsequent k.

The method retains several advantages of the PF update. The vectors to be stored
(columns of Yk) satisfy BoYk Vk, which is analogous to (3.11). These vectors should
have sparsity similar to those in the PF update, and they can be stored sequentially
(in compact form on an external file, if necessary). A further advantage is that whenever
a column of Ck is deleted, the corresponding vector Yk may be skipped in subsequent
uses of (3.21c). This gain would tend to offset the work involved in maintaining the
factors of Ck. Because of the parallels, the method described here amounts to a practical
mechanism for stabilizing an implementation based on the PF update.

3.5.6. The Schur-complement update. One of the aims of Bisschop and Meeraus
(1977), (1980) was to give an update procedure whose storage requirements were
independent of the dimension of B0. This is achievable because the matrix Yk is not
essential for solving (3.17) and (3.18), given Vk and a "black box" for Bo. For example,
(3.2 lc) may be replaced by

(3.23) Boy b- VkZ,

and hence storage for Yk can be saved at the expense of an additional solve with B0.
Similarly, (3.22a) is equivalent to

Bw=dl, Cz=d2-V[w,

again involving a second solve with B0. Note that the original data Vk will usually be
more sparse than Yk, SO that the additional expense may not be substantial.

The storage required for a dense orthogonal factorization of Ck (k :z) is small for
moderate values of k. As with the PF update, any advance in solving linear equations
is immediately applicable to the equations involving B0.

The method is particularly attractive when B0 has special structure. For example,
certain linear programs have the following form"

minimize cTX
subject to (B0 N)x b,

l<_x<-u,
where B0 is a square block-diagonal matrix"

B0 block-diag (Do D1 DN).

Assuming that the square matrices Dj are well conditioned, B0 provides a natural
starting basis for the simplex method.

With the Schur-complement (SC) update, an iteration of the simplex method on
such a problem requires four solves with B0, and hence four solves with each matrix
Dj. In certain applications, the matrices D are closely related to Do (e.g., in time-
dependent problems), in which case a further application of the Schur-complement
technique would be appropriate. A simplex iteration then involves only solves with Do.
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This is a situation in which one factorization is followed by hundreds or even
thousands of solves (involving both Do and Dff). Thus, it is useful for black-box solvers
to be tuned to the case of multiple right-hand sides.

3.5.7. The partitioned LU update. Recall that the PF approach accumulates
updates in a single file, while the BG and FT methods seek to reduce the storage
required for the updates by updating two separate factors (one implicitly through a
file of updates, the other explicitly). Here we suggest leaving L0 and U0 unaltered (in
effect, treating them as two "black boxes" for solving linear systems), and accumulating
two files of updates. In place of the block factorization (3.19) we can write

with the same definition (3.20) of C. After the kth update, the new column of W
and row of R satisfy

(3.25) Low v and Ur el.

The similarity of (3.25) with the equations (3.16) for the FT update leads us to suppose
that the storage requirements would be at least as low as for the FT update. Apart
from the need to store and update C, all implementation advantages are retained (in
fact improved upon, since U0 is not altered). As with the PF and SC updates, the
stability depends primarily on the condition of Bo. We could therefore regard the
factorization (3.24) as a practical and stable alternative to the FT update.

3.5.8. Avoiding access to Bo. In active-set methods, it is often necessary to solve
the equations Bx v, where v is a column of the matrix . Although v will not be
a column of B, it could be a column of B0. If B0 were not stored in main memory,
it would be desirable to access its columns as seldom as possible. In this section we
shall show that with the PF update or the Schur-complement updates, the elements
of B0 need not be accessed once the initial factorization has been completed.

Assume that v is the/th column of B0, so that v Boel by definition. For the PF
update it follows by substituting the expression for v in (3.13) that

TI Tkx el,

which gives an equation for x that does not involve v or B0. With the Schur-complement
approach, (3.21a) reduces to w e, while (3.23) can be rearranged to give Bo(y- et)
-Vz. In either case, when solving for x we can avoid not only an explicit reference
to the elements of B0 but also a solve with B0.

Similarly, it is often necessary to solve By d and then to form yrv for
each column v that has bee replaced in B0. (The quantities are the reduced costs
or reduced gradients for variables that have been removed from B0.) If denotes the
product By, then by definition of v it follows that yTv trec With both the PF and
the Schur-complement updates, is a by-product of the procedure for computing y.
Thus, and all relevant values ) are available at no cost.

These results confirm that B0 need exist only in the form of a "black box" for
solving linear systems.

3.6. Other applications of the Sehur-eomplement update. Historically, the formu-
lation LCP has been used because it involves only column updates to B, which have
appeared to be the least diNcult kind of update to implement for sparse problems.
However, the Schur-complement approach also applies to more general sequences of
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related square systems. As with column replacement, the key is to solve a partitioned
system that involves the original matrix.

3.6.1. Unsymmetric rank-one updates. Consider the case in which Bo undergoes
a sequence of rank-one modifications:

Bk Bk- + vks Bo+ VkS.
The solution of BkX-" b is part of the solution of the extended system

(3.26) (B0 :;)(:)(0
(Kron (1956), Bisschop and Meeraus (1977)). Given factorizations of B0 and the
Schur complement Ck =-I-SB- Vk, the solution may be obtained from

CkZ =-Sw, Box b- Vkz,

where Bow b. An alternative that would require more storage but less work could
be obtained by using Bo Lo U0 and storing the vectors defined by Lo
Let Rk denote the matrix whose jth column is rj, and similarly for Wk. In this case,
the solution of (3.26) would be obtained from

Ckz =-Rv UoX 1)- Wkz

where Lov b. Either approach is an alternative to updating a factorization of Bk itself
(e.g., Gille and Loute (1981), (1982)), which is even more difficult to implement than
the BG update.

We emphasize that column or row replacements are best treated as a special case,
not as a sequence of general rank-one modifications.

3.6.2. A symmetric Schur-complement update. It was observed in 3.1 that in
some circumstances the search direction can be computed by solving the linear system
(3.2) involving the augmented matrix

(3.27) Mk=
Ak

Within an active-set method, changes in the status of fixed and free variables lead to
changes in H and A. When a variable becomes fixed, the corresponding row and
column of Mk are deleted; when a variable is freed, a new row and column of Mk are
added.

Instead of updating a factorization of Mk, we can start with some M0 and work
with an augmented system of the form

If a variable is fixed at the kth change, the kth column of Sk is an appropriate coordinate
vector; if the /th variable is freed, the column is

(h,)Sk
at

where ht is obtained from the/th column of the full Hessian, and at is the/th column
of s. The solution of the augmented system corresponding to the kth working set can
then be obtained using a factorization of M0 and a factorization of the Schur comple-
ment Ck SM-
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3.7. Linear and quadratic programming. Two important special cases of LCP are
linear and quadratic programs. Since there are no user-supplied functions, the computa-
tion in linear and quadratic programming methods involves primarily linear algebraic
operations.

3.7.1. Large-scale linear programming. Large-scale linear programs occur in
many important applications, such as economic planning and resource allocation.
Methods and software for large-scale LP have thus achieved a high level of sophistica-
tion, and many of the techniques discussed in 3 were designed originally for use
within the simplex method.

Much research has involved linear programs with special structure in the constraint
matrix--for example, those arising from networks or time-dependent systems. It is
impossible to summarize methods for specially-structured linear programs in a survey
paper of this type. However, to illustrate the flavor of the work, we consider staircase
linear programs (which were used in the examples of 3.4). These arise in modeling
time-dependent processes; the recent book edited by Dantzig, Dempster and Kallio
(1981) is entirely devoted to such problems. It has long been observed that the simplex
method tends to be less efficient on staircase problems than on general LPs. To correct
this deficiency, work has tended to proceed in two directions. First, the simplex method
can be adapted to take advantage of the staircase structure, by using special techniques
for factorizing, updating, and pricing (Fourer (1982)). Second, special-purpose methods
can be designed to exploit particular features of the problem. For staircase problems,
several variations of the decomposition approach (Dantzig and Wolfe (1960)) have
been suggested. The basic idea is to solve the problem in terms of smaller, nearly
independent, subproblems.

3.7.2. Large-scale quadratic programming. /k general statement of the quadratic
programming problem is

minimize c TX + 1/2XTHx

subject tox b,

l<=x<=u,

where H is a symmetric matrix.
An early approach to quadratic programming was to transform the problem into

a linear program, which is then solved by a modified LP method (e.g., Beale (1967)).
The most popular quadratic programming algorithms are now based on the active-set
approach described in 3.1 (for a comprehensive survey of QP methods, see Cottle
and Djang (1979)), and the search direction is defined by the subproblem (3.1).
Efficient methods for sparse quadratic programs thus involve specializing the techniques
discussed in 3.3 for the special case when the Hessian is constant.

4. Nonlinearly constrained optimization. The nonlinearly constrained optimiz-
ation problem is assumed to be of the following form:

NCP minimize F(x)

subject to c(x)= O,

l<=x<-u,

where c(x) is a vector of m nonlinear constraint functions. We shall assume that these
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constraints are "sparse", in the sense that the m x n Jacobian matrix A(x) of c(x) is
sparse. For simplicity, we shall usually not distinguish between linear and nonlinear
constraints in c(x). However, it is usually considered desirable to treat linear and
nonlinear constraints separately.

Problems with nonlinear constraints are considerably more difficult to solve than
those with only linear constraints. There is an enormous literature concerning methods
for nonlinear constraints; recent overviews are given in Fletcher (1981) and Gill,
Murray and Wright (1981). In this section, we shall concentrate on the impact of
sparsity rather than attempt a thorough discussion of the methods.

One aspect of NCP that is directly relevant to sparse matrix techniques is that
any superlinearly convergent algorithm must consider the curvature of the nonlinear
constraint functions, and thus the Hessian of interest is the Hessian of the Lagrangian
function rather than the Hessian of F alone. Let the Hessian of the Lagrangian function
be denoted by W(x, A) H(x)-i_ AiHi(x), where Hi is the Hessian of Ci. At first,
it might appear unlikely that this matrix would be sparse, since it is a weighted sum
of the Hessians of the objective function and the constraints. However, sparsity in the
gradient of a nonlinear constraint always implies sparsity in its Hessian matrix. For
example, if the gradient of c(x) contains five nonzero components, the corresponding
Hessian matrix H(x) can have at most 25 nonzero elements. Furthermore, there is
often considerable overlap in the positions of nonzero elements in the Hessians of
different constraints. Thus, in practice the Hessian of the Lagrangian function is often
very sparse.

The usual approach to solving NCP is to construct a sequence of unconstrained
or linearly constrained subproblems whose solutions converge to that of NCP. Early
methods included unconstrained subproblems based on penalty and barrier functions
(see Fiacco and McCormick (1968)). Unfortunately, these methods suffer from inevi-
table ill-conditioning; they have for the most part been superseded by more efficient
methods.

4.1. Augmented Lagrangian methods. Augmented Lagrangian methods were
motivated in large part by the availability of good methods for unconstrained optimiz-
ation. The original idea was to minimize an approximation to the Lagrangian function
that has been suitably augmented (by a penalty term) so that the solution is a local
unconstrained minimum of the augmented function (Hestenes (1969), Powell (1969)).

In particular, an augmented Lagrangian method can be defined in which Xk/l is
taken as the solution of the subproblem

minimize LA x, A k, Pk

(4.1)
subject to -<_ x _-< u,

where the augmented Lagrangian function LA is defined by

P(4.2) LA(X,A,p)=--F(x)--ATc(x)+-C(x)Tc(x).
The vector A is an estimate of the Lagrange multiplier vector, and p is a suitably
chosen nonnegative scalar. Alternatively, it is possible to treat any general linear
constraints by an active-set method ( 3.1), and to include only nonlinear constraints
in the augmented Lagrangian function. Whatever the definition of the subproblem,
the algorithm has a two-level structure"outer" iterations (corresponding to different
subproblems) and "inner" iterations (within each subproblem).
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The Hessian of interest when solving (4.1) is the Hessian of LA (4.2), which is
W(x, k)+pkA(x)TA(x). The sparsity patterns of W(x, ,) and the Hessian matrix of
LA are sometimes very similar. Hence, techniques designed to use an explicit sparse
Hessian may be applied to (4.1).

The Jacobian matrix A(x) need not be stored explicitly in order to solve the
subproblem (4.1). If a fairly accurate solution of (4.1) is computed, an improved
Lagrange multipler estimate may be obtained without solving any linear systems
involving A(x). However, in several recent augmented Lagrangian methods, (4.1) is
solved only to low accuracy in order to avoid expending function evaluations when
Ak is a poor estimate of the optimal multipliers;, in this case, some factorization of the
matrix A(x+l) is required to obtain an improved Lagrange multiplier estimate (by
solving either a linear system or a linear least-squares problem). The relevance of the
storage needed for the Jacobian and/or a factorization depends on the number of
nonlinear constraints and the sparsity of the Jacobian.

4.2. Linearly constrained subproblems. The solution of NCP is a minimum of
the Lagrangian function in the subspace defined by the gradients of the active con-
straints. This property leads to a class of methods in which linearizations of the nonlinear
constraints are used to define a linearly constrained subproblem, of the form

(4.3)

minimize F(x) A k
r

C(X) A kX)

subject to A(x- x) -c,

where ck and A denote c(x) and A(x) (Robinson (1972), Rosen and Kreuser
(1972)). With this formulation, the Lagrange multipliers of the kth subproblem may
be taken as the multiplier estimate ;tk/l in defining the next subproblem, and will
converge to the true multipliers at the solution. When c(x) contains both linear and
nonlinear functions, only the nonlinear functions need be included in the objective
function of (4.3). Under suitable assumptions, the solutions of the subproblems con-
verge quadratically to the solution of NCP. A further benefit of the subproblem (4.3)
is that linear constraints may be treated explicitly.

One of the important conditions for convergence with the subproblems (4.3) is a
"sufficiently close" starting point; thus, some procedure must be used to prevent
divergence from a poor value of x0. Rosen (1980) suggested a two-phase approach,
starting with a penalty function method. In the MINOS/AUGMENTED system of
Murtagh and Saunders (1982), the objective function of the subproblem is defined as
a modified augmented Lagrangian of the form

pk
(4.4) LA(X, Ak, Pk) F(X)- Ak(X) +-- k(X) Tk(X),

where

k(X) C(X)--(Ck + Ak(X-- Xk)).

Methods based on solving (4.3) have several benefits for sparse problems. The
ability to treat linear constraints explicitly is helpful for the many large problems in
which most of the constraints are linear. As noted in the Introduction, it is often a
feature of sparse problems that the cost of evaluating the problem functions is domi-
nated by the sparse matrix operations. The superiority of SQP methods ( 4.3.2) for
dense problems results from the generally lower number of function evaluations
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compared to methods based on (4.3); for sparse problems, however, the function
evaluations required to solve (4.3) may be insignificant compared to the savings that
would result from solving fewer subproblems. If an active-set method of the type
described in 3.3.1 is applied to (4.3), only the projected Hessian needs to be stored
(rather than the full Hessian). Thus, methods based on (4.3) will tend to be more
effective than augmented Lagrangian methods for problems in which the Hessian of
the Lagrangian function is not sparse and the projected Hessian can be stored as a
dense matrix.

4.3. Methods based on linear and quadratic programming. We now consider two
classes of methods in which the subproblems are solved without evaluation of the
problem functions (in contrast to the methods of 4.1 and 4.2).

4.3.1. Sequential linear programming methods. Because of the availability and
high quality of software for sparse linear programs, a popular technique for solving
large-scale problems has been to choose each iterate as the solution of an LP subprob-
lem; we shall call these sequential linear programming (SLP) methods. They were first
proposed by Griffith and Stewart (1961); for a recent survey, see Palacios-Gomez,
Lasdon and Engquist (1982).

One crucial issue in an SLP method is the definition of the linear functions in the
subproblem. A typical formulation is

minimize g’(x x)

subject to Ak(x- xk) -c,

l<=x<_u.

With some formulations, the LP may not be well posedfor example, there may be
fewer constraints than variables. The usual way of ensuring a correctly posed subprob-
lem is to include additional constraints on the variables, such as bounds on the change
in each variable. In general, the latter are also needed to ensure convergence.

SLP methods have the advantage that the subproblems can be solved using all
the technology of sparse LP codes. They tend to be efficient on two types of problems:
those with nearly linear functions, particularly slightly perturbed linear programs; and
those in which the functions can be closely approximated by piecewise linear functions
(e.g., the objective function is separable and convex). Unfortunately, on general
problems SLP methods are at best linearly convergent unless the number of active
constraints at the solution is equal to the number of variables. Furthermore, the speed
of convergence critically depends on the technique that defines each subproblem.

Recently, some of the techniques used in SQP methods ( 4.3.2) have been applied
to the SLP approachsuch as the use of a merit function to ensure progress after
each outer iteration. Such techniques cannot be expected to improve the asymptotic
rate of convergence of SLP methods, but they should improve robustness and overall
effectiveness.

Beale (1978) has given a method that is designed to make extensive use of an
existing LP system. The nonlinearly constrained problem is assumed to be of the form

minimize c(x)
X,y

(4.5) subject to A(x)y-- b(x),

l<=x<=u,

v<=y<-w.
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A special nonlinear algorithm is then used to adjust x; for each value of x, a new
estimate y is determined by solving an LP.

4.3.2. Sequential quadratic programming methods. The most popular methods
in recent years for dense nonlinearly constrained problems are based on solving a
sequence of quadratic programming subproblems (see Powell (1982) for a survey).
At iteration k, a typical QP subproblem has the form

minimize 1/2p rHkp + gp

subject to Akp =--Ck

l- xk <= p <- u Xk,

where Hk is an approximation to the Hessian of the Lagrangian function. The solution
of the QP subproblem is then used as the search direction p in (1.1). The step a is
chosen to achieve a suitable reduction in some merit function that measures progress
toward the solution. In the dense case, the most popular method is based on taking
H as a positive-definite quasi-Newton approximation to the Hessian (Powell (1977)).
However, the many options in defining the QP subproblem have yet to be fully
understood and resolved (see Murray and Wright (1982), for a discussion of some of
the critical issues).

Further complex issues are raised when applying an SQP method to sparse
problems (see, e.g., Gill et al. (1981)). The general development of methods has been
hampered because methods for sparse quadratic programming are only just being
developed, and are not yet generally available for use within a general nonlinear
algorithm. However, Escudero (1980) has reported some success with an SQP
implementation in which a sparse quasi-Newton approximation is used for H (see
also 3.7.2).
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