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Abstract

Many computer graphics applications require high-intensity numer-
ical simulation. We show that such computations can be performed
efficiently on the GPU, which we regard as a full function streaming
processor with high floating-point performance. We implemented
two basic, broadly useful, computational kernels: a sparse matrix
conjugate gradient solver and a regular-grid multigrid solver. Real-
time applications ranging from mesh smoothing and parameteriza-
tion to fluid solvers and solid mechanics can greatly benefit from
these, evidence our example applications of geometric flow and
fluid simulation running on NVIDIA’s GeForce FX.

CR Categories: 1.3.1 [Computer Graphics]: Hardware Architecture—Graphics pro-
cessors; G.1.3 [Numerical Analysis]: Numerical Linear Algebra—Sparse, structured,
and very large systems (direct and iterative methods); G.1.8 [Numerical Analysis]:
Partial Differential Equations—Multigrid and Multilevel Methods;
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1 Introduction

High performance graphics processing units (GPUs) such as the
Radeon 9700 and GeForce FX (among others) expose a flexible
programming interface for their powerful floating point hardware.
Due to their highly parallel nature, they are expected to outperform
CPUs by an increasing margin [Semiconductor Industry Associ-
ation 2002; Khailany et al. 2003], consequently they are serious
contenders as high performance computational engines for float-
ing point intensive applications. Aside from their currently util-
ity, GPUs represent the first commercially successful examples of
a class of future computing architectures key to high performance,
cost effective super-computing [Khailany et al. 2001; Owens et al.
2002]. Understanding the issues in mapping a variety of funda-
mental algorithms to this new computing paradigm thus promises
to have many longterm pay-offs.

So far the computational resources of GPUs have been applied
mostly to traditional graphics problems, enhancing, for example,
the shading models and effects applied at the pixel level [Olano
2002]. Current generation GPUs are capable of far more general
computation, evidence the GPU-based ray tracing engines demon-
strated by Purcell et al. [2002] and Carr et al. [2002].

Employing graphics hardware for purposes it was not designed
for has a long tradition [Lengyel et al. 1990; Hoff et al. 1999], in-
cluding early uses for numerical computing in the context of ra-
diosity [Cohen et al. 1988; Keller 1997]. Many of these algorithms
were based on rendering suitably chosen geometry with appropri-
ate “colors” (e.g., object ID tags), followed by readback from the

framebuffer. With the arrival of programmable vertex and fragment
units [Lindholm et al. 2001] the available repertoire increased sig-
nificantly. Since vertex programs so far do not provide access to
memory (“textures”) most recent efforts to map numerical algo-
rithms onto GPUs have focused on using integer based fragment
processing hardware. Examples include simulation of boiling [Har-
ris et al. 2002], fluids and steam [Li et al. 2003], non-linear diffu-
sion [Strzodka and Rumpf 2001], and general purpose dense ma-
trix multiplication [Larsen and McAllister 2001; Thompson et al.
2002]. Many of the severe technical limitations these authors had
to deal with, such as low precision [Strzodka 2002; Harris 2002]
and the need to express all operations as (fancy) texture composit-
ing operations, have fallen away: today’s fragment shaders support
full floating-point arithmetic and broad access to memory.

Contributions We map two fundamental computational kernels
onto the GPU: a conjugate gradient solver [Shewchuck 1994] for
sparse, unstructured matrices and a multigrid solver for regular
grids [Briggs et al. 2000]. Both are workhorses of physical mod-
eling and optimization applications. We analyze their performance
on NVIDIA’s GeForce FX in realistic applications.

Background The need for an unstructured sparse matrix solver
arises in many simulations involving discretization of linear and
non-linear partial differential equations (PDEs) over arbitrary
meshes (e.g., [Miiller et al. 2002; Desbrun et al. 2002; Kobbelt
et al. 1998]). In these settings a conjugate gradient solver (or
one of its variants [Barrett et al. 1994]) is often appropriate. Im-
plementing such solvers on the GPU requires the construction of
(1) data structures for sparse matrices, (2) data parallel algorithms
for sparse matrix vector multiplies, and (3) reduction operators for
inner product computations. With data laid out in texture memory,
and fragment program execution having, for a given group of frag-
ments, identical control flow, an efficient implementation further-
more requires the solution of a fexture packing optimization prob-
lem (Section 3.2). Whenever the underlying PDE is non-linear it is
desirable to compute the matrix entries on the GPU as well. Our
algorithm accommodates this, making it well suited for both linear
and non-linear PDEs on unstructured meshes.

Unstructured meshes require a non-trivial mapping of sparse
data structures onto single-instruction multiple-data (SIMD) hard-
ware [Blelloch 1990]. In contrast regular grids, used in graphics
applications such as [Kass and Miller 1990; Stam 1999], lead to
highly structured sparse matrices which map more directly onto the
GPU since they are akin to pixel (2D) or voxel (3D) structures.
For these settings we consider multigrid solvers [Hackbusch 1985],
which lead to optimal, O(n), runtime for many elliptic PDEs of
interest (e.g., Laplace, Bi-Laplace, Helmholtz, Poisson, etc.). In
graphics such solvers are used, for example, for the construction of
subdivision surfaces [Diewald et al. 2002]. The main challenge in
performing this computation entirely on the GPU is the construc-
tion of the coarser-level system matrices given only a knowledge
of the finest-level discretization and the prolongation (subdivision)
operators. We evaluate the performance of our multigrid implemen-
tation on a fluid-flow problem [Stam 1999], which requires (among
other steps) a Poisson solver with Neumann boundary conditions.

While this paper was under review we learned of concurrent
work to make a multigrid solver onto the GPU [Goodnight et al.
2003]. The mapping of other important computational kernels onto
the GPU is described in these proceedings [Kriiger and Westermann
2003; Hillesland et al. 2003].



2 Setup

We view the fragment shader of a modern GPU as a stream proces-
sor [Khailany et al. 2001]. The processor executes the same kernel
(fragment program) to produce each element (rasterized pixel) of an
output stream (group of rasterized primitives). The output stream
is saved (texture memory) and used as input (via texture fetches) for
downstream kernels. Our design maps the data structures and algo-
rithms of our solvers into streams (textures) and kernels (shaders)
respectively as proposed by [Purcell et al. 2002].

The design was strongly motivated by three salient features of
GeForce FX hardware: (1) inexpensive gather operations, (2) lack
of a scatter operation, and (3) SIMD semantics. Together, these
three features characterize the abstract streaming model:

e Gather Operation: The processor provides random access
memory fetch (“gather”) instructions into saved streams. The
latency of the random memory access is hidden so long as the
bandwidth is not limited.

e No Scatter Operation: Each run through the kernel produces
exactly one output element. There are no random access mem-
ory write operations.

e SIMD Semantics: The GPU has two SIMD characteristics:
(1) the same kernel is executed over all elements of a stream,
and (2) processor instructions operate on wide data types, i.e.,
4-tuples of floating point values.

Unconstrained gathers bring freedom in choosing data structures.
Lack of scatter forces the stream kernels to be organized into
groups. Each fragment processor can read other memory, but only
write its own output: this fits well with many linear algebra oper-
ations (such as the inner product of two vectors) but not all, e.g.,
applying the adjoint of an operator is most commonly formulated
as a scatter operation. SIMD item (1) leads to a packing problem
for unstructured matrices in order to minimize a batch quantiza-
tion penalty (Section 3.2.1). SIMD item (2) motivated us to layer
the four quadrants of a scalar problem into a single four channel
texture for the multigrid solver.

3 Solver for Unstructured Grids

Many algorithms for physical simulation or optimization on un-
structured meshes use (multi-)linear finite elements or mass-spring
systems. The degrees of freedom (DOFs), such as position, veloc-
ity, temperature, efc., are associated to vertices of a 2D (triangle,
quadrilateral) or 3D (tetrahedral, hexahedral) mesh. The sparse lin-
ear systems that arise relate a given DOF to the DOFs on incident
vertices. Our solver is designed for these sparse linear systems. For
concreteness we assume a triangle mesh with linear finite elements.
Let the integers ¢ = 1,...,n denote the vertices V of a 2-
manifold triangle mesh (with boundary), with edges E = {e;;}.
Denote the set of vertices in the 1-ring neighborhood of vertex 7 as
N(i) = {jlei; € E} and a (generic) DOF associated with vertex
i as x;. Example DOFs include 3D position z; := (z,y, 2); or
texture coordinates x; := (s,t);. Our goal is to solve the n X n
system, Ax = f,
Vi=1,...,n: aiia:i—i—zjeN(i)aija:j =fi €))]
where the f; encode the right hand side and possibly boundary con-
ditions, depending on the original problem setup. The coefficients
a;; typically depend on the state of the two triangles incident on
edge e;;. We exploit this later for the construction of matrix en-
tries on the GPU. If the linear system is symmetric positive definite
we may use conjugate gradients to solve it. More general systems
require variants of conjugate gradients [Barrett et al. 1994], which
typically need explicit access to AT, but no additional functions

otherwise. We assume that the rows of system (1) are sorted accord-
ing to the number of non-zero off-diagonal coefficients a;;. These
can range from 0 to n — 1, but are six on average for a single closed
triangle mesh. Let ix, 0 < k < n denote the number of equations
with k£ non-zero entries. These then occupy i; contiguous rows
starting with row index (Z;:ll i) + 1.

Example System: Geometric Flow Many computer graphics
settings give rise to linear systems with the structure of Eq. (1).
We use geometric (mean curvature) flow as an example non-linear
problem [Desbrun et al. 1999]. Vertex positions x; (¢) are functions
of time according to dyx;(t) = —X:(t)H;(t)7:(t). H;(¢)7:(t)
denotes the mean curvature normal at vertex ¢ and time ¢ while
Ai(t) is the speed function. For simplicity we assume that \; does
not depend on time. This equation is typically linearized through
a semi-implicit discretization using a backward difference in time
At = ¢+ () for the left hand side and the state of the mesh at
the beginning of a time step for the approximation of H;(¢)7;(t).
Note that this requires recomputation of AP gt every time step.

We have agf) = —)\At(cot(a(?)) + cot(ﬁff))), where aﬁ? and

ij
B-(’-“) are the angles opposite edge e;; at time £ The diagonal
(¥} g g J g

entry aif) is given as 4A§k> =2 jenN() agf) with Agk) the area of

the triangles at time ¢*) incident to vertex 4.

3.1 Conjugate Gradient Solver

Implementation of a conjugate gradient solver requires only a few
non-trivial functions [Shewchuck 1994, p. 50]: sparse matrix-
vector multiply and vector inner-product. The sparse matrix-vector
multiply requires a suitable sparse matrix data structure and an as-
sociated fragment program to execute the multiply. The inner prod-
uct computation requires a sum-reduction.

3.1.1 Sparse Matrix Vector Multiply

Principle To understand the particular layout for the unknown
variables consider the implementation of the sparse matrix vector
multiply. The basic computational kernel to be executed by a frag-
ment program is the inner product between a given row and the
vector of unknowns. Fragment programs must execute in SIMD
style lockstep (there is no branching or early termination, as yet).
Thus we “render” groups of rows with an equal number of non-
zero entries, i.e., each group is a rectangle associated to a fragment
program specialized for a particular number of non-zero entries.
The fragment program needs to access the non-zero entries in a
given row and the associated elements of the vector of unknowns.
Each of these—the matrix A and vector x—are stored in textures
requiring appropriate indirections. Since x is read and written it
must be laid out with particular care. The texture X'* holds x,
one element per pixel; here the superscript denotes the layout of
the texture, implying that textures with the same superscript (e.g.,
X, Y* R?) have a natural correspondence between their elements
at the same location. The layout of X' is discussed in Section 3.2.

Details The sparse matrix A is stored in two textures. The diago-
nal entries A7 are laid out the same as X7, i.e., a;; is at the same
coordinate as x;. The off-diagonal, non-zero entries of A are stored
consecutively in a texture A as segments, with one segment per
matrix row (a layout familiar from SIMD programming [Blelloch
1990]; see also Figure 1). Each segment’s starting (texture-)address
is stored in an indirection texture R”. Finally, we have a texture C*
keeping the correspondence between the addresses of a;; in A7,
matching x; in X'”. The layouts of A§ and C* are identical; A
has values a;j, and C* has the corresponding pointers into x; in
X'*. Letting ¢ now be the coordinates of a given element in X'“, the
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Figure 1: Off-diagonal elements of each row are compacted into
segments which are tightly packed into Aj. A pointer to the begin-
ning of each segment is stored in R”.

inner product kernel between a sparse matrix row and the vector of
unknowns becomes

j = =)
YU = AT AT S AL o]+ X[ + o],

here J* denotes a destination texture with the same layout as
X®. By rendering appropriate rectangles into J*—each bound
to a fragment program with the appropriate upper bound on the
above sum—we can perform the desired sparse matrix vector prod-
ucty = Ax (Figure 2).

Notes The indirection textures R”* and C* depend only on the mesh
connectivity and can be initialized at the time a mesh is first con-
structed. The separate storage for A7 and A7 is advantageous for
diagonal preconditioning—division of the residual vector by the di-
agonal entries—as well as the generally different methods by which
diagonal and off-diagonal entries are computed in the first place.
With the setup we have given for sparse matrix vector product,
transpose products require an explicit representation of A7 In the
case that A and A7 have differing numbers of non-zero entries
per row, the lesser should be padded with zeros so that they have
the same size. The number of texture indirections that can be per-
formed in a fragment program limits the number of non-zero entries
per row that can be processed without additional passes. For the
GeForce FX rows with up to 200 non-zero entries can be processed
in a single pass.

3.1.2 Computing Matrix Entries

Principle In the case that the entries of A depend on x we require
two additional kernels. One to update A7 and another for Aj. In
traditional FEM codes this is typically done by an iteration over all
elements computing local stiffness matrices, i.e., the linear opera-
tor relating all DOFs incident on the element. These local stiffness
matrices are then accumulated into a global stiffness matrix. Un-
fortunately this requires a scatter operation which is not available
on current generation GPUs. Instead we must compute the non-
zero entries directly. We have two types of non-zero entries, those
associated with vertices A7 and edges A. We begin with the latter.

Details The coefficient associated with a given edge is controlled
by the two incident triangles, which in turn are completely de-
scribed by their incident vertices—a total of four. Consider for
example the coefficients which arise in the geometric flow prob-
lem. Aside from C® this requires three additional textures: Z%, N/
(next), and P* (previous), layout out like C®. Together, these four
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Figure 2: When the fragment program executes on the pixel corre-
sponding to row i, the window position is used as a texture coor-
dinate to fetch x; in X* and a;; in A7. The window position also
identifies the segment pointer in R*, which points to the location of
non-zero elements a;j in Aj corresponding to row i. Finally, us-
ing the segment pointer from R* we can access entries in C* which
reveal the addresses of x; in X* corresponding to non-zero a;;.

textures identify the vertices incident on the two triangles associ-
ated with edge e;;. Computation of A can now be performed by
the fragment program

(a—b)-(c—b)

cot@b.e) = a5 x (v
n o= XU a; = A°(C)
z, = AP, = XN
Ajlj] = —XAt(cot(zj, xj,, z:) + cot(zi, ), , T;)).

The A7 are computed with the same overall structure as a sparse
matrix vector multiply and the following fragment program

ki—1
Afi] = Z 4A(xi, x4, ;) — AF[R*[i] + ¢].

c=0

Boundaries In geometric flow one can either fix vertices on the
mesh boundaries (as we do in the examples), or let them flow under
a length minimizing curvature flow. The latter requires its own tri-
diagonal linear system, which can be implemented on the GPU as
well. Fixed boundaries effectively remove some vertices from the
list of degrees of freedom, though they still enter into the matrix
coefficient computations. So while they are stored in X'”, they are
not assigned to a rectangle with a fragment program: there are no
corresponding rows in the matrix.

3.1.3 Reduction Operators

Reduction operators apply a binary associative' operator to all ele-
ments of a vector returning the result = v; owvz 0 --- o v,. The
operator is not required to be commutative, e.g., the vector could
contain matrices and o may be matrix multiplication. We require
only sum-reduction and will take advantage of the fact that addition
is commutative, i.e., we will not require any particular order. This
allows us to perform reduction for vectors, such as X', indexed
by two indices without regard to the order’. To compute the inner

IReal addition associates, floating point addition does not. We will ig-
nore this distinction.

2The traditional way of dealing with higher-D is to perform reductions
in each dimension in order [Blelloch 1990; The C* Team 1993].



product of two vectors p = x - y, we need a sum-reduction on the
pairwise products.

Let X be a vector holding elements to be sum-reduced. The
reduction is achieved by rendering a quadrilateral with half the di-
mension along either axis, summing four elements. Applying this
process repeatedly, akin to a mip map pyramid, we will finally ren-
der a single pixel quadrilateral containing the sum-reduction result.

Notes If the dimensions of X* are not powers of two the reduc-
tion must deal with odd length dimensions. One could always test
whether texels are out of bounds before including them in the re-
duction. Alternatively, separate fragment programs can be run on
the boundaries. Because of less than full utilization of functional
units for smaller textures this is unattractive. Texels that do not
correspond to actual data elements can be reduced so long as they
contain the identity of the reduction operator. Thus to initialize a
sum-reduction we place zeros in unused texels.

3.2 Packing

Recall that X'” textures will be read and written by fragment pro-
grams. For improved performance of writing operations we opti-
mize the layout of X'® variables. These come in groups of size i
according to the number k£ of non-zero off-diagonal entries in A.
We discuss a performance model and then the optimization.

3.2.1 GPU Streaming Model

So far we have adopted an abstract streaming model. Now we spe-
cialize; consider the characteristics of a GPU streaming model:

SIMD GPUs execute fragment programs in SIMD fashion. Let p
be the number of parallel pipelines; then every instruction operates
on a tuple of p neighboring pixels. For peak performance we must
make useful work of every pixel in the tuple.

Triangle Rasterization GPUs are optimized for rendering tri-
angles. We assume that axis aligned rectangles are rendered as a
pair of axis aligned right triangles. In rendering each right triangle
there is wasted work along the hypotenuse since parts of some tu-
ples will lie outside the triangle. Hence, in rendering a rectangle of
tuple dimension w X h, tuples along the diagonal tend to be raster-
ized twice (one copy is subsequently discarded, but compute power
is wasted). The total number of tuples sent to the fragment stage is
therefore w - h plus a number of wasted tuples bounded above by
max(w, h). For peak performance we must minimize the wasted
work along the diagonal.

Round-Robin Pipelining of Texture Memory Access A
fundamental issue in streaming architectures is hiding the memory-
access latency [Arvind and Iannucci 1987]. To that end, streaming
processors are typically multi-threaded (one early example was
the HEP computer [Leiserson et al. 1993]). In a multi-threaded
architecture, g independent stream records are processed in an
interleaved manner: the program with instructions I1, 2, I3, . ..
is executed over records R ... R, using the sequential ordering
Il(Rl)a Il(R2)7 ey Il(RQ)a IQ(R1)7 s 712(R¢Z)7 13(R1) s
Note that ¢ — 1 cycles elapse between potentially data-dependent
instructions. The designer must choose ¢ large enough to hide
memory latency and trade this off against the required additional
chip area. A key consequence is that the fragment units process
tuples in batches of size gq. Since a partially filled pipeline incurs
the same cost as a full pipeline we can observe a batch quantization
effect (Figure 3). For peak performance we must ensure that all ¢
tuples provide useful work.

Time
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Figure 3: Normalized plot showing time vs. rectangle area as
observed on the GeForce FX, driver version 42.51. The value
q - p = 512 is clearly noticeable, although the area is actually just
below 500, consistent with the assumption that fragments on the
diagonal are rasterized (not rendered) twice on the GeForce FX.
To isolate the effect of batch quantization, we used a long fragment
program (eliminating setup, rasterization and vertex-program over-
head) with no fetch operations (eliminating bandwidth overhead).

3.2.2 Optimization

Taking into consideration our above model we pack an output
stream into a sequence of identical rectangles, each with dimen-
sions w by h. Optimizing for performance, we choose the dimen-
sions w and h, partition the data stream over the rectangles, and
assign a (possibly different) fragment program to every rectangle.

Dimensions The dimensions are hardware and driver dependent:
we find good choices for rectangle area, w - h, by simple experi-
ments which reveal estimates of p - ¢ (Figure 3). A rectangle of
dimensions w and h produces w - h tuples plus some number of
additional wasted tuples bounded above by max(w, h). With the
fragment stage processing batches of ¢ tuples, an optimal rectangle
maximizes the amount of useful work w - h subject to the con-
straint # tuples < z - ¢ for some integer z. This defines a family
of optimal rectangles corresponding to the number z = 1,2,....
We choose a single solution from this family as it leads to a trivial
rectangle layout algorithm. In particular, we choose z = 1 since
this provides the finest granularity in packing the stream. We ne-
glect per-primitive startup costs, assuming this is small for primi-
tives containing a minimal number of tuples (< w - h).

We assume that batch quantization is only noticeable when
changing programs, e.g., when a pipeline flush is required. In real-
ity, pipeline flushes may or may not be performed when switching
between programs, depending on the hardware and driver versions.
Our model is conservative: it assumes that a change in program is
always followed by a pipeline flush. In practice, the rectangle size
chosen based on this conservative model has worked well.

The inefficiency for z = 1 as compared to z > 1, e.g., extra
diagonal waste and start-up cost, is negligible (< 10%) and well
worth the triviality of the resulting layout problem. On the GeForce
FX we found that a rectangle of dimensions 26 x 18 pixels gives
the lowest proportion of wasted pixels.

Rectangle Layout The uniformity of dimensions makes the
packing problem trivial to precompute. The only parameter to the
layout problem is the number of rectangles to lay out. We can com-
pute off-line the optimal layout, i.e., determine the best texture di-
mensions s and ¢ as a function of the number of rectangles to lay
out. At runtime a simple lookup gives a good layout.

Multiple Programs For the sparse matrix problem we have mul-
tiple streams Sy, each with iy, records to be processed by a program
Py. Note that program P, can process sparse matrix rows with &k or
fewer non-zero off-diagonals if we allow zero padding. This prop-
erty is useful in meshes with few vertices of a particular valence.
The underlying assumption is that a partially filled batch of g tuples
costs the same as a fully filled batch due to pipeline flushes.

We adopt the following greedy solution. Lay out the streams in
decreasing order of program cost k = n—1,...,0 and assign them



Figure 4:  On the upper left a cube with normal noise and to its
right a smoothed version. On the lower left a scanned mesh con-
taminated with acquisition noise. It is denoised through geometric
flow. Note that this mesh has complicated boundaries. For movies
see http://multires.caltech.edu/pubs/GPUSim.mpg

to rectangles R, Ro, . . ., filling each rectangle to capacity. Use the
least expensive program P, valid for all elements of R;.

Notes The layout is resolved when the mesh is first created. How-
ever, the entries in A;‘-, i.e., the length of each row segment, must be
appropriately padded. The corresponding entries in C* should point
to a constant address in X'* which contains the value zero (constant
to avoid unnecessary burden on the texture cache).

3.3 Performance

We have implemented all of the components of a general conjugate
gradient solver, as well as the specific matrices for geometric flow,
including their recomputation for each smoothing step. The most
performance critical functions are the matrix-vector multiply and
the sum-reduction. We performed timing tests on a GeForce FX
board using a mesh with 37k vertices (the scanner data in Figure 4).

The matrix-vector multiply takes 33 instructions on an average
row of the matrix (seven non-zero elements), 21 of which are tex-
ture fetches. At 500 MHz and 37k vertices, one could theoretically
perform over 500 matrix multiplies per second. In practice, we ob-
serve about 120 matrix multiplies per second. Further tests show
that the discrepancy is due to the random access pattern causing
cache thrashing.

A reduction, including out of bounds checking, requires ten in-
structions (four fetches, three adds, three compares) per destina-
tion fragment per pass. For a 200 x 200 layout to be reduced to
100 % 100, the cost of one pass of the reduction is 100k instructions.
Doing this at all levels of the hierarchy increases this by a factor of
4/3. Theoretically, the sum reduction can be performed over 15000
times per second. In practice our code executes at roughly 3400 re-
ductions per second.

The CG inner loop does a single matrix multiply and two reduc-
tions, as well as some significantly less costly operations that can be
considered free. This entire loop can be performed about 110 times
per second. The CG solver typically only needs a few iterations—

e.g., five—for each smoothing step, so an entire smoothing step can
be performed in less than 1/20" of a second.

Notes Current drivers have a performance penalty—revalidation of
the OpenGL pipeline state during pbuffer switches—which is un-
necessary for our computations. At present only about 200 pbuffer
switches per second are possible, severely limiting performance.
This limitation will be removed in the near future. Hence all tim-
ings are given with the pbufter overhead removed. The movies were
produced from screen dumps running on actual hardware, in effect
simulating a setting with the pbuffer switch penalty removed.

4 Solver for Regular Grids

We now turn to a solver for discretizations of elliptic PDEs over
regular grids. In that case the sparse matrices have a very regular
structure enabling efficient implementation of multigrid solvers.

For the generic setup we consider the Helmholtz equation with
Dirichlet a;ld/or Neumann boundary conditions on the unit square,
Q=10,1]

—Vu(x) +ou(x) = g(x) x€QCR’
u(x) = up(x) x€IN or
i-Vu(x) = un(x) x€0Q,

where 77 denotes the outward pointing normal on the boundary
of the domain whenever this quantity is well defined. This PDE
may be solved via discretization which leads to a matrix problem.
‘Whether one uses finite elements, volumes, or difference, the struc-
ture of the resulting matrices is essentially identical. For concrete-
ness we use a finite difference discretization as in [Stam 1999]

Linear System After discretization we have to solve a linear sys-
tem Apup, = by in (N 4 1) x (N + 1) variables, not all of which
are free. The linear operator A, acting on the 2D grid uy may be
described by a set of stencils, with possibly varying entries, each
of size no larger than 3 x 3 (2 x 3 at the boundary, 2 X 2 at the
corner). Care is required in the Neumann case as it has a non-trivial
null space [Briggs et al. 2000, pp. 113-119].

4.1 Incompressible Navier-Stokes

Fluid simulations are a typical representative of settings which give
rise to such systems. As a challenge problem we implemented
Stam’s solver for the incompressible viscous Navier-Stokes equa-
tions [1999]. The fluid is governed by a velocity field u which
satisfies

Vau=0 paa—ltl = —(u-V)u+vViu+pb

where b denotes external body force, v the viscous drag, and the p
is the fluid density (we will assume it to be unity). Using a semi-
implicit time discretization as well as a projection step to ensure a
divergence free vector field, the update from time ) o ¢ =
t*) 4+ At proceeds as

= pu(lc> + At(pb(k) — (u(k) . V)u(k))(Z)
(o/ AV’ ®

(pI — vAtV?)u*
Vp
2+

where p is a pressure field which may be discarded at the end of
the time step. The first equation solves for a new velocity field
using a Helmholtz solver with zero Dirichlet boundary conditions,
while the second equation uses a Poisson solver with zero Neumann
boundary conditions. Implementing this time stepping requires two
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non-trivial functions. One for the advection step and the other for
an elliptic PDE solver.

Notes To keep the multigrid solver simple we do not work with
staggered grids [Fedkiw et al. 2001], but instead colocate pressure
and velocity fields as was done by Stam [1999]. The domain is
discretized into (N + 1) x (N + 1) uniformly spaced samples
distance h = 1/N apart with pressure and velocity variables

Pij Wi = (Uz,uy)iy 4,5=0,...,N

In case periodic boundary conditions are used the associated indices
are to be understood modulo NV, i.e., 0 = N.

4.1.1 Advection Step

Following Stam [1999] we trace integral curves back in time to
compute the advected velocity field u® = (u - V)u

u?fijv = C(u, —Atu); ;.

where we used a simple first order integrator (higher order integra-
tors can be defined as well). The operator C returns a field which
is interpolated (typically bilinear) from its first argument field using
offset vectors given by the second argument field. Offsets that leave
the domain are properly clamped to the domain boundary. Note that
boundary conditions are automatically preserved by the interpola-
tion operation.

4.2 Multigrid

In this section we assume that N = 2’ for some j > 5. Systems
with fewer variables can be solved sufficiently fast with a diago-
nally preconditioned conjugate gradient algorithm. To simplify the
exposition we will only describe a simple V-cycle with either Neu-
mann or Dirichlet boundary conditions. Mixed boundaries are pos-
sible as well, but not required by our examples. The basic ingredi-
ents required for multigrid are a simple relaxation scheme—we will
use weighted Jacobi—and interpolation and projection operators.
The latter are used to build the system matrices at coarser levels as
well as to propagate residual and correction vectors between levels
of resolution. For an excellent introduction to the multigrid method
we recommend the text by Briggs and co-workers [2000].

To build the coarser matrices we need an interpolation operator S
from coarse to fine and a projection operator P from fine to coarse.
For S we chose bilinear subdivision and for P full weighting, i.e.,
P = 1/487, resulting in a coarser level system matrix

A2h = PAhS7

and so on recursively to some coarsest level. With these in place
the V-cycle multigrid algorithm can be stated as

Up — V_CyCle(nlv 712, Vh, bh)

If ( CoarsestQ (h ) )
Return uy, < Solve(Ap, vy, bp)

Else
v, < Relax(m1, vy, br) /I pre-smooth
bap — P(by, — Apvy) /I project residual
van, < V-Cycle(n1, n2, 02, bay) // recurse
Vi < Vi + Svap // interpolate & correct
Return uy, < Relax(nz, v, by) // post-smooth

Iteration towards solution at the finest level is performed by starting
with an initial guess vj, and the right hand side b, and improving
it through repeated application of the V-cycle algorithm. The pa-
rameters 11 and 72 control the number of pre- and post-smoothing
steps. Other variants such as p-cycle and full multigrid are straight-
forward variations on the above code [Briggs et al. 2000]. For the
smoother we chose the damped Jacobi iteration with w = 2/3

uy, — Relax(n, vy, by)
For(i=0;i<mi=1+1)
r«— by, —Apvp
Vi — Vi +w(Ah);1r
Return uy, <+ vp,

For simplicity we will use Jacobi iteration for the coarsest level
solve as well.

From the above pseudo code we see that we need the following
non-trivial functions: (1) application of the interpolation operator S
to a vector; (2) application of the projection operator P to a vector;
(3) application of A, to a vector; and (4) computation of Aoy,

Texture Layout Assuming a 2D domain, we lay out all data in 2D
textures. Access into textures is described through multi-index no-
tation ¢ = (%o, 91), with arithmetic understood in the vector sense.
To iterate over neighbors, respectively entries in a stencil, we use
index sets such as {0,1}* = {(0,0),(0,1),(1,0),(1,1)} using
the standard definition of set product.

Recall that A}, can be seen as a map from grid points to 3 x 3
stencils. We store the matrix as nine 2D textures A¥[i], d €
{-1,0, 1}2 each a map from grid points ¢ to the stencil entry in-
dexed by d. Matrices Aap, Ay, etc. are similarly stored.

To utilize all four channels in the floating point units, the compu-
tational domain is cut into four quadrants which are layered into the
(z,y, z, w) channels of a single texture with half the size in each
dimension. This layering must group odd and even indexed nodes
so that interpolation and projection operators can be applied cor-
rectly. Since many computations require neighbor access, this lay-
ered format needs a single pixel border all around which contains
duplicates of appropriate nodes respectively zeros for border edges.
These duplicates must be kept in sync during computation, issues
well known from domain decomposition [Demmel 1997]. This
synchronization is performed on the GPU with a set of programs
that copy the appropriate data into the texture border. Layering and
un-layering is performed as needed with short fragment programs
which do not pose a performance problem due to their brevity. For
an alternative approach to using four channels for scalar problems
see [Hall et al. 2003].

Interpolation Given a vector vay, stored in a 2D texture, interpo-
lation to the finer level becomes

valil =1/4 > vau[[(i + d)/2]].

de{0,1}2

For Neumann conditions the boundaries get interpolated as any
other point in the domain. For Dirichlet boundary conditions the
boundary should not be interpolated, but we do so anyway. Since
the Dirichlet boundary conditions always vanish, no harm is done
and the implementation is simplified.

Projection Since we are using full weighting, projection is per-
formed via the adjoint of subdivision save for a division by four

vorlil =1/4 Y 8%vu[2i+d]

de{-1,0,1}2

where d indexes the stencil, S = 1/4{1,2,1,2,4,2,1,2,1} (us-
ing lexicographic order on d). This code applies at all points in
the interior of the domain. On the boundary (i = 0, N/2 and/or
i1 = 0, N/2) the above code is correct for Neumann boundary con-
ditions with out of bounds accesses clamped to zero. For Dirichlet
boundary conditions all boundary values of vs;, must be set to zero
explicitly. This is easily achieved by initializing to zero and “ren-
dering” a rectangle covering only indices 1... N/2 — 1.



Figure 5: An example of a few time steps during a simulation run
with particle advection used for visualization of the velocity field
(For movies see http://multires.caltech.edu/pubs/GPUSim.mpg).
The inlet on the left has a high inward velocity (two grid spaces
per timestep). This particular simulation was run with a domain
size of 513 x 129. When fluid is pushed into the larger area, which
is initially at rest, vortices are shed, a phenomenon clearly visible
in the pattern of the particles.

Matrix Vector Multiply Here stencil accesses to the matrix A,
must be mapped appropriately to index offsets in the vector uy,

vilil = Y

de{-1,0,1}2

Ajl[iJugfi + d].

For Dirichlet boundaries this code is executed only in the interior.
For Neumann boundaries it is also executed on the boundary with
out of bounds accesses clamped to zero.

Composition of Stencils The most involved operation is the
computation of coarser level stencils as the composition of opera-
tors S, A, and P each of which is given as a stencil. Formally we
can express this as the triple operator composition Ay, = PA,S,
which may be expanded in index notation as

Aslil=1/4 Y

e,ge{—1,0,1}2

SeSeTIT2IAY(2] + €]

Stencils on the boundary only need to be computed for Neumann
boundaries, in which case out of bounds accesses are clamped to
Zero.

Performing the stencil composition correctly was one of the most
subtle implementation issues in our algorithm. In the above expres-
sion we assume that out of bounds accesses on S are clamped to
zero, easily achieved by creating a very small, suitably padded tex-
ture map for S. The sum could also be teased apart with careful
analysis of which terms actually contribute to the sum. This not
being a time critical part of the algorithm we refrained from that
optimization.

4.3 Performance

We have implemented the fluid solver of Stam [1999] as a realis-
tic application context for a multigrid solver. Following [Fedkiw

et al. 2001] we did not perform diffusion (v = 0) on the velocity
variables, as visually the numerical diffusion is sufficient. Conse-
quently we used the multigrid solver only for the Neumman prob-
lem involved in the pressure computation (Equation 3).

The most expensive operation in the multigrid V-cycle is the
matrix-vector multiply, i.e., application of the stencil. The program
has 27 instructions, 18 of which are texture fetches. On a 257 x 257
grid (stored as a 129 x 129 4-deep texture), this operation can be
performed over 1370 times per second at 500 MHz (the theoretical
peak is 4500 per second). The operation is proportionally cheaper
on smaller grids, except that on very coarse grids there is a penalty
due to the batch quantization. On a 17 x 17 fragment grid this
penalty is almost 50%, at 33 x 33 it is 29%, and decreases as the
grid gets larger.

The interpolation and projection steps are applied once per level
in the V-cycle algorithm. The interpolation kernel is ten instructions
long while projection takes 19. These kernels can execute 4800 re-
spectively 6000 times per second to move between 257 X 257 and
129 x 129. We have found that a good choice of parameters is to
have several Jacobi iterations per level, which decreases the perfor-
mance impact of interpolation and projection. In general, they do
not limit performance.

The advection step is not performed directly on the layered ve-
locity field because it is impossible to fetch each of four channels
from different advected locations (texels) in a single instruction.
Similarly the bilinear interpolation needed for the advection step
must be coded explicitly since floating point buffers do not provide
this functionality. Consequently the advection step first un-layers
the velocity field, performs the computations for advection, and
then layers the velocity variables again. Since this must only be
performed once per timestep the cost relative to the solver step is
negligible.

The number of pre- and post-smoothing iterations can be
tweaked as necessary depending on the particular problem being
solved. The system in Figure 5, with at times large divergence only
required four pre-smoothings, two post-smoothing steps, and two
V-cycles.

Neglecting pbuffer overhead, a single timestep with two multi-
grid V-cycles, using four pre-smoothing and two post—smoothin%
steps could be applied to a 513 x 513 grid in approximately 1/20"
of a second. For our simulations we used a grid of 513 x 129.

5 Conclusion

We have demonstrated a mapping of two widely applicable solvers
to the GPU, and have provided solutions to many of the peculiari-
ties that arise on this hardware. These design choices can be applied
to other algorithms as well. Neglecting the unnecessary overhead
of pbuffer switching, our implementation performs well. Both ap-
plications would run in realtime for the given problem instances.
We implemented CPU versions of the matrix multiply kernels us-
ing SSE, and tested them on a 3GHz Pentium 4. The GPU imple-
mentation achieves 120 unstructured matrix multiplies per second
whereas the CPU implementation can only do 75 per second on
the stated problem instance. For the structured matrix multiply, the
GPU can do 1370 matrix multiplies per second whereas the CPU
can do 750 per second. Our tests have shown that both the CPU and
GPU implementations are bandwidth limited.

The multigrid solver has enormous performance potential, and
would be even more useful if it were applied to irregular grids. The
issues involved in this deserve further study. A more straightfor-
ward extension would be application of the proposed sparse matrix
conjugate gradient algorithm to simulations involving tetrahedral
meshes.

The Cg language could provide an alternative implementation
path, but it is not as well suited to scientific computing applications.


http://multires.caltech.edu/pubs/GPUSim.mpg

For example, the concept of a pointer is meaningful for numerical
applications, but not necessarily for graphics. The ability to “allo-
cate” parts of a texture—similar to “processor allocation” [Blelloch
1990] in SIMD programming—would alleviate some of the tedium
of packing. A specialized compiler that hides such distinctions
would make this hardware more accessible to those less familiar
with computer graphics.

Performance could be boosted further if texture fetch instruc-
tions allowed additional offsets to be added to input coordinates.
This could decrease the instruction count of the CG matrix multi-
ply by as much as 20%. Finally, reduction operators would benefit
greatly from a few globally writable registers. For example, a single
accumulation register would allow a sum-reduction to be performed
in a single pass. Limiting such registers to commutative operators
would avoid troublesome order dependencies. Reductions would
also be simplified by allowing borders on floating point textures.
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