
PREPRINT / To appear in the Proceedings of FCCM’07

A Library and Platform for
FPGA Bitstream Manipulation

Adam Megacz1

Computer Science Division

UC Berkeley

megacz@cs.berkeley.edu

Abstract— Since 1998, no commercially available FPGA
has been accompanied by public documentation of its native
machine code (or bitstream) format. Consequently, research in
reconfigurable hardware has been confined to areas which are
specifically supported by manufacturer-supplied tools.

Recently, detailed documentation of the bitstream format
for the Atmel FPSLIC series of FPGAs appeared on the
usenet group comp.arch.fpga[11]. This information has been
used to create abits, a Java library for direct manipulation
of FPSLIC bitstreams and partial reconfiguration. The abits

library is accompanied by the slipway reference design, a
low-cost USB bus-powered board carrying an FPSLIC.

This paper describes the abits library and slipway plat-
form, as well as a few applications which they make possible.
Both the abits source code and slipway board layout are
publicly available under the terms of the BSD license. It
is our hope that these tools will enable further research
in reconfigurable hardware which would not otherwise be
possible.

I. INTRODUCTION

IN the world of software running on microprocessors,
device vendors generally publish their product’s bit-

stream format in an architecture manual for use by third-
party compiler writers. The roles of chip designer and
compiler writer are effectively decoupled.

In the world of FPGAs, the situation is quite dif-
ferent. Since the discontinuation of the XC6200 series
in 1998[17], the trend has been overwhelmingly in the
direction of bitstream secrecy. Currently no major vendor
discloses the bitstream format of their device. This has
had the effect of stunting research in several areas, in-
cluding partial reconfiguration, evolvable hardware, and
fault recovery. Additionally, alternative design method-
ologies such as self-timed circuitry or pausible clocks[18]
become difficult to implement properly if the manufac-
turer’s tools do not support them.

In August of 2005, a document describing the for-
mat of most of the Atmel FPSLIC bitstream format
was posted to the comp.arch.fpga newsgroup[11]. This
information has been used to create the abits library
and its companion platform slipway, a simple two-layer

1 This work was supported by a Graduate Fellowship from the
National Science Foundation

FPSLIC PCB which can be inexpensively manufactured
and assembled without special equipment.

The rest of this paper briefly reviews the FPSLIC
fabric (section II), introduces the abits library (sec-
tion III) and the slipway platform (section IV), and
finally demonstrates three example applications (section
V) which require bitstream access: live debugging, self-
timed circuits, and frequency division of layout-sensitive
signals.

II. THE FPSLIC RECONFIGURABLE FABRIC

The FPSLIC reconfigurable fabric consists of an array
of up to 48x48 configurable logic blocks (CLBs). The
diagram for a single block is shown in Figure 2.

Each CLB has four inputs (W, Xi, Yi, and Z), shown as
the four muxes near the top of the diagram. Five “sector
routing” wires (L0 . . . L4) enter each logic block, and each
of the four muxes can take its input from any of these
five wires. Additionally, the Xi input may come directly
from any of the four nearest diagonal neighbors, and
the Yi input may come directly form any of the four
orthogonal neighbors; these inputs are shown as vertical
dashed lines at the top of the figure.

Fig. 1. The slipway printed circuit board

Two look-up tables (LUTs), shown as squares in the
diagram, are present in each configurable logic block.
Each LUT is capable of computing any function of three
one-bit inputs. The outputs of these two LUTs form
two of the three intermediate values of the cell. The third
intermediate value is the output of a mux fed by the
two LUTs (C); it is effectively an arbitrary function of
four one-bit inputs (the three one-bit LUT inputs and
the Z-input).

The cell generates three output values by selecting
various subsets of the intermediate values, and possibly
feeding them through a synchronous register. These
three outputs go to the cell’s nearest orthogonal neigh-
bors (Yo), nearest diagonal neighbors (Xo), and sector
routing wires (L) at top right. The F mux output can also
optionally serve as a combinational feedback by routing its
output through the T mux.

The FPSLIC device consists of a homogeneous array of
these cells, partitioned into 4x4 groups called “sectors”.
Wires within a given sector may be connected by means
of horizontal and vertical wires spanning the sector.
Sector wires of adjacent sectors may drive each other
by means of configurable unidirectional buffers. Further
details can be found in [12].

A large SRAM distributed throughout the device holds

Yi

L
0
..
L
4

Z W

T

C

FB

Xo

R

Yo

YLXL

Xi

L

Oe

01

1 0

Fig. 2. Diagram of the FPSLIC Configurable Logic Block

the configuration bits, which control the LUT equations,
routing connections, and the selector inputs to the la-
beled muxes in Figure 2.

Every configurable resource on an FPSLIC is assigned
an X,Y coordinate in the cartesian plane. The position of
a CLB in the fabric determines its own X,Y coordinate,
and most other resources assume the coordinate of the
nearest CLB. Each coordinate is specified with an 8-
bit value, and an additional 8-bit value (called the “Z
coordinate” by extrapolation) differentiates between the
many resources at a particular X,Y location.

Configuration data for the FPSLIC is partitioned into
bytes; each configuration byte has its own X,Y,Z address.
Together, the three-byte address and one byte of config-
uration data form a configuration word, which is typically
specified in Z,Y,X,D format.

While the device is powered up, the FPSLIC’s on-
board AVR processor can program the fabric by issuing
complete configuration words via a set of four special
registers. This partial reconfiguration can be performed
at an extremely fine granularity; in particular, a LUT
truth table can be atomically reconfigured without af-
fecting any of the other resources.

III. THE abits LIBRARY

The abits library is designed to configure any device
which knows its own dimensions and accepts configu-
ration words as described in the previous section. This
lets the library operate identically on bitstream files, in-
memory images, and live fabrics whose AVR microcon-
troller has some way of receiving configuration words.

Any device exporting the following interface can be
programmed:

public interface FpslicInterface {

/** device width, in cells */
public int getWidth();

/** device height, in cells */
public int getHeight();

/** writes data byte "d" at coordinates x,y,z */
public int mode4(int z, int y, int x, int d);

}

The underlying target modified by these configuration
words might be a file on a disk, a byte[], or a slipway

board connected to the host via a USB cable.

On top of the extremely low-level FpslicInterface

API, the abits library layers a medium-level API
Fpslic:

public abstract class Fpslic
public final class Sector { /* ... */ }
public final class SectorWire { /* ... */ }
public final class Cell { /* ... */ }
public final class IOB { /* ... */ }

public Cell getCell(int row, int col) {
/* ... */

public class Cell {
public byte xlut() { /* ... */ }
public void xlut(byte table) { /* ... */ }

/* ... */

This API lets the user acquire objects representing
various resources on the device, such as Cells (CLB’s),
Sectors, IOBs (I/O Blocks), etc. Methods invoked on
these objects are translated into configuration words and
dispatched via the lower-level mode4() API.

Based on past experience with bitstream tools which
attempt to construct an in-memory graph of the entire
device [19], this API has been deliberately designed to
support manipulating bitstreams of arbitrary size using
a fixed amount of memory. In order to achieve this
goal, resource objects are ephemeral; they are created on-
demand and garbage collected when not in use.

IV. THE slipway PLATFORM

The slipway platform is a low-cost vehicle for ex-
perimenting with bitstream-level configurability. It can
be manufactured cheaply in very small quantities and
assembled without special equipment.

The platform consists of an Atmel FPSLIC, status
LEDs, power circuitry, and an FTDI 232R USB interface.
The USB interface also provides power and a 24Mhz
clock to the FPSLIC. A block diagram of the board is
shown in Figure 4.

Host

Computer

Config Clock

Config Data

USB-UART

Interface

24Mhz

CPU Clock

Power

Global

Reset

CPU

Reset

CPU

Program

Memory

AVR

CPU

Configuration

Writes

Interrupts

I/O Port Data

FPGA

Fabric

USB

Fig. 4. slipway Block Diagram

A host computer attached to the USB interface can
remotely reset the CPU or entire device, and can also
manipulate the data (D0) and configuration-clock (CCLK)
pins used to load the initial configuration onto the
device. Additionally, the AVR’s on-chip UART is con-
nected to the USB interface, and is capable of reliably
transferring data at 1.5Mbits/sec.

The platform’s host software is written in Java and
uses the portable libusb[15] and libftdi[16] libraries to
communicate with the device. On initialization, the host
software sends a global reset signal to the FPGA and
then manually clocks a small software program onto the
microcontroller. This software program then listens on
the UART for commands from the FTDI device.

After the board has booted, the host software can issue
commands to write configuration bits, start/stop timers,
count interrupts, and read internal data values from the
FPGA fabric. All communication is performed via the
USB-to-UART-to-microcontroller data path.

V. APPLICATIONS

The remainder of the paper describes three applica-
tions developed on the slipway platform which would
not be possible without support for bitstream level access
to device configuration. These are: “live” debugging,
self-timed circuits, and frequency division of layout-
sensitive signals.

A. Live Debugging

Partial reconfiguration and bitstream access can be
combined to provide excellent “live” debugging capa-
bilities. This capability is facilitated by the convention
of keeping routing plane L3 unused by the main design,
leaving it available for run-time debugging.

A small routine in the abits library (routeProbe())
uses this plane to route the output of any chosen cell
along the vertical and horizontal paths of the L3 plane
to a designated debugging pin on the East edge of the
fabric. At this point the output can be either sampled
programatically as a IO pin or monitored as an edge-
triggered interrupt.

The slipway fabric debugger, shown in Figure 3, is a
graphical interface capable of visually rendering a design
binary (center diagram), displaying the programmed
state of any particular cell (table at right), modifying
the configuration interactively (keymap, lower left), and
sampling the state of each cell (color of diamonds rep-
resenting LUTs).

B. Self-Timed Circuits

Support for self-timed circuits in manufacturer-
supplied FPGA tools is notoriously poor. Many of the
tools have difficulty dealing with combinational feed-
back and few allow a satisfactory level of routing control.
With the ability to directly manipulate the configuration
state of the Atmel FPSLIC, a number of interesting
experiments in self-timed reconfigurable hardware are
now possible. In this section, we describe some initial
work in creating micropipelines[8] on the FPSLIC device.

Elementary Self-Timed Gates
One of the most fundamental gates used in self-

timed logic is the Muller C-Element, a multiple-input gate
whose output assumes the value of its inputs when they

Fig. 3. The slipway Fabric Debugger

all agree, but retains its former value when the inputs
disagree.

One way to construct an 2-input C-Element is by
looping back the output of an 3-input majority gate to
provide an additional input (Figure 5).

M =

a

0 1

b
0 0 c

1 c 1ab

c

=

a b

c

C

Fig. 5. A majority gate with feedback, Muller C-element, and truth
table

In this sort of design, it is important for the loopback
connection to have very low latency. The “internal feed-
back” wire of the FPSLIC (the path through the C, F,
and T components in Figure 2) provides just such a low-
latency feedback, but unfortunately the vendor’s tools
are completely incapable of emitting a configuration
which takes advantage of the low-latency feedback for
this purpose.

Fortunately, abits gives us full control of the CLB
resources, so we can directly configure one of the LUTs
to compute a majority function, and configure the muxes
to route its output through the low-latency path back to
the T-mux input.

Micropipelines
A micropipeline is a structure commonly used to

create clockless FIFOs with flow control. By inverting
one input to a muller C element, each cell will copy
its predecessor’s output whenever that output differs
from its successor’s output. The result is a fifo with
backpressure where tokens are represented by adjacent
stages which have differing outputs.

Because a LUT can act as any function of three inputs,
it is trivial to invert one of the inputs. The result is a

Micropipeline stage [8] – a C Element with one input
inverted. The cell configuration for this gate is shown in
Figure 6.

Yi

T

C

F

Xo Yo

M

Xi

0

to successor

from successor

to predecessor

from predecessor

Fig. 6. A CLB Configured as a Micropipeline Stage

The configuration described in the previous section
is the most straightforward implementation of a mi-
cropipeline stage. However, in order to receive inputs
from neighboring stages with the minimum possible
delay, those inputs must arrive via the nearest-neighbor
inputs rather than the sector wire inputs. Because only

two such inputs are available, and because one must be
from an orthogonal neighbor and one from a diagonal
neighbor, a regular layout can be difficult to achieve.

Initial experiments used the most straightforward pos-
sible positioning of the micropipeline stages: each FIFO
stage is an orthogonal neighbor of its predecessor and
successor stages. An additional row of cells is then used
to convert the orthogonal output of each stage into the
diagonal input of one of its neighboring stages; we will
refer to such cells as “bridge” cells. A four-stage instance
of this layout is shown in Figure 7.

CCCC

Fig. 7. “Bridged” Layout

An Improved Layout
Improving the layout requires eliminating the extra

bridge cells. However, eliminating the bridge cells in-
troduces a fresh constraint: each micropipeline stage
must be the diagonal neighbor of one adjacent stage and the
orthogonal neighbor of the other. The solution to this con-
straint is to have alternating stages employ alternating
assignments of inputs. “Even” stages are orthogonal to
their predecessor and diagonal to their successor; “odd”
stages are vice versa. This layout is shown in Figure 8.

C

C

C

C

Fig. 8. “Bridgeless” Layout

A pair of FIFOs positioned according to this layout
constraint “fold up” nicely into a braided formation, as
shown in Figure 9.

The braid can then be “capped” on both ends and
“bent” into a pattern that snakes back and forth across

C

C

C

C C

C

C

C

Fig. 9. “Braided Bridgeless” Layout

the entire fabric (Figure 10). This layout scheme has been
programmed as an algorithm to automatically lay out a
FIFO along an arbitrary path through the fabric.

Ring FIFOs

With a complete implementation of linear mi-
cropipeline FIFOs, it is now possible to explore more
interesting results by joining the input and output of
the FIFO to form a ring. When tokens are placed in this
ring, they will spin around at a rate limited only by the
switching speeds of the underlying circuitry.

Such self-timed ring FIFOs serve as a canonical
model[1] for the throughput and latency behavior of
many asynchronous systems. At a fine grain, iterative
computations such as division[2] are often implemented
as self-timed rings, and at a coarse grain entire proces-
sors can be designed as a single self-timed ring[10].

The principal tool for studying these rings is a graph
of the token rate observed at a particular cell (rate) versus

Eleven
Frequency
Dividers

Top
End-Cap

Top
U-Turn

Bottom
U-Turn

Fig. 10. A 400-Stage Micropipeline Ring with Eleven Frequency
Dividers

the ratio of tokens to stages in the ring (occupancy). We
will refer to this graph as a “rate/occupancy graph.” The
following section develops the tools necessary to collect
the data for this graph.

C. Frequency Division of Layout-Sensitive Signals

Measuring the bit rate turns out to be a rather chal-
lenging task. At peak bitrate the individual stages are
switching so fast that the signal cannot be brought
directly out to the I/O pads of the device.

Worse, a signal at this frequency cannot travel more
than two cells using nearest-neighbor connections, or
four cells using sector wires. Each layer of logic the
signal passes through introduces some variable amount
of delay. When the worst-case delay introduced exceeds
the oscillation period, a pair of adjacent transitions (one
rising and one falling) collide, altering the frequency of
the signal. This phenomenon is also observed in wave
pipelined[21] systems. To avoid this signal corruption,
downsampling must be performed using very few stages
of logic at a location physically close to the pipeline.

In addition, it is desirable to perform all measurements
without additional equipment such as an oscilloscope or
logic analyzer. This facilitates long runs of unattended
data collection in various configurations. For this reason,
it is desirable to use the on-die AVR microcontroller for
data collection.

The “nearest neighbor” connections to cells along the
East edge of the device can be routed to data and
interrupt pins on the AVR microcontroller. Connecting
the pipeline directly to an interrupt pin is not useful; the
microcontroller runs at a peak frequency of 25Mhz, and
requires a four-cycle recovery time after an interrupt. In
practice the maximum interrupt frequency is even lower
since software must be executed with each interrupt.

Thus the problem is to satisfy two constraints: a high-
frequency signal that can only travel very short distances
on one end, and a fairly low-frequency sampling device
on the other. In order to bridge this gap, a frequency
divider (one-bit asynchronous counter) was designed. A
chain of these dividers was placed along the East edge of
the device (Figure 3), bringing a sample from the upper-
right corner of the ring down to the interrupt pin in the
lower-right hand corner, dividing the signal frequency
by a factor of 2

11 in the process.

Initial Results
Initial measurements using the bridged (Figure 7) lay-

out revealed that the bridge cell had two effects relative
to the bridgeless (Figure 8) layout:

• The additional wiring increased the total overall
delay around the ring.

• The additional wiring created a very large mismatch
between the forward and reverse delay through the
pipeline.

The result of the first effect was a peak token velocity
of only 533 Mstages/sec. Regardless, this is encouraging,

since Atmel lists the FPGA’s nominal operating fre-
quency as 100Mhz[13], meaning that an ideal synchronous
FIFO ring would achieve a peak velocity of only 100
Mstages/sec.

The second effect – mismatch between the forward
and reverse delays – causes the occupancy/rate graph to
“lean” sharply in one direction, depending on whether
the extra wiring is used to connect stages to their pre-
decessors or to their successors.

Figure 11 shows the original design with the external
bridge cell on the wire to the predecessor and the wire
to the successor, as well as an additional graph in which
one stage of the ring is slower than the rest.

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 2e+08

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

to
ke

n
ra

te
 (

re
sc

al
ed

)

Occupancy (%)

Symmetric C-Element

adapter on wire to predecessor
adapter on wire to successor

one stage deliberately slow

Fig. 11. Original Square-Ring Layout, Reversed, and with Slow Stage

The improved layout and a more robust frequency
divider were used to generate Figure 12.

 0 50 100 150 200 250 300 350 400 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 50

 100

 150

 200

 250

 300

MTokens/sec

collected data points

"surface/all"

FIFO size

Occupancy (%)

MTokens/sec

Fig. 12. Token Rates At Every Possible Occupancy for 52 Different
Ring Sizes

Internally-Symmetric C Elements

The slope of the “forward limited” and “backward
limited” portions of the token-rate graph have unequal
slopes, suggesting that the forward and backward delays
of the bridged design (Figure 6) are unequal.

In fact, on closer inspection, this can be observed
directly from the CLB configuration. The C-Element is
placed on the LUT corresponding to the reverse neigh-
bor, and the output to the other stage passes through an
extra LUT before leaving the cell. This adds at minimum
an entire LUT of delay to the reverse stage.

Yi

C

FB

Xo Yo

Xi

1 0

T

to successor

from successor

to predecessor

from predecessor

0

M

Fig. 13. Symmetric C-Element CLB

A new C-Element design is shown in Figure 13. This
new design routes both the forward and backward out-
puts through the C and B muxes, and then out to the
Xo and Yo outputs, giving the cell an internal symmetry
with respect to its outputs.

The occupancy/rate graph for this new C Element
design appears in Figure 14. Unfortunately this design
is not as robust as the original design; it occasionally
loses tokens. However, on average, it is clear that the
symmetric design produces a similarly symmetric occu-
pancy/rate graph, with matching “forward limited” and
“reverse limited” slopes.

 0

 50

 100

 150

 200

 250

 300

 0 0.2 0.4 0.6 0.8 1

M
T

ok
en

s/
se

c

Occupancy (%)

Symmetric C-Element

"symmetric/all"

Fig. 14. Symmetric C-Element Data

VI. RELATED WORK

Following the discontinuation of the XC6200, Xilinx
briefly distributed a package called “jbits” [19] which
could manipulate certain aspects of the bitstreams for a
few of the early Virtex devices. Unfortunately it never
approached a complete solution, lacking basic function-
ality such as the ability to create new bitstreams.

Although jbits was eventually updated to add sup-
port for Virtex-II (but not Virtex-II Pro), this internal
routing structure of this device has never been docu-
mented outside Xilinx, leaving the jbits API nearly
impossible to use. Since its release, jbits has been
available only under an extremely restrictive licensing
agreement, including clauses such as “You agree not to
display the Software on any computer screen”[20].

Jbits still does not support any device introduced in
the last six years.

Despite its shortcomings, the concept and initial
promise of jbits are admirable, and the name “abits”
was chosen to acknowledge its influence.

VII. CONCLUSION

This paper has presented abits, a library for ma-
nipulating FPSLIC bitstreams and performing partial
reconfiguration, and slipway, a low-cost platform for
experimenting with these technologies.

Source code for all software presented, as well as PCB
masks, can be obtained from:

http://research.cs.berkeley.edu/project/slipway/

It is our sincere hope that the availability of these
tools facilitates a re-emergence of interest in the many
areas where progress has been hampered by the lack of
a platform with bitstream-level configurability. Obvious

future directions building on this work include evolv-
able hardware, defect tolerance, self-timed logic, self-
modifying hardware.

VIII. ACKNOWLEDGEMENTS

I would like to thank John Wawrzynek and Ivan
Sutherland for their encouragement and advice, and the
anonymous referees for their helpful comments.

REFERENCES

[1] Ted E. Williams, Analyzing and improving latency and through-
put in self-timed pipelines and rings. In Proc. International
Symposium on Circuits and Systems, May 1992.

[2] Ted E. Williams, Self-Timed Rings and their Application to
Division, Ph.D. Dissertation, Stanford University CSL-TR-91-
482, May 1991.

[3] Charles E. Molnar, Ian W. Jones, William S. Coates, Jon
K. Lexau, Scott M. Fairbanks, and Ivan E. Sutherland. Two
FIFO ring performance experiments. Proceedings of the IEEE,
87(2):297-307, February 1999.

[4] Anthony Winstanley and Mark Greenstreet, Temporal Prop-
erties of Self-Timed Rings. In proceedings of CHARME 2001,
Lecture Notes in Computer Science 2144 pp 140-154, 2001.

[5] Winstanley, A.J.; Garivier, A.; Greenstreet, M.R., An event
spacing experiment. ASYNC 2002. Proceedings. Eighth Inter-
national Symposium on , vol., no.pp. 47- 56, 8-11 April 2002

[6] Scott Fairbanks and Simon Moore, Analog Micropipeline Rings
for High Precision Timing. Asynchronous Circuits and Sys-
tems, 2004. Proceedings. 10th International Symposium on
, vol., no.pp. 41- 50, 19-23 April 2004

[7] Zebilis, V.; Sotiriou, C.P., Controlling event spacing in self-timed
rings. ASYNC 2005.

[8] Ivan Sutherland. Micropipelines: Turing award lecture. Com-
munications of the ACM, 32 (6):720–738, June 1989.

[9] Ebergen, J.C.; Fairbanks, S.; Sutherland, I.E. Predicting per-
formance of micropipelines using Charlie diagrams. Advanced
Research in Asynchronous Circuits and Systems, 1998. Pro-
ceedings. 1998 Fourth International Symposium on , vol.,
no.pp.238-246, 30 Mar-2 Apr 1998

[10] Robert F. Sproull, Ivan E. Sutherland, and Charles E. Molnar.
The counterflow pipeline processor architecture. IEEE Design &
Test of Computers, 11(3):48–59, Fall 1994.

[11] Gosset, William Sealey. Atmel AT40k/94k Configuration Format
Documentation. Posted to comp.arch.fpga and archived with
message-id 20050812150910.29614.qmail@nym.alias.net.

[12] Atmel Corporation. AT94KAL Series Field Programmable
System Level Integrated Circuit. Technical note 1138.
http://www.atmel.com/dyn/resources/prod
documents/doc1138.pdf

[13] Atmel Corporation. Coprocessor FPGA with FreeRAM.
Technical note 2818.
http://www.atmel.com/dyn/resources/prod
documents/doc2818.pdf

[14] http://research.cs.berkeley.edu/project/slipway/
[15] http://libusb.sourceforge.net/
[16] http://www.intra2net.com/de/produkte/opensource/ftdi/
[17] Xilinx Corporation, Xilinx XC6200 FPGA-based Reconfigurable

Co-Processor Data Sheet v1.10, 4/97
[18] Seitz, C. System Timing. In Introduction to VLSI Systems, C.

Mead and L. Conway, eds., Addison-Wesley, Reading, Mass.,
1980.

[19] Steven A. Guccione, Delon Levi and Prasanna Sundarara-
jan. JBits: A Java-based Interface for Reconfigurable Computing.
2nd Annual Military and Aerospace Applications of Pro-
grammable Devices and Technologies Conference (MAPLD).

[20] Xilinx Jbits SDK Software License,
http://www.xilinx.com/jbits/agree.pdf

[21] L. Cotten, Maximum rate pipelined systems, in Proceedings of
AFIPS Spring Joint Computer Conference, 1969.

	Introduction
	The FPSLIC Reconfigurable Fabric
	The abits Library
	The slipway Platform
	Applications
	Live Debugging
	Self-Timed Circuits
	Frequency Division of Layout-Sensitive Signals

	Related Work
	Conclusion
	Acknowledgements
	References

