
Sparse-Memory Graph Search

Rong Zhou and Eric A. Hansen
Department of Computer Science and Engineering

Mississippi State University, Mississippi State, MS 39762
{rzhou,hansen}@cse.msstate.edu

Abstract
We describe a framework for reducing the space
complexity of graph search algorithms such as A*
that use Open and Closed lists to keep track of the
frontier and interior nodes of the search space. We
propose a sparse representation of the Closed list
in which only a fraction of already expanded nodes
need to be stored to perform the two functions of
the Closed List - preventing duplicate search effort
and allowing solution extraction. Our proposal is
related to earlier work on search algorithms that do
not use a Closed list at all [Korf and Zhang, 2000].
However, the approach we describe has several ad­
vantages that make it effective for a wider variety
of problems.

1 Introduction
Graph search algorithms such as Dijkstra's algorithm and A*
use an Open list to store nodes on the search frontier, and
a Closed list to keep track of already expanded nodes. The
Closed list performs two important fiinctions.

1. It allows the optimal solution path to be reconstructed
after completion of the search by tracing pointers back­
wards from the goal node to the start node.

2. In graph search problems, it allows nodes that have al­
ready been reached along one path to be recognized if
they are reached along another path, in order to prevent
duplicate search effort.

Although both functions are important, storing all expanded
nodes in a Closed list can quickly use all available memory.

If one is willing to give up the ability to recognize when
the same node is reached along different paths, IDA* and
RBFS can solve search problems in linear space [Korf, 1985;
1993]. Related search algorithms provide a limited abil­
ity to prevent duplicate search effort by storing a limited
number of expanded nodes [Reinefeld and Marsland, 1994;
Miura and Ishida, 1998]. In complex graph search problems
with many duplicate paths, however, an inability to prevent
all duplicate search effort often leads to poor performance.

Fortunately, it is not necessary to store all expanded nodes
in a Closed list in order to eliminate all duplicate search ef­
fort. It is only necessary to store enough nodes to form

a "boundary" in the search graph that prevents previously
closed nodes from being revisited. This is the strategy
adopted by a pair of recent search algorithms [Korf, 1999;
Korif and Zhang, 2000], which are related to earlier work
on reducing the memory requirements of dynamic program­
ming algorithms for sequence comparison [Hirschberg, 1975;
Myers and Miller, 1988]. If not all expanded nodes are stored
in a Closed list, an alternative method of solution extraction
is needed - since closed nodes along an optimal solution path
may no longer be in memory when the search ends. So, these
algorithms preserve information about nodes that are in the
middle of a solution path. After the search ends, they use this
information to divide the original problem into sub-problems
- employing a divide-and-conquer strategy to recursively re­
construct an optimal solution path. This approach to reduc­
ing memory requirements results in an algorithm with two
distinct phases; the first phase searches from the start to the
goal node, and the second phase uses a divide-and-conquer
method to reconstruct an optimal solution path.

In this paper, we describe some improvements of this
search strategy. Earlier search algorithms that use this strat­
egy do not store a Closed list at all [Korf, 1999; Korf and
Zhang, 2000]. Instead they include extra information in open
nodes, and even insert additional nodes into the Open list,
to ensure that it forms a "boundary" that prevents "leaks"
back into the closed region. Instead of adding information
to the Open list, our algorithm preserves some already ex­
panded nodes in a Closed list - but only enough to create a
boundary and allow efficient solution reconstruction. Much
of the closed region of the search can be removed from mem­
ory. Thus, we call this a sparse representation of the Closed
list, and a sparse-memory approach to graph search. We show
that it results in a more flexible approach to reducing memory
requirements that offers several advantages.

2 Background
The most closely related algorithms to the search algorithm
we introduce in this paper are Divide-and-Conquer Bidirec­
tional Search (DCBS) [Korf, 1999] and Divide-and-Conquer
Frontier Search (DCFS) [Korf and Zhang, 2000]. Although
both are general graph-search algorithms, they were devel­
oped as an approach to performing multiple sequence align­
ment, and the memory-saving technique they use was first
used by related dynamic programming algorithms for se-

SEARCH 1259

quence comparison [Hirschberg, 1975; Myers and Miller,
1988]. To provide some perspective, we begin with a brief
description of the multiple sequence alignment problem. For
a detailed description of this problem, we refer to our refer­
ences.

2.1 Mu l t ip le sequence al ignment
Alignment of multiple DNA or protein sequences is an im­
portant problem in computational biology. It provides a way
to measure the similarity between sequences and detect re­
lated segments. Alignment involves inserting gaps into se­
quences in order to maximize the number of matching "char­
acters." It is well-known that this problem can be formal­
ized as a shortest-path problem in a n-dimensional lattice,
where n is the number of sequences to be aligned. The
number of nodes in the lattice is ln, where / is the aver­
age length of sequences, and thus grows polynomially with
the length of sequences, and exponentially with the num­
ber of sequences. Although dynamic programming is the
traditional method for solving this problem, A* has been
shown to outperform it by using an admissible heuristic to
limit the number of nodes in the lattice that need to be ex­
amined to find an optimal alignment [Ikeda and Imai, 1999;
Lermen and Reinert, 2000]. But given the large number of
nodes that usually must be examined, memory is a bottleneck,
and techniques for solving this problem in reduced memory
can be very helpful.

2.2 Divide-and-conquer f ront ier search
Both Divide-and-Conquer Bidirectional Search
(DCBS) [Korf, 1999] and Divide-and-Conquer Frontier
Search (DCFS) [Korf and Zhang, 2000] use the same
strategy for reducing memory requirements. The difference
is that DCBS uses bidirectional search and DCFS uses
unidirectional search. Korf and Zhang [2000] find that
unidirectional search results in better performance, and so
we refer to DCFS in the rest of this paper.

DCFS reduces memory requirements by storing only the
frontier nodes of the search, not the interior nodes - that is,
by using an Open list but not a Closed list. Because it does not
use a Closed list, DCFS must use some other method to avoid
duplicate node expansions and to extract an optimal solution
path at the end of the search. The problem of avoiding dupli­
cate node expansions is particularly important in the case of
multiple sequence alignment because there are combinatori-
ally many paths from the start node to any other node. For
this reason, linear-space search algorithms that do not test for
duplicates, such as IDA*, have "pitiful results" (in the words
of Korf [1999]), when used for multiple sequence alignment.
Even bounded-memory search algorithms that detect some
but not all duplicates have been reported to perform poorly
on this problem [Yoshizumi et ai, 2000].

To avoid duplicate node expansions, DCFS uses the fol­
lowing techniques to prevent the search from "leaking" back
into the closed region, that is, to prevent closed nodes from
being re-generated. First, it stores in each node a list of for­
bidden operators. This list includes one operator for each
neighbor (predecessor or successor) of this node that has al­
ready been generated. When the node is later selected for

expansion, only operators that are not among the forbidden
operators are used to generate its successor nodes. This pre­
vents the search from re-generating nodes that may have been
already closed and removed from memory. However, a com­
plication arises in the case of directed graphs - in particu­
lar, directed graphs in which a node can have predecessors
that are not also potential successors. If a node is expanded
and removed from memory before all of its predecessors have
been generated and inserted into the Open list, it can be re­
generated if one of these predecessor nodes is later expanded.
To prevent this, DCFS modifies the Open list in a second way.
When a node is expanded, it generates not only its successor
nodes, but all of its predecessor nodes - even if the search has
not yet found a path to these predecessor nodes. If there is not
yet a legal path to these predecessor nodes, they are assigned
an infinite /-cost to prevent them from being expanded until
a legal path is found.

To make it possible to reconstruct the solution path at the
end of the search, DCFS modifies nodes in a further way. In
each node past the midpoint of the search, it stores all in­
formation about a node on its path that is about halfway be­
tween the start and goal node. Then, when the search is com­
pleted, DCFS knows a middle node on the optimal solution
path, and can reconstruct the solution path by a divide-and-
conquer approach. Using the same search algorithm, it recur­
sively solves the subproblems of finding an optimal path from
the start node to the middle node, and then from the middle
node to the goal node. This recursive method of solution re­
construction is essentially the divide-and-conqucr idea first
proposed by Hirschberg [1975].

2.3 L imi ta t ions
Korf and Zhang [2000] show that DCFS can be very effec­
tive in "problem spaces that grow polynomially with prob­
lem size, but contain large numbers of short cycles," includ­
ing path-planning in two-dimensional grids and multiple se­
quence alignment, assuming a small number of sequences.
They acknowledge that their search algorithm is not as ef­
fective in an "exponential problem space with a branching
factor of two or more." In that case, they explain, the Open
list is much larger than the Closed list and "not storing the
Closed list doesn't save much." In fact, the multiple sequence
alignment problem is an exponential problem space (and NP-
complete [Just, 2001]), when the number of sequences to be
aligned is not bounded. Its branching factor is 2n — 1 (where n.
is the number of sequences), and the size of the Open list can
dwarf the size of the Closed list when aligning as few as five
or six sequences. This problem is well-known and has moti­
vated development of techniques for reducing the size of the
Open list when using A* to align multiple sequences. These
include use of an upper bound to prune open nodes that can­
not lead to an optimal solution [Ikeda and Imai, 1999], and
use of partial node expansions [Yoshizumi et al., 2000].

As it turns out, it is difficult to combine DCFS with tech­
niques for reducing the size of the Open list without creating
inefficiencies, or even "leaks" back into the closed region. It
is possible to combine DCFS with Partial Expansion A*, a
technique for reducing the size of the Open list by allowing
partially expanded nodes [Yoshizumi et al., 2000]. This can

1260 SEARCH

be beneficial in some cases. But allowing nodes to be partially
expanded has the effect of reducing the number of nodes that
are closed. In turn, this reduces the memory-saving effect
of DCFS by reducing the number of nodes eligible to be re­
moved from memory, as our experimental results will show.

Another approach to reducing the size of the Open list is
to prune open nodes when their /-cost is greater than an up­
per bound on the optimal /-cost, as in Enhanced A* [Ikeda
and Imai, 1999]. Because this technique does not reduce the
number of closed nodes, the idea of combining it with DCFS
appears more promising. However, it introduces other dif­
ficulties. Recall that DCFS generates all predecessors of a
node when it is expanded, even if it has not yet found a path
to these predecessors. If nodes are pruned from the Open
list, no path may ever be found to these extra nodes, and the
Open list may become cluttered with useless nodes that can
never be removed. In directed graphs with the special prop­
erty that the set of successors of each node is disjoint from the
set of predecessors, such as the search graph of the multiple
sequence alignment problem, this inefficiency is the only neg­
ative effect of pruning the Open list. But in directed graphs
that do not share this property, and in all undirected graphs,
pruning nodes from the Open list can also result in "leaks"
back into the closed region, as follows. The first time a node
is generated, there is no guarantee that the best path to it has
been found. So, if it is pruned using an upper bound, it may
later be re-generated if a better path to it is found. But since
the forbidden operators associated with the node when it was
first generated were lost when it was pruned, a node that was
previously closed could be re-generated.

The difficulty of combining DCFS with techniques for re­
ducing the size of the Open list is a significant limitation.
Another potential limitation worth mentioning is the over­
head for storing a list of forbidden operators in each node.
For problems with a small branching-factor, this overhead is
slight. But for the multiple sequence alignment problem, this
overhead grows as the number of sequences grows. Recall
that the number of operators (i.e., the branching factor) of
multiple sequence alignment is and DCFS stores in­
coming as well as outgoing edges in the list of forbidden op­
erators. Thus, the total number of edges incident to a node is

Although Korf and Zhang [2000]
claim that the space complexity of DCFS for multiple se­
quence alignment is compared to the space
complexity of A* , this claim rests on the assumption that a
node takes constant storage. As n increases, the storage re­
quired for the list of forbidden operators increases exponen­
tially. In fact, the space complexity of DCFS for mulitple
sequence alignment is and its advantage over the

space complexity of A* disappears when

3 Sparse-Memory Search Algorithm
The algorithm we describe in the rest of this paper adopts
a strategy for reduced-memory search that is similar to the
strategy used by DCFS. However, it implements this strategy
in a simpler way that is more compatible with techniques for
reducing the size of the Open list, and does not require storing
lists of forbidden operators in nodes.

Figure 1: An illustration of the relationships among the kernel
and the boundary of the search interior, the search frontier,
and the entire state space.

A key difference from DCFS is that our algorithm does
not entirely eliminate the Closed list. Instead, we propose
a sparse representation of the Closed list that allows many
(but not all) closed nodes to be removed from memory. To
explain our approach, we note that the search interior (the set
of closed nodes) can be partitioned into two disjoint subsets
that we call the set of boundary nodes and the kernel of the
search interior.

Definition 1 Let I be the set of search interior nodes, i.e.,
nodes whose lowest-cost paths have been found. The kernel
of I, denoted K (I), is defined as follows:

where Pred(k) denotes the set of predecessor nodes ofk, that
is, the set of nodes that can make a transition into node k in
the underlying graph, which may be directed or undirected.
Basically, the kernel is the set of nodes whose predecessor
nodes are all interior (i.e., closed) nodes.
Definition 2 The set of boundary nodes of search interior I,
denoted B(I), is defined as the non-kernel nodes of l, that is:

Another way of describing a boundary node is to say that at
least one of its predecessor nodes is not an interior node, or
mathematically,

Figure 1 illustrates the relationship between the kernel and
boundary of the search interior. Note that nodes in the bound­
ary can enter the kernel, but once a node is in the kernel it
remains there. The nodes in the kernel are eligible for re­
moval from memory because they are not needed to prevent
duplicate search effort.

The intuitive meaning of "boundary" can be explained as
follows. Because every closed node is reachable from the
start node, the set of closed nodes can be considered a "vol­
ume" in the underlying graph that encompasses the starting
node. Nodes outside this volume cannot reach nodes inside
the volume without passing through some node in the bound­
ary. Thus, storing only the boundary nodes in the Closed list
is as effective as storing the entire "volume," with respect to

SEARCH 1261

preventing the search from "leaking" back into the closed re­
gion. (From this perspective, one could say that DCFS adds
nodes to the Open list - i.e., the search frontier - in order
to ensure that the frontier forms a boundary, and it treats the
Closed list as the kernel that can be removed from memory.)

In addition to keeping boundary nodes in the Closed
list, our sparse-memory approach keeps some other, non-
boundary nodes that allow solution reconstruction. The
method of solution reconstruction is different from the one
used by DCFS. Recall that DCFS stores in each node all infor­
mation about a "middle" node on the path through this node
to the goal. In our approach, each node in the search graph
maintains a pointer to its predecessor node along the best path
to this node, or to some earlier, ancestral node along this
path} In the latter case, we have a sparse solution path.

If a node in a sparse solution path has a pointer to an an­
cestral node instead of a pointer to its predecessor, we call
the ancestral node a relay node to indicate that it skips over
some nodes in an original, "dense" solution path. We also
consider the start node (which has no backward pointer) a re­
lay node. How relay nodes are created and used in solution
reconstruction is explained below. Here, we simply note that
relay nodes are never removed from the Closed list because
they are needed for solution reconstruction. Thus, a sparse
representation of the Closed list includes all boundary nodes
and all relay nodes. Nodes that do not fall in either category
may be removed from memory.

It is well-known that A* can be viewed as Dijkstra's al­
gorithm applied to a transformed graph with the same set
of nodes and edges, but modified edge costs given by the
equation where

is the cost of edge in the untransformed
(or transformed) graph and is the cost esti­
mate of the lowest-cost path from node u (or v) to the goal
node. Therefore, we present our sparse-memory algorithm as
a modification of Dijkstra's algorithm, and note that our de­
scription applies to A* also. Our sparse-memory approach
requires two assumptions. First, the transformed (or untrans­
formed) graph cannot contain any negative-cost edges. This
means the heuristic used by A* must be consistent. With­
out this assumption, it is impossible for our algorithm (or any
heuristic search algorithm) to accurately identify the interior
of the search, and DCFS makes the same assumption. Sec­
ond, we assume that our algorithm knows the in-degree (in
the underlying graph) of every node it visits. For comparison,
DCFS assumes that it knows every predecessor (in the under­
lying graph) of a node it visits. Thus, our second assumption
is weaker than that made by DCFS.

Because pointers require less memory than state information
about a midpoint node, the memory required to store all pointers
plus relay nodes could be less than the memory required to copy state
information about the same midpoint node into many other nodes.

1262 SEARCH

Figure 2: Pseudocode for SMGS (Sparse-Memory Graph
Search), in which procedure ExpandNode assumes a directed
graph. See Figure 3 for the pseudocode of ExpandNode in
undirected graphs.

3.1 Prun ing the Closed list

Our search algorithm must be able to efficiently distinguish
between the kernel and boundary of the search interior, in
order to prune nodes from the kernel. Recall that a node is
in the kernel if all of its predecessors are closed. To identify
such nodes, we introduce a technique for keeping track of the
number of unexpanded predecessors for each generated-and-
stored node. We call this number the value of a node. It is
initially set to the number of predecessors (the in-degree) of
the node in the underlying graph minus one to account for the
predecessor that generated it. The is updated during
node expansion. As each successor of a node is considered
(some of which may already be in the Open or Closed lists),
its p- value is decremented. (See lines 3, 8 and 10 of procedure
ExpandNode in Figure 2.) This requires negligible time and
space overhead, and, given kernel-membership for a
node can be determined in constant time by checking whether
it is a closed node with a of zero.

An advantage of the sparse-memory approach is that it
does not immediately remove closed nodes from memory, un­
like DCFS. A sparse-memory version of Dijkstra's algorithm
(or A*) acts exactly like Dijkstra's algorithm (or A*) until
it senses that memory is about to be exhausted. Only then
does it invoke procedure PruneClosedList in Figure 2 to re­
cover memory. This procedure prunes nodes from the Closed
list in two steps. First it updates the ancestral pointer of any
boundary node whose predecessor is about to be pruned (lines
1-8). This is necessary to allow solution reconstruction and
requires finding the relay node that is the closest boundary
node along its solution path (lines 3-5), and updating its an­
cestral pointer accordingly (line 7). This makes this boundary
node a relay node, and to prevent it from being pruned in the
future, its is set t o (l i n e 8). After this step, kernel
nodes are pruned unless they are a start node or relay node
created in a previous pruning step (lines 9-12). Updating the
ancestral pointers of nodes (followed by pruning) creates a
sparse solution path, from which a complete or "dense" solu­
tion path can be reconstructed after the search terminates.

3.2 Solution Path Reconstruct ion

The fact that the Closed list is not pruned unless memory is
close to being exhausted means that the overhead of solution
reconstruction can be avoided if memory resources are ade­
quate. In that case, the sparse-memory algorithm acts exactly
like Dijkstra's algorithm (or A*) and an optimal solution path
is extracted in the conventional way.

If the Closed list has been pruned, an optimal solution
path is reconstructed by invoking the Sparse-Memory Graph
Search algorithm (SMGS) in Figure 2 recursively. First the
sparse solution path (SSP) is extracted (line 11) in the con­
ventional way by tracing pointers backward from the goal.
Then the corresponding dense solution path (DSP) is re­
constructed as follows. For each pair of consecutive nodes

in the SSP (starting from the start
node), the algorithm checks to see if is a pre­
decessor of (line 14). I f so, n o d e i s added to
the tail of the DSP (line 15); otherwise, the search algorithm
calls itself recursively with and as the

Figure 3: Pseudocode for ExpandNode in undirected graphs.

new start and goal nodes, in order to get a dense solution path
between the two which is added to the tail of DSP (line 17).

Another difference from DCFS that is worth noting is that
DCFS divides a problem into two subproblems at each level
of the recursion. The sparse-memory approach can divide a
problem into two or more subproblems. The extra flexibility
is possible because the sparse-memory approach uses relay
nodes with ancestral pointers, whereas DCFS stores all infor­
mation about a middle node in each node. When a problem
is divided into more than two subproblems, the subproblems
are smaller and easier to solve and solution reconstruction can
be faster. In fact, relay nodes can be spaced at half intervals,
one-third intervals, or any other interval, and allow a tradeoff
between the sparseness of the search interior and the speed of
solution reconstruction.

3.3 Prun ing the Open list

We now consider how easily the sparse-memory approach to
pruning the Closed list can be combined with techniques for
pruning the Open list. Pruning nodes on the Open list that
have an /-cost greater than an upper bound on the optimal
/-cost creates difficulties for DCFS, as discussed earlier. An
advantage of the sparse-memory approach is that it does not
create difficulties, at least in solving problems for which the
set of predecessors of a node is disjoint from the set of succes­
sors, such as the multiple sequence alignment problem. This
advantage will be illustrated in our experimental results.

For other directed graphs, that is, for directed graphs in
which the same node can be both predecessor and succes­
sor of another node, DCFS allows leaks back into the closed
region when the Open list is pruned. The sparse-memory ap­
proach does not, and this is another advantage. Unfortunately,
the sparse-memory approach has a problem in such graphs.
If the best path to a node has not been found when it is first
generated, it could be pruned and re-generated later, when a
better path is found. Since are erased when the node
is pruned, the of such nodes wil l not be decremented
to zero. As a result, the sparse-memory algorithm may not
recover as much memory from the Closed list. However, our
experimental results suggest that this inefficiency is minor.

SEARCH 1263

Figure 4: Example of Sparse-memory Dijkstra searching for an optimal alignment of two sequences. Panels (a) and (b) show
the search space just before and after the first pruning of the Closed list. Panels (c) and (d) show the search space just before
and after the second pruning. Panel (e) shows the sparse solution path at the end of the search.

In undirected graphs, we noted earlier that DCFS also al­
lows "leaks" back into the closed region when the Open list is
pruned. The sparse-memory algorithm does not, if we make
a minor modification, as explained in the following.

3.4 Undirected graphs
The pseudocode in Figure 2 shows the ExpandNode proce­
dure for directed graphs. Figure 3 gives the pseudocode of
the ExpandNode procedure in undirected graphs. The differ­
ence is that in undirected graphs, are only set and
decremented for closed nodes, not open nodes. Thus, prun­
ing open nodes cannot cause any problems by distorting
values. In fact, the pseudocode in Figure 3 could be used for
directed graphs also. But in directed graphs, it would require
considering all predecessors of a node as well as successors
during node expansion, in order to set correct. The
overhead for this would be significant. This is not a problem
in undirected graphs because the set of potential successors
of a node is equal to the set of potential predecessors.

3.5 H y b r i d algor i thms
The sparse-memory algorithm we have described is based on
more than one idea. It uses nodes on the Closed list to cre­
ate a "boundary" that prevents re-generation of closed nodes,
instead of using the Open list as a boundary. In addition, it
uses relay nodes for divide-and-conquer solution reconstruc­
tion, instead of storing in each node state information about a
middle node along the search path.

Because these ideas can be considered separately, it is pos­
sible to create search algorithms that are hybrids of DCFS and
the sparse-memory approach. For example, the DCFS tech­
nique of using the Open list as a boundary could be combined
with relay nodes. This would create a version of DCFS that
is able to divide a solution path into more than two pieces,
allowing flexible (and potentially faster) solution reconstruc­
tion; use of relay nodes would also allow DCFS to delay
pruning of the Closed list until memory is full. Similarly,
some of the techniques used by DCFS can be considered in­
dependently. For example, forbidden operators can be used
in combination with the sparse-memory approach, instead of

One advantage of using forbidden operators is that
they sometimes speed up search, since it is faster not to gener­
ate a node than to generate it and check for a duplicate on the
Open or Closed list. We consider the performance of these
hybrid algorithms in the computational results that follow.

4 Computational Results
We first illustrate how a sparse-memory version of Dijkstra's
algorithm works by showing how it solves a small pairwise
sequence alignment problem. Then we consider the perfor­
mance of sparse-memory A* on more challenging problems.

4.1 Example
Consider the problem of aligning two sequences, ACTGAT
and TGACTGC, using a very simple cost function: zero for
a match, one unit for a substitution, and two units for a gap.
The state space of the problem can be represented by a two-
dimensional grid in which the columns correspond to one se­
quence and the rows to the other. The problem of finding
an optimal alignment of the two sequences corresponds to
the problem of finding an optimal path from the start node in
the upper-left corner to the goal node in the lower-right cor­
ner, where horizontal and vertical moves correspond to gap
insertions in one or the other sequence, and diagonal moves
correspond to a substitution or match of characters.

Figure 4 shows the behavior of sparse-memory Dijkstra\s
algorithm at the critical points when memory becomes full
and the Closed list is pruned. It assumes that memory ca­
pacity is 30 nodes. Figure 4(a) shows the explored state
space when memory is full for the first time. The number in
each cell is the g-value of the corresponding state (or node).
For closed nodes, the g-value is highlighted in bold italics.
Among the 17 closed nodes, II are identified as kernel nodes
and pruned. Figure 4(b) shows the result of pruning. When
memory is full the second time, as shown in Figure 4(c), the
Closed list is pruned again and 12 kernel nodes are removed
from memory, as shown in Figure 4(d), freeing enough mem­
ory for continued search. Figure 4(e) shows the state space in
memory when the goal node (the cell in the lower-right cor­
ner) is expanded. The SSP solution is shown as a chain of
thick dashed arrows. The arrows drawn in thin dashed lines
represent ancestor pointers that are created during pruning.

In this example, it is also possible to see how the Open list
can be pruned using the sparse-memory approach. Suppose
we know that 8 is an upper bound on the cost of an opti­
mal alignment. Then all nodes with g-values greater than or
equal to 8 can be pruned from the Open list, and the search
progresses in the same way except for not storing the seven
nodes whose g-values equal 8. Note that pruning nodes in the
Open list will not change the boundary of the search interior.

1264 SEARCH

4.2 Mu l t ip le sequence al ignment
We tested Sparse-memory A* (Sparse-A*) on a series of chal­
lenging multiple sequence alignment problems, in order to
compare its performance to DCFA* (the DCFS version of
A*) . We used a 300Mhz Sun UltraSparc II workstation with
two gigabytes of RAM. Results are displayed in Table 1.

First, we considered the identical test domain used by Korf
and Zhang [2000]: alignment of three random sequences of
length 4000 using their simple cost function, with results av­
eraged over 100 trials. Both DCFA* and Sparse-A* are effec­
tive in this domain, whereas A* could not solve any problem
instance due to memory limitations. Versions of A* that use
special techniques to recover memory by pruning the Open
list [Ikeda and Imai, 1999; Yoshizumi et al., 2000] were also
unable to solve any of these problem instances. This is be­
cause the Closed list, not the Open list, fills most of mem­
ory in this case. One reason there are so many closed nodes
is that the accuracy of the pairwise heuristic used for multi­
ple sequence alignment depends on the similarity of the se­
quences. Because random sequences have only random sim­
ilarities, the heuristic is weak, resulting in many node expan­
sions and closed nodes.

For this problem set, DCFA* is more memory-efficient
than Sparse-A*. However, Sparse-A* runs faster. It runs
faster for long sequences like these because the solution path
is correspondingly long, and solution reconstruction can be
faster using relay nodes. At each recursion level, relay nodes
make it possible to divide a solution path into several smaller,
easier-to-solve subproblems, instead of always dividing it in
half. Faster solution reconstruction comes at the expense of
a small increase in memory for extra relay nodes, as can be
seen by comparing the performance of DCFA* using relay
nodes (a hybrid algorithm) to standard DCFA*.

Why can DCFA* be more memory-efficient than Sparse-
A*? One factor is that using relay nodes to divide a solution
path into more than two pieces requires extra memory for the
extra relay nodes - a classic space-time tradeoff. Another
factor is that use of forbidden operators allows a closed node
to be pruned as soon as all its predecessors are generated.
By contrast, use of p-values requires waiting until all prede­
cessors are closed, before pruning the node. As a result, a
hybrid algorithm that combines the sparse-memory approach
with forbidden operators outperforms the sparse-memory ap­
proach alone, for this problem set. These two factors may not
account for all of the difference in memory efficiency, but we
currently have no other explanation.

We next compared Sparse-A* and DCFA* on real protein
sequences using the PAM250 cost matrix, which is widely-
used by biologists. In aligning five sequences randomly se­
lected from a pool of low-similarity protein sequences of
length 300 used in previous experiments [McNaughton et ai,
2002], Sparse-A* and DCFA* were again effective in solv­
ing all instances. By contrast, A* ran out of memory on
most instances. For this problem set, the Enhanced A* al­
gorithm [Ikeda and Imai, 1999], which uses an upper bound
to prune nodes from the Open list, performs very well. This
is because the number of open nodes is very large for this set
of problems. Unlike DCFA*, the sparse-memory approach
can be safely combined with this technique of pruning the

Algorithm | Statistics
3 seqs.
(4,000)

5 seqs.
(300)

7 seqs.
(450) |

DCFA*
[Sees.

Nodes(K)
1 Mbytes

1,435
1,953

284

2,930
9,997

551

1721
1,200

112

DCFA* +
relay nodes

Sees.
Nodes(K)
Mbytes

712
2,202

293

2,863
10,910

561

97
1,215

114

Sparse-A*
Sees.
Nodes(K)
Mbytes

908
4,510

389

3,073
17,626

766

65
1,093

72

Sparse-A* +
forbidden ops.

Sees.
Nodes(K)
Mbytes

871
3,388

355

3,218
13,100

673

101
1,071

104

Enhanced A*
Sees.
Nodes(K)
Mbytes

can't
solve

1,940
16,844

720

24
76
28

Enhanced
Sparse-A*

Sees.
Nodes(K)
Mbytes

917
4,510

389

2,785
10,600

465

24
76
28

Table 1: Performance comparison of DCFA*, sparse-memory
A*, Enhanced A*, and hybrid algorithms. The node count
is the number of stored nodes, measured in thousands, and
memory includes storage of the pairwise heuristic.

Open list. This gives it an overall advantage, and Enhanced
Sparse-A* is the best-performing algorithm for this prob­
lem set. (Although Enhanced Sparse-A* stores slightly more
nodes than DCFA*, it uses less memory because forbidden
operators makes the DCFA* nodes larger. We also empha­
size the following point: although the table shows that the
running time of Enhanced A* is less than the running time
of Enhanced Sparse-A*, this does not mean that it is a faster
algorithm. If Enhanced A* by itself can solve a problem in
available memory, the sparse-memory version of Enhanced
A* does not need to prune the Closed list at all, and has iden­
tical performance. But for these experiments, we adjusted the
sparse-memory algorithm to minimize its memory use - since
memory is the key factor we are evaluating here.)

A drawback of DCFA* is that its node size increases as
the number of sequences being aligned increases. This be­
comes very apparent when DCFA* is used to align seven pro­
tein sequences of length around 450, randomly selected from
a set of similar protein sequences used in previous experi­
ments [Yoshizumi et al, 2000]. The high similarity of these
sequences gives rise to a very accurate heuristic, and makes
these sequences much easier to align. Even A* can solve
these problems. Although A*, Sparse-A* and DCFA* always
expand the same number of nodes, DCFA* generates and
stores an average of 10% more nodes in this domain because
it inserts extra nodes in the Open list. A more serious prob­
lem is that the nodes created by DCFA* are two times bigger
than the nodes created by the other algorithms, because they
include lists of forbidden operators. As a result, DCFA* runs
slower and uses more memory than any other algorithm, in­
cluding A*! (In aligning ten sequences, the nodes created by
DCFA* are seven times larger than the nodes created by A*,

SEARCH 1265

and their relative size almost doubles with each additional se­
quence thereafter.) The table shows Sparse-A* is not as effec­
tive as Enhanced A*, because pruning the Open list is much
more important than pruning the Closed list, for this problem
set. Nevertheless, Enhanced Sparse-A* performs no worse
than Enhanced A*, and this point is important. The sparse-
memory approach improves performance when possible, and
complements other techniques for reducing memory.

For perspective, we discuss what happens if we combine
DCFA* with Partial Expansion A* [Yoshizumi et al, 2000].
(In our experiments, we set the cutoff value for Partial Ex­
pansion A* to zero, to minimize memory use.) For the set of
seven similar protein sequences, Partial Expansion DCFA*
required an average of 29 Mbytes of memory, and 437 CPU
seconds. The much greater running time is due to the over­
head of partial expansions. The slightly higher memory re­
quirement is because nodes are partially expanded, and nodes
that are not closed cannot be pruned by DCFA*. For the
set of three random 4000-length sequences, Partial Expan­
sion DCFA* stored 40% more nodes and ran 42% slower
than DCFA*. Again, the reason is that partially expanded
nodes are not pruned. Finally, we note that when DCFA* is
combined with Enhanced A* , it consistently requires more
memory (and CPU time) than DCFA* alone, due to the com­
plications discussed earlier.

4.3 15-Puzzle
The 15-puzzle is not a problem for which duplicate detection
is a crucial issue. Nevertheless, it is interesting to consider
as both a benchmark and an example of an undirected graph.
We used 91 of the 100 problem instances in Korf (1985) as
a test set. Sparse-A* by itself used an average of 79% of the
memory used by A* ; DCFA* used an average of 44% of the
memory used by A* ; and Enhanced A* used an average of
57% of the memory used by A*. A sparse-memory version
of Enhanced A* performed best. It used 32% of the memory
used by A*. We also tested DCFA* combined with Enhanced
A*. It is unable to prevent leaks back into the closed region,
for reasons discussed earlier, and we noticed many node re-
expansions. Interestingly, it used only 10% of the memory
used by A*, due to aggressive pruning, and ran faster than the
other algorithms. But this is only because the 15-puzzle is a
domain in which node re-generation has less overhead than
managing the Open and Closed lists, since IDA* outperforms
all of these algorithms on this problem. In undirected graphs
with exponentially many duplicate paths, a sparse-memory
version of Enhanced A* is likely to perform best.

5 Conclusion
We have proposed a sparse-memory approach to graph search
that builds on ideas in earlier work, but implements them in
a way that is often more effective. A key advantage of this
approach to reducing the size of the Closed list is that it can
be combined with a technique for reducing the size of the
Open list by upper-bound pruning. This is especially use­
ful for large branching-factor problems where the size of the
Open list would otherwise dramatically exceed the size of the
Closed list, such as the multiple sequence alignment problem
when there are more than four or five sequences.

The sparse-memory approach has other advantages. It al­
lows more flexible, and potentially faster, solution reconstruc­
tion. And last but not least, it can behave exactly like A* (or
Enhanced A*, or Dijkstra's algorithm) until it reaches a mem­
ory limit, and only then removes nodes from the Closed list.
Thus, there is (virtually) no overhead for this technique un­
less a search problem cannot be solved within a given mem­
ory bound. Then the overhead for solution reconstruction is
compensated for by the reduced memory requirements.

Acknowledgments We thank the anonymous reviewers for
helpful comments. This work was supported in part by NSF
CAREER grant I1S-9984952 and NASA grant NAG-2-1463.

References
[Hirschberg, 1975] D. Hirschberg. A linear space algorithm for

computing maximal common subsequences. Communications of
the ACM, 18(6):341-343, 1975.

[Ikeda and Imai, 1999] T. Ikcda and H. Imai. Enhanced A* al­
gorithms for multiple alignments: Optimal alignments for sev­
eral sequences and k-opt approximate alignments for large cases.
Theoretical Computer Science, 210(2):341 374, 1999.

[Just, 2001] W. Just. Computational complexity of multiple se­
quence alignment with SP-score. Journal of Computational Bi­
ology, 8:615-623, 2001.

[Korf and Zhang, 2000] R. Korf and W. Zhang. Divide-and-
conquer frontier search applied to optimal sequence alignment.
In Proceedings of the 17th National Conference on Artificial In-
telligence (AAAI-2000), pages 910 916, 2000.

[Korf, 1985] R. Korf. Depth-first iterative deepening: An optimal
admissible tree search. Artificial Intelligence, 27:97 109, 1985.

[Korf, 1993] R. Korf. Linear-space best-first search. Artificial In­
telligence, 62:41-78,1993.

[Korf, 1999] R. Korf. Divide-and-conquer bidirectional search:
First results. In Proc. of the 16th InternationalJoint Conference
on Artificial Intelligence (IJCAl-99), pages 1184-1189, 1999.

[Lermen and Reinert, 2000] M. Lermen and K. Reinert. The prac­
tical use of the A* algorithm for exact multiple sequence align­
ment. Journal of Computational Biology, 7(5):655—671, 2000.

[McNaughton et al.,2002] M. McNaughton, P. Lu, J. Schaefler,
and D. Szafron. Memory-efficient A* heuristics for multiple se­
quence alignment. In Proceedings of the 18th National Confer­
ence on Artificial Intelligence (AAAI-02), pages 737-743, 2002.

[Miura and Ishida, 1998] T. Miura and T. Ishida. Stochastic node
caching for memory-bounded search. In Proceedings of the 15th
National Conference on Artificial Intelligence (AAAI-98), pages
450-456, 1998.

[Myers and Miller, 1988] E. Myers and W. Miller. Optimal align­
ments in linear space. Computer Applications in the Biosciences,
4:11-17,1988.

[Reinefeld and Marsland, 1994] A. Reincfeld and T. Marsland. En­
hanced iterative-deepening search. IEEE Trans, on Pattern Anal­
ysis and Machine Intelligence, 16:701 -710, 1994.

[Yoshizumi et al, 2000] T. Yoshizumi, T. Miura, and T. Ishida. A*
with partial expansion for large branching factor problems. In
Proceedings of the 17th National Conference on Artificial Intel­
ligence (AAAI-2000), pages 923-929, 2000.

1266 SEARCH

