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Abstract 
We describe a framework for reducing the space 
complexity of graph search algorithms such as A* 
that use Open and Closed lists to keep track of the 
frontier and interior nodes of the search space. We 
propose a sparse representation of the Closed list 
in which only a fraction of already expanded nodes 
need to be stored to perform the two functions of 
the Closed List - preventing duplicate search effort 
and allowing solution extraction. Our proposal is 
related to earlier work on search algorithms that do 
not use a Closed list at all [Korf and Zhang, 2000]. 
However, the approach we describe has several ad­
vantages that make it effective for a wider variety 
of problems. 

1 Introduction 
Graph search algorithms such as Dijkstra's algorithm and A* 
use an Open list to store nodes on the search frontier, and 
a Closed list to keep track of already expanded nodes. The 
Closed list performs two important fiinctions. 

1. It allows the optimal solution path to be reconstructed 
after completion of the search by tracing pointers back­
wards from the goal node to the start node. 

2. In graph search problems, it allows nodes that have al­
ready been reached along one path to be recognized if 
they are reached along another path, in order to prevent 
duplicate search effort. 

Although both functions are important, storing all expanded 
nodes in a Closed list can quickly use all available memory. 

If one is willing to give up the ability to recognize when 
the same node is reached along different paths, IDA* and 
RBFS can solve search problems in linear space [Korf, 1985; 
1993]. Related search algorithms provide a limited abil­
ity to prevent duplicate search effort by storing a limited 
number of expanded nodes [Reinefeld and Marsland, 1994; 
Miura and Ishida, 1998]. In complex graph search problems 
with many duplicate paths, however, an inability to prevent 
all duplicate search effort often leads to poor performance. 

Fortunately, it is not necessary to store all expanded nodes 
in a Closed list in order to eliminate all duplicate search ef­
fort. It is only necessary to store enough nodes to form 

a "boundary" in the search graph that prevents previously 
closed nodes from being revisited. This is the strategy 
adopted by a pair of recent search algorithms [Korf, 1999; 
Korif and Zhang, 2000], which are related to earlier work 
on reducing the memory requirements of dynamic program­
ming algorithms for sequence comparison [Hirschberg, 1975; 
Myers and Miller, 1988]. If not all expanded nodes are stored 
in a Closed list, an alternative method of solution extraction 
is needed - since closed nodes along an optimal solution path 
may no longer be in memory when the search ends. So, these 
algorithms preserve information about nodes that are in the 
middle of a solution path. After the search ends, they use this 
information to divide the original problem into sub-problems 
- employing a divide-and-conquer strategy to recursively re­
construct an optimal solution path. This approach to reduc­
ing memory requirements results in an algorithm with two 
distinct phases; the first phase searches from the start to the 
goal node, and the second phase uses a divide-and-conquer 
method to reconstruct an optimal solution path. 

In this paper, we describe some improvements of this 
search strategy. Earlier search algorithms that use this strat­
egy do not store a Closed list at all [Korf, 1999; Korf and 
Zhang, 2000]. Instead they include extra information in open 
nodes, and even insert additional nodes into the Open list, 
to ensure that it forms a "boundary" that prevents "leaks" 
back into the closed region. Instead of adding information 
to the Open list, our algorithm preserves some already ex­
panded nodes in a Closed list - but only enough to create a 
boundary and allow efficient solution reconstruction. Much 
of the closed region of the search can be removed from mem­
ory. Thus, we call this a sparse representation of the Closed 
list, and a sparse-memory approach to graph search. We show 
that it results in a more flexible approach to reducing memory 
requirements that offers several advantages. 

2 Background 
The most closely related algorithms to the search algorithm 
we introduce in this paper are Divide-and-Conquer Bidirec­
tional Search (DCBS) [Korf, 1999] and Divide-and-Conquer 
Frontier Search (DCFS) [Korf and Zhang, 2000]. Although 
both are general graph-search algorithms, they were devel­
oped as an approach to performing multiple sequence align­
ment, and the memory-saving technique they use was first 
used by related dynamic programming algorithms for se-
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quence comparison [Hirschberg, 1975; Myers and Miller, 
1988]. To provide some perspective, we begin with a brief 
description of the multiple sequence alignment problem. For 
a detailed description of this problem, we refer to our refer­
ences. 

2.1 Mu l t ip le sequence al ignment 
Alignment of multiple DNA or protein sequences is an im­
portant problem in computational biology. It provides a way 
to measure the similarity between sequences and detect re­
lated segments. Alignment involves inserting gaps into se­
quences in order to maximize the number of matching "char­
acters." It is well-known that this problem can be formal­
ized as a shortest-path problem in a n-dimensional lattice, 
where n is the number of sequences to be aligned. The 
number of nodes in the lattice is ln, where / is the aver­
age length of sequences, and thus grows polynomially with 
the length of sequences, and exponentially with the num­
ber of sequences. Although dynamic programming is the 
traditional method for solving this problem, A* has been 
shown to outperform it by using an admissible heuristic to 
limit the number of nodes in the lattice that need to be ex­
amined to find an optimal alignment [Ikeda and Imai, 1999; 
Lermen and Reinert, 2000]. But given the large number of 
nodes that usually must be examined, memory is a bottleneck, 
and techniques for solving this problem in reduced memory 
can be very helpful. 

2.2 Divide-and-conquer f ront ier search 
Both Divide-and-Conquer Bidirectional Search 
(DCBS) [Korf, 1999] and Divide-and-Conquer Frontier 
Search (DCFS) [Korf and Zhang, 2000] use the same 
strategy for reducing memory requirements. The difference 
is that DCBS uses bidirectional search and DCFS uses 
unidirectional search. Korf and Zhang [2000] find that 
unidirectional search results in better performance, and so 
we refer to DCFS in the rest of this paper. 

DCFS reduces memory requirements by storing only the 
frontier nodes of the search, not the interior nodes - that is, 
by using an Open list but not a Closed list. Because it does not 
use a Closed list, DCFS must use some other method to avoid 
duplicate node expansions and to extract an optimal solution 
path at the end of the search. The problem of avoiding dupli­
cate node expansions is particularly important in the case of 
multiple sequence alignment because there are combinatori-
ally many paths from the start node to any other node. For 
this reason, linear-space search algorithms that do not test for 
duplicates, such as IDA*, have "pitiful results" (in the words 
of Korf [1999]), when used for multiple sequence alignment. 
Even bounded-memory search algorithms that detect some 
but not all duplicates have been reported to perform poorly 
on this problem [Yoshizumi et ai, 2000]. 

To avoid duplicate node expansions, DCFS uses the fol­
lowing techniques to prevent the search from "leaking" back 
into the closed region, that is, to prevent closed nodes from 
being re-generated. First, it stores in each node a list of for­
bidden operators. This list includes one operator for each 
neighbor (predecessor or successor) of this node that has al­
ready been generated. When the node is later selected for 

expansion, only operators that are not among the forbidden 
operators are used to generate its successor nodes. This pre­
vents the search from re-generating nodes that may have been 
already closed and removed from memory. However, a com­
plication arises in the case of directed graphs - in particu­
lar, directed graphs in which a node can have predecessors 
that are not also potential successors. If a node is expanded 
and removed from memory before all of its predecessors have 
been generated and inserted into the Open list, it can be re­
generated if one of these predecessor nodes is later expanded. 
To prevent this, DCFS modifies the Open list in a second way. 
When a node is expanded, it generates not only its successor 
nodes, but all of its predecessor nodes - even if the search has 
not yet found a path to these predecessor nodes. If there is not 
yet a legal path to these predecessor nodes, they are assigned 
an infinite /-cost to prevent them from being expanded until 
a legal path is found. 

To make it possible to reconstruct the solution path at the 
end of the search, DCFS modifies nodes in a further way. In 
each node past the midpoint of the search, it stores all in­
formation about a node on its path that is about halfway be­
tween the start and goal node. Then, when the search is com­
pleted, DCFS knows a middle node on the optimal solution 
path, and can reconstruct the solution path by a divide-and-
conquer approach. Using the same search algorithm, it recur­
sively solves the subproblems of finding an optimal path from 
the start node to the middle node, and then from the middle 
node to the goal node. This recursive method of solution re­
construction is essentially the divide-and-conqucr idea first 
proposed by Hirschberg [1975]. 

2.3 L imi ta t ions 
Korf and Zhang [2000] show that DCFS can be very effec­
tive in "problem spaces that grow polynomially with prob­
lem size, but contain large numbers of short cycles," includ­
ing path-planning in two-dimensional grids and multiple se­
quence alignment, assuming a small number of sequences. 
They acknowledge that their search algorithm is not as ef­
fective in an "exponential problem space with a branching 
factor of two or more." In that case, they explain, the Open 
list is much larger than the Closed list and "not storing the 
Closed list doesn't save much." In fact, the multiple sequence 
alignment problem is an exponential problem space (and NP-
complete [Just, 2001]), when the number of sequences to be 
aligned is not bounded. Its branching factor is 2n — 1 (where n. 
is the number of sequences), and the size of the Open list can 
dwarf the size of the Closed list when aligning as few as five 
or six sequences. This problem is well-known and has moti­
vated development of techniques for reducing the size of the 
Open list when using A* to align multiple sequences. These 
include use of an upper bound to prune open nodes that can­
not lead to an optimal solution [Ikeda and Imai, 1999], and 
use of partial node expansions [Yoshizumi et al., 2000]. 

As it turns out, it is difficult to combine DCFS with tech­
niques for reducing the size of the Open list without creating 
inefficiencies, or even "leaks" back into the closed region. It 
is possible to combine DCFS with Partial Expansion A*, a 
technique for reducing the size of the Open list by allowing 
partially expanded nodes [Yoshizumi et al., 2000]. This can 
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be beneficial in some cases. But allowing nodes to be partially 
expanded has the effect of reducing the number of nodes that 
are closed. In turn, this reduces the memory-saving effect 
of DCFS by reducing the number of nodes eligible to be re­
moved from memory, as our experimental results will show. 

Another approach to reducing the size of the Open list is 
to prune open nodes when their /-cost is greater than an up­
per bound on the optimal /-cost, as in Enhanced A* [Ikeda 
and Imai, 1999]. Because this technique does not reduce the 
number of closed nodes, the idea of combining it with DCFS 
appears more promising. However, it introduces other dif­
ficulties. Recall that DCFS generates all predecessors of a 
node when it is expanded, even if it has not yet found a path 
to these predecessors. If nodes are pruned from the Open 
list, no path may ever be found to these extra nodes, and the 
Open list may become cluttered with useless nodes that can 
never be removed. In directed graphs with the special prop­
erty that the set of successors of each node is disjoint from the 
set of predecessors, such as the search graph of the multiple 
sequence alignment problem, this inefficiency is the only neg­
ative effect of pruning the Open list. But in directed graphs 
that do not share this property, and in all undirected graphs, 
pruning nodes from the Open list can also result in "leaks" 
back into the closed region, as follows. The first time a node 
is generated, there is no guarantee that the best path to it has 
been found. So, if it is pruned using an upper bound, it may 
later be re-generated if a better path to it is found. But since 
the forbidden operators associated with the node when it was 
first generated were lost when it was pruned, a node that was 
previously closed could be re-generated. 

The difficulty of combining DCFS with techniques for re­
ducing the size of the Open list is a significant limitation. 
Another potential limitation worth mentioning is the over­
head for storing a list of forbidden operators in each node. 
For problems with a small branching-factor, this overhead is 
slight. But for the multiple sequence alignment problem, this 
overhead grows as the number of sequences grows. Recall 
that the number of operators (i.e., the branching factor) of 
multiple sequence alignment is and DCFS stores in­
coming as well as outgoing edges in the list of forbidden op­
erators. Thus, the total number of edges incident to a node is 

Although Korf and Zhang [2000] 
claim that the space complexity of DCFS for multiple se­
quence alignment is compared to the space 
complexity of A* , this claim rests on the assumption that a 
node takes constant storage. As n increases, the storage re­
quired for the list of forbidden operators increases exponen­
tially. In fact, the space complexity of DCFS for mulitple 
sequence alignment is and its advantage over the 

space complexity of A* disappears when  

3 Sparse-Memory Search Algorithm 
The algorithm we describe in the rest of this paper adopts 
a strategy for reduced-memory search that is similar to the 
strategy used by DCFS. However, it implements this strategy 
in a simpler way that is more compatible with techniques for 
reducing the size of the Open list, and does not require storing 
lists of forbidden operators in nodes. 

Figure 1: An illustration of the relationships among the kernel 
and the boundary of the search interior, the search frontier, 
and the entire state space. 

A key difference from DCFS is that our algorithm does 
not entirely eliminate the Closed list. Instead, we propose 
a sparse representation of the Closed list that allows many 
(but not all) closed nodes to be removed from memory. To 
explain our approach, we note that the search interior (the set 
of closed nodes) can be partitioned into two disjoint subsets 
that we call the set of boundary nodes and the kernel of the 
search interior. 

Definition 1 Let I be the set of search interior nodes, i.e., 
nodes whose lowest-cost paths have been found. The kernel 
of I, denoted K (I), is defined as follows: 

where Pred(k) denotes the set of predecessor nodes ofk, that 
is, the set of nodes that can make a transition into node k in 
the underlying graph, which may be directed or undirected. 
Basically, the kernel is the set of nodes whose predecessor 
nodes are all interior (i.e., closed) nodes. 
Definition 2 The set of boundary nodes of search interior I, 
denoted B(I), is defined as the non-kernel nodes of l, that is: 

Another way of describing a boundary node is to say that at 
least one of its predecessor nodes is not an interior node, or 
mathematically, 

Figure 1 illustrates the relationship between the kernel and 
boundary of the search interior. Note that nodes in the bound­
ary can enter the kernel, but once a node is in the kernel it 
remains there. The nodes in the kernel are eligible for re­
moval from memory because they are not needed to prevent 
duplicate search effort. 

The intuitive meaning of "boundary" can be explained as 
follows. Because every closed node is reachable from the 
start node, the set of closed nodes can be considered a "vol­
ume" in the underlying graph that encompasses the starting 
node. Nodes outside this volume cannot reach nodes inside 
the volume without passing through some node in the bound­
ary. Thus, storing only the boundary nodes in the Closed list 
is as effective as storing the entire "volume," with respect to 
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preventing the search from "leaking" back into the closed re­
gion. (From this perspective, one could say that DCFS adds 
nodes to the Open list - i.e., the search frontier - in order 
to ensure that the frontier forms a boundary, and it treats the 
Closed list as the kernel that can be removed from memory.) 

In addition to keeping boundary nodes in the Closed 
list, our sparse-memory approach keeps some other, non-
boundary nodes that allow solution reconstruction. The 
method of solution reconstruction is different from the one 
used by DCFS. Recall that DCFS stores in each node all infor­
mation about a "middle" node on the path through this node 
to the goal. In our approach, each node in the search graph 
maintains a pointer to its predecessor node along the best path 
to this node, or to some earlier, ancestral node along this 
path} In the latter case, we have a sparse solution path. 

If a node in a sparse solution path has a pointer to an an­
cestral node instead of a pointer to its predecessor, we call 
the ancestral node a relay node to indicate that it skips over 
some nodes in an original, "dense" solution path. We also 
consider the start node (which has no backward pointer) a re­
lay node. How relay nodes are created and used in solution 
reconstruction is explained below. Here, we simply note that 
relay nodes are never removed from the Closed list because 
they are needed for solution reconstruction. Thus, a sparse 
representation of the Closed list includes all boundary nodes 
and all relay nodes. Nodes that do not fall in either category 
may be removed from memory. 

It is well-known that A* can be viewed as Dijkstra's al­
gorithm applied to a transformed graph with the same set 
of nodes and edges, but modified edge costs given by the 
equation where  

is the cost of edge in the untransformed 
(or transformed) graph and is the cost esti­
mate of the lowest-cost path from node u (or v) to the goal 
node. Therefore, we present our sparse-memory algorithm as 
a modification of Dijkstra's algorithm, and note that our de­
scription applies to A* also. Our sparse-memory approach 
requires two assumptions. First, the transformed (or untrans­
formed) graph cannot contain any negative-cost edges. This 
means the heuristic used by A* must be consistent. With­
out this assumption, it is impossible for our algorithm (or any 
heuristic search algorithm) to accurately identify the interior 
of the search, and DCFS makes the same assumption. Sec­
ond, we assume that our algorithm knows the in-degree (in 
the underlying graph) of every node it visits. For comparison, 
DCFS assumes that it knows every predecessor (in the under­
lying graph) of a node it visits. Thus, our second assumption 
is weaker than that made by DCFS. 

Because pointers require less memory than state information 
about a midpoint node, the memory required to store all pointers 
plus relay nodes could be less than the memory required to copy state 
information about the same midpoint node into many other nodes. 
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Search), in which procedure ExpandNode assumes a directed 
graph. See Figure 3 for the pseudocode of ExpandNode in 
undirected graphs. 



3.1 Prun ing the Closed list 

Our search algorithm must be able to efficiently distinguish 
between the kernel and boundary of the search interior, in 
order to prune nodes from the kernel. Recall that a node is 
in the kernel if all of its predecessors are closed. To identify 
such nodes, we introduce a technique for keeping track of the 
number of unexpanded predecessors for each generated-and-
stored node. We call this number the value of a node. It is 
initially set to the number of predecessors (the in-degree) of 
the node in the underlying graph minus one to account for the 
predecessor that generated it. The is updated during 
node expansion. As each successor of a node is considered 
(some of which may already be in the Open or Closed lists), 
its p- value is decremented. (See lines 3, 8 and 10 of procedure 
ExpandNode in Figure 2.) This requires negligible time and 
space overhead, and, given kernel-membership for a 
node can be determined in constant time by checking whether 
it is a closed node with a of zero. 

An advantage of the sparse-memory approach is that it 
does not immediately remove closed nodes from memory, un­
like DCFS. A sparse-memory version of Dijkstra's algorithm 
(or A*) acts exactly like Dijkstra's algorithm (or A*) until 
it senses that memory is about to be exhausted. Only then 
does it invoke procedure PruneClosedList in Figure 2 to re­
cover memory. This procedure prunes nodes from the Closed 
list in two steps. First it updates the ancestral pointer of any 
boundary node whose predecessor is about to be pruned (lines 
1-8). This is necessary to allow solution reconstruction and 
requires finding the relay node that is the closest boundary 
node along its solution path (lines 3-5), and updating its an­
cestral pointer accordingly (line 7). This makes this boundary 
node a relay node, and to prevent it from being pruned in the 
future, its is set t o ( l i n e 8). After this step, kernel 
nodes are pruned unless they are a start node or relay node 
created in a previous pruning step (lines 9-12). Updating the 
ancestral pointers of nodes (followed by pruning) creates a 
sparse solution path, from which a complete or "dense" solu­
tion path can be reconstructed after the search terminates. 

3.2 Solution Path Reconstruct ion 

The fact that the Closed list is not pruned unless memory is 
close to being exhausted means that the overhead of solution 
reconstruction can be avoided if memory resources are ade­
quate. In that case, the sparse-memory algorithm acts exactly 
like Dijkstra's algorithm (or A*) and an optimal solution path 
is extracted in the conventional way. 

If the Closed list has been pruned, an optimal solution 
path is reconstructed by invoking the Sparse-Memory Graph 
Search algorithm (SMGS) in Figure 2 recursively. First the 
sparse solution path (SSP) is extracted (line 11) in the con­
ventional way by tracing pointers backward from the goal. 
Then the corresponding dense solution path (DSP) is re­
constructed as follows. For each pair of consecutive nodes 

in the SSP (starting from the start 
node), the algorithm checks to see if is a pre­
decessor of (line 14). I f so, n o d e i s added to 
the tail of the DSP (line 15); otherwise, the search algorithm 
calls itself recursively with and as the 

Figure 3: Pseudocode for ExpandNode in undirected graphs. 

new start and goal nodes, in order to get a dense solution path 
between the two which is added to the tail of DSP (line 17). 

Another difference from DCFS that is worth noting is that 
DCFS divides a problem into two subproblems at each level 
of the recursion. The sparse-memory approach can divide a 
problem into two or more subproblems. The extra flexibility 
is possible because the sparse-memory approach uses relay 
nodes with ancestral pointers, whereas DCFS stores all infor­
mation about a middle node in each node. When a problem 
is divided into more than two subproblems, the subproblems 
are smaller and easier to solve and solution reconstruction can 
be faster. In fact, relay nodes can be spaced at half intervals, 
one-third intervals, or any other interval, and allow a tradeoff 
between the sparseness of the search interior and the speed of 
solution reconstruction. 

3.3 Prun ing the Open list 

We now consider how easily the sparse-memory approach to 
pruning the Closed list can be combined with techniques for 
pruning the Open list. Pruning nodes on the Open list that 
have an /-cost greater than an upper bound on the optimal 
/-cost creates difficulties for DCFS, as discussed earlier. An 
advantage of the sparse-memory approach is that it does not 
create difficulties, at least in solving problems for which the 
set of predecessors of a node is disjoint from the set of succes­
sors, such as the multiple sequence alignment problem. This 
advantage will be illustrated in our experimental results. 

For other directed graphs, that is, for directed graphs in 
which the same node can be both predecessor and succes­
sor of another node, DCFS allows leaks back into the closed 
region when the Open list is pruned. The sparse-memory ap­
proach does not, and this is another advantage. Unfortunately, 
the sparse-memory approach has a problem in such graphs. 
If the best path to a node has not been found when it is first 
generated, it could be pruned and re-generated later, when a 
better path is found. Since are erased when the node 
is pruned, the of such nodes wil l not be decremented 
to zero. As a result, the sparse-memory algorithm may not 
recover as much memory from the Closed list. However, our 
experimental results suggest that this inefficiency is minor. 
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Figure 4: Example of Sparse-memory Dijkstra searching for an optimal alignment of two sequences. Panels (a) and (b) show 
the search space just before and after the first pruning of the Closed list. Panels (c) and (d) show the search space just before 
and after the second pruning. Panel (e) shows the sparse solution path at the end of the search. 

In undirected graphs, we noted earlier that DCFS also al­
lows "leaks" back into the closed region when the Open list is 
pruned. The sparse-memory algorithm does not, if we make 
a minor modification, as explained in the following. 

3.4 Undirected graphs 
The pseudocode in Figure 2 shows the ExpandNode proce­
dure for directed graphs. Figure 3 gives the pseudocode of 
the ExpandNode procedure in undirected graphs. The differ­
ence is that in undirected graphs, are only set and 
decremented for closed nodes, not open nodes. Thus, prun­
ing open nodes cannot cause any problems by distorting 
values. In fact, the pseudocode in Figure 3 could be used for 
directed graphs also. But in directed graphs, it would require 
considering all predecessors of a node as well as successors 
during node expansion, in order to set correct. The 
overhead for this would be significant. This is not a problem 
in undirected graphs because the set of potential successors 
of a node is equal to the set of potential predecessors. 

3.5 H y b r i d algor i thms 
The sparse-memory algorithm we have described is based on 
more than one idea. It uses nodes on the Closed list to cre­
ate a "boundary" that prevents re-generation of closed nodes, 
instead of using the Open list as a boundary. In addition, it 
uses relay nodes for divide-and-conquer solution reconstruc­
tion, instead of storing in each node state information about a 
middle node along the search path. 

Because these ideas can be considered separately, it is pos­
sible to create search algorithms that are hybrids of DCFS and 
the sparse-memory approach. For example, the DCFS tech­
nique of using the Open list as a boundary could be combined 
with relay nodes. This would create a version of DCFS that 
is able to divide a solution path into more than two pieces, 
allowing flexible (and potentially faster) solution reconstruc­
tion; use of relay nodes would also allow DCFS to delay 
pruning of the Closed list until memory is full. Similarly, 
some of the techniques used by DCFS can be considered in­
dependently. For example, forbidden operators can be used 
in combination with the sparse-memory approach, instead of 

One advantage of using forbidden operators is that 
they sometimes speed up search, since it is faster not to gener­
ate a node than to generate it and check for a duplicate on the 
Open or Closed list. We consider the performance of these 
hybrid algorithms in the computational results that follow. 

4 Computational Results 
We first illustrate how a sparse-memory version of Dijkstra's 
algorithm works by showing how it solves a small pairwise 
sequence alignment problem. Then we consider the perfor­
mance of sparse-memory A* on more challenging problems. 

4.1 Example 
Consider the problem of aligning two sequences, ACTGAT 
and TGACTGC, using a very simple cost function: zero for 
a match, one unit for a substitution, and two units for a gap. 
The state space of the problem can be represented by a two-
dimensional grid in which the columns correspond to one se­
quence and the rows to the other. The problem of finding 
an optimal alignment of the two sequences corresponds to 
the problem of finding an optimal path from the start node in 
the upper-left corner to the goal node in the lower-right cor­
ner, where horizontal and vertical moves correspond to gap 
insertions in one or the other sequence, and diagonal moves 
correspond to a substitution or match of characters. 

Figure 4 shows the behavior of sparse-memory Dijkstra\s 
algorithm at the critical points when memory becomes full 
and the Closed list is pruned. It assumes that memory ca­
pacity is 30 nodes. Figure 4(a) shows the explored state 
space when memory is full for the first time. The number in 
each cell is the g-value of the corresponding state (or node). 
For closed nodes, the g-value is highlighted in bold italics. 
Among the 17 closed nodes, II are identified as kernel nodes 
and pruned. Figure 4(b) shows the result of pruning. When 
memory is full the second time, as shown in Figure 4(c), the 
Closed list is pruned again and 12 kernel nodes are removed 
from memory, as shown in Figure 4(d), freeing enough mem­
ory for continued search. Figure 4(e) shows the state space in 
memory when the goal node (the cell in the lower-right cor­
ner) is expanded. The SSP solution is shown as a chain of 
thick dashed arrows. The arrows drawn in thin dashed lines 
represent ancestor pointers that are created during pruning. 

In this example, it is also possible to see how the Open list 
can be pruned using the sparse-memory approach. Suppose 
we know that 8 is an upper bound on the cost of an opti­
mal alignment. Then all nodes with g-values greater than or 
equal to 8 can be pruned from the Open list, and the search 
progresses in the same way except for not storing the seven 
nodes whose g-values equal 8. Note that pruning nodes in the 
Open list will not change the boundary of the search interior. 
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4.2 Mu l t ip le sequence al ignment 
We tested Sparse-memory A* (Sparse-A*) on a series of chal­
lenging multiple sequence alignment problems, in order to 
compare its performance to DCFA* (the DCFS version of 
A*) . We used a 300Mhz Sun UltraSparc II workstation with 
two gigabytes of RAM. Results are displayed in Table 1. 

First, we considered the identical test domain used by Korf 
and Zhang [2000]: alignment of three random sequences of 
length 4000 using their simple cost function, with results av­
eraged over 100 trials. Both DCFA* and Sparse-A* are effec­
tive in this domain, whereas A* could not solve any problem 
instance due to memory limitations. Versions of A* that use 
special techniques to recover memory by pruning the Open 
list [Ikeda and Imai, 1999; Yoshizumi et al., 2000] were also 
unable to solve any of these problem instances. This is be­
cause the Closed list, not the Open list, fills most of mem­
ory in this case. One reason there are so many closed nodes 
is that the accuracy of the pairwise heuristic used for multi­
ple sequence alignment depends on the similarity of the se­
quences. Because random sequences have only random sim­
ilarities, the heuristic is weak, resulting in many node expan­
sions and closed nodes. 

For this problem set, DCFA* is more memory-efficient 
than Sparse-A*. However, Sparse-A* runs faster. It runs 
faster for long sequences like these because the solution path 
is correspondingly long, and solution reconstruction can be 
faster using relay nodes. At each recursion level, relay nodes 
make it possible to divide a solution path into several smaller, 
easier-to-solve subproblems, instead of always dividing it in 
half. Faster solution reconstruction comes at the expense of 
a small increase in memory for extra relay nodes, as can be 
seen by comparing the performance of DCFA* using relay 
nodes (a hybrid algorithm) to standard DCFA*. 

Why can DCFA* be more memory-efficient than Sparse-
A*? One factor is that using relay nodes to divide a solution 
path into more than two pieces requires extra memory for the 
extra relay nodes - a classic space-time tradeoff. Another 
factor is that use of forbidden operators allows a closed node 
to be pruned as soon as all its predecessors are generated. 
By contrast, use of p-values requires waiting until all prede­
cessors are closed, before pruning the node. As a result, a 
hybrid algorithm that combines the sparse-memory approach 
with forbidden operators outperforms the sparse-memory ap­
proach alone, for this problem set. These two factors may not 
account for all of the difference in memory efficiency, but we 
currently have no other explanation. 

We next compared Sparse-A* and DCFA* on real protein 
sequences using the PAM250 cost matrix, which is widely-
used by biologists. In aligning five sequences randomly se­
lected from a pool of low-similarity protein sequences of 
length 300 used in previous experiments [McNaughton et ai, 
2002], Sparse-A* and DCFA* were again effective in solv­
ing all instances. By contrast, A* ran out of memory on 
most instances. For this problem set, the Enhanced A* al­
gorithm [Ikeda and Imai, 1999], which uses an upper bound 
to prune nodes from the Open list, performs very well. This 
is because the number of open nodes is very large for this set 
of problems. Unlike DCFA*, the sparse-memory approach 
can be safely combined with this technique of pruning the 

Algorithm | Statistics 
3 seqs. 
(4,000) 

5 seqs. 
(300) 

7 seqs. 
(450) | 

DCFA* 
[ Sees. 

Nodes(K) 
1 Mbytes 

1,435 
1,953 

284 

2,930 
9,997 

551 

1721 
1,200 

112 

DCFA* + 
relay nodes 

Sees. 
Nodes(K) 
Mbytes 

712 
2,202 

293 

2,863 
10,910 

561 

97 
1,215 

114 

Sparse-A* 
Sees. 
Nodes(K) 
Mbytes 

908 
4,510 

389 

3,073 
17,626 

766 

65 
1,093 

72 

Sparse-A* + 
forbidden ops. 

Sees. 
Nodes(K) 
Mbytes 

871 
3,388 

355 

3,218 
13,100 

673 

101 
1,071 

104 

Enhanced A* 
Sees. 
Nodes(K) 
Mbytes 

can't 
solve 

1,940 
16,844 

720 

24 
76 
28 

Enhanced 
Sparse-A* 

Sees. 
Nodes(K) 
Mbytes 

917 
4,510 

389 

2,785 
10,600 

465 

24 
76 
28 

Table 1: Performance comparison of DCFA*, sparse-memory 
A*, Enhanced A*, and hybrid algorithms. The node count 
is the number of stored nodes, measured in thousands, and 
memory includes storage of the pairwise heuristic. 

Open list. This gives it an overall advantage, and Enhanced 
Sparse-A* is the best-performing algorithm for this prob­
lem set. (Although Enhanced Sparse-A* stores slightly more 
nodes than DCFA*, it uses less memory because forbidden 
operators makes the DCFA* nodes larger. We also empha­
size the following point: although the table shows that the 
running time of Enhanced A* is less than the running time 
of Enhanced Sparse-A*, this does not mean that it is a faster 
algorithm. If Enhanced A* by itself can solve a problem in 
available memory, the sparse-memory version of Enhanced 
A* does not need to prune the Closed list at all, and has iden­
tical performance. But for these experiments, we adjusted the 
sparse-memory algorithm to minimize its memory use - since 
memory is the key factor we are evaluating here.) 

A drawback of DCFA* is that its node size increases as 
the number of sequences being aligned increases. This be­
comes very apparent when DCFA* is used to align seven pro­
tein sequences of length around 450, randomly selected from 
a set of similar protein sequences used in previous experi­
ments [Yoshizumi et al, 2000]. The high similarity of these 
sequences gives rise to a very accurate heuristic, and makes 
these sequences much easier to align. Even A* can solve 
these problems. Although A*, Sparse-A* and DCFA* always 
expand the same number of nodes, DCFA* generates and 
stores an average of 10% more nodes in this domain because 
it inserts extra nodes in the Open list. A more serious prob­
lem is that the nodes created by DCFA* are two times bigger 
than the nodes created by the other algorithms, because they 
include lists of forbidden operators. As a result, DCFA* runs 
slower and uses more memory than any other algorithm, in­
cluding A*! (In aligning ten sequences, the nodes created by 
DCFA* are seven times larger than the nodes created by A*, 
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and their relative size almost doubles with each additional se­
quence thereafter.) The table shows Sparse-A* is not as effec­
tive as Enhanced A*, because pruning the Open list is much 
more important than pruning the Closed list, for this problem 
set. Nevertheless, Enhanced Sparse-A* performs no worse 
than Enhanced A*, and this point is important. The sparse-
memory approach improves performance when possible, and 
complements other techniques for reducing memory. 

For perspective, we discuss what happens if we combine 
DCFA* with Partial Expansion A* [Yoshizumi et al, 2000]. 
(In our experiments, we set the cutoff value for Partial Ex­
pansion A* to zero, to minimize memory use.) For the set of 
seven similar protein sequences, Partial Expansion DCFA* 
required an average of 29 Mbytes of memory, and 437 CPU 
seconds. The much greater running time is due to the over­
head of partial expansions. The slightly higher memory re­
quirement is because nodes are partially expanded, and nodes 
that are not closed cannot be pruned by DCFA*. For the 
set of three random 4000-length sequences, Partial Expan­
sion DCFA* stored 40% more nodes and ran 42% slower 
than DCFA*. Again, the reason is that partially expanded 
nodes are not pruned. Finally, we note that when DCFA* is 
combined with Enhanced A* , it consistently requires more 
memory (and CPU time) than DCFA* alone, due to the com­
plications discussed earlier. 

4.3 15-Puzzle 
The 15-puzzle is not a problem for which duplicate detection 
is a crucial issue. Nevertheless, it is interesting to consider 
as both a benchmark and an example of an undirected graph. 
We used 91 of the 100 problem instances in Korf (1985) as 
a test set. Sparse-A* by itself used an average of 79% of the 
memory used by A* ; DCFA* used an average of 44% of the 
memory used by A* ; and Enhanced A* used an average of 
57% of the memory used by A*. A sparse-memory version 
of Enhanced A* performed best. It used 32% of the memory 
used by A*. We also tested DCFA* combined with Enhanced 
A*. It is unable to prevent leaks back into the closed region, 
for reasons discussed earlier, and we noticed many node re-
expansions. Interestingly, it used only 10% of the memory 
used by A*, due to aggressive pruning, and ran faster than the 
other algorithms. But this is only because the 15-puzzle is a 
domain in which node re-generation has less overhead than 
managing the Open and Closed lists, since IDA* outperforms 
all of these algorithms on this problem. In undirected graphs 
with exponentially many duplicate paths, a sparse-memory 
version of Enhanced A* is likely to perform best. 

5 Conclusion 
We have proposed a sparse-memory approach to graph search 
that builds on ideas in earlier work, but implements them in 
a way that is often more effective. A key advantage of this 
approach to reducing the size of the Closed list is that it can 
be combined with a technique for reducing the size of the 
Open list by upper-bound pruning. This is especially use­
ful for large branching-factor problems where the size of the 
Open list would otherwise dramatically exceed the size of the 
Closed list, such as the multiple sequence alignment problem 
when there are more than four or five sequences. 

The sparse-memory approach has other advantages. It al­
lows more flexible, and potentially faster, solution reconstruc­
tion. And last but not least, it can behave exactly like A* (or 
Enhanced A*, or Dijkstra's algorithm) until it reaches a mem­
ory limit, and only then removes nodes from the Closed list. 
Thus, there is (virtually) no overhead for this technique un­
less a search problem cannot be solved within a given mem­
ory bound. Then the overhead for solution reconstruction is 
compensated for by the reduced memory requirements. 
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