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Abstract: An efficient model identification algorithm for a large class of linear-in-the-parameters
models is introduced that simultaneously optimises the model approximation ability, sparsity and
robustness. The derived model parameters in each forward regression step are initially estimated via
the orthogonal least squares (OLS), followed by being tuned with a new gradient-descent learning
algorithm based on the basis pursuit that minimises the l1 norm of the parameter estimate vector.
The model subset selection cost function includes a D-optimality design criterion that maximises
the determinant of the design matrix of the subset to ensure model robustness and to enable the
model selection procedure to automatically terminate at a sparse model. The proposed approach is
based on the forward OLS algorithm using the modified Gram–Schmidt procedure. Both the
parameter tuning procedure, based on basis pursuit, and the model selection criterion, based on
the D-optimality that is effective in ensuring model robustness, are integrated with the forward
regression. As a consequence the inherent computational efficiency associated with the
conventional forward OLS approach is maintained in the proposed algorithm. Examples
demonstrate the effectiveness of the new approach.

1 Introduction

Associative memory networks (such as B-spline networks,
radial basis function (RBF) networks and support vector
machines (SVM)) have been extensively studied [1–4].
A main obstacle in nonlinear modelling using associative
memory networks or fuzzy logic has been the problem of the
curse of dimensionality [5]. This factor applies to all lattice-
based networks or knowledge representations such as fuzzy
logic (FL), RBF, Karneva distributed memory maps, and all
neurofuzzy networks (e.g. adaptive network based fuzzy
inference system (ANFIS) [6], Takagi and Sugeno model
[7], etc.). For these systems it is essential to use some model
construction procedure to overcome the obstacle by
deriving a model with an appropriate dimension. For
general linear-in-the-parameter systems, an orthogonal
least squares (OLS) algorithm based on Gram–Schmidt
orthogonal decomposition can be used to determine the
significant model elements and associated parameter
estimates, and the overall model structure [8].

Regularisation techniques have been incorporated into
the OLS algorithm to produce a regularised orthogonal least
squares (ROLS) algorithm that reduces the variance of
parameter estimates [9, 10]. To produce a model with good

generalisation capabilities, model selection criteria such as
the Akaike information criterion (AIC) [11] are usually
incorporated into the procedure to determine the model
construction process. Due to the fact that AIC or other
information based criteria are usually simplified measures
derived as an approximation formula that is particularly
sensitive to model complexity. The use of AIC or other
information based criteria, if used in forward regression,
only affects the stopping point of the model selection, but
does not penalise regressors that might cause poor model
performance, e.g. too large parameter variance or ill-
posedness of the regression matrix, if this is selected.

While OLS is based on the standard QR factorisation,
principal component analysis (PCA) is widely used to
reduce the input dimensions based on the singular vector
decompositions (SVD) [12] in signal processing appli-
cations. The derived model is based on an orthogonal basis
that are a few significant hidden variables constructed by the
full set of input variables. By using the full set of input
variables, more sophisticated parameter regularisation
(hierarchical prior) [13] and the Markov-chain Monte
Carlo (MCMC) algorithm, improved approximation=
generation performance can be achieved with a trade-off
of high computational expense. However, the OLS remains
a popular practical approach in dynamical system modelling
due to less computational expense compared with SVD, and
the ease of conversion from the orthogonal basis to only a
few selected original input variables, as these are essential
requirements for online system condition monitoring and
control objectives.

In optimum experimental design [14], it is common that
the models are also in the form of linear-in-the-parameters.
For these models the design criteria are defined as function
of the eigenvalues of the design matrix, hence quantitatively
measure the model adequacy. In recent studies [15, 16], we
have outlined efficient learning algorithms in which
composite cost functions were introduced to optimise the
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model approximation ability by using the forward OLS
algorithm [8], and simultaneously the model adequacy by
using an A-optimality design criterion (i.e. minimises the
variance of the parameter estimates), or a D-optimality
criterion (i.e. optimises the parameter efficiency and model
robustness via the maximisation of the determinant of the
design matrix). It was shown that the resultant models can
be improved based on A- or D-optimality. These algorithms
lead automatically to an unbiased model parameter estimate
with an overall robust and parsimonious model structure.
Combining a locally regularised orthogonal least squares
(LROLS) model selection [17] with D-optimality experi-
mental design further enhances model robustness [18]. It has
been shown [18, 19] that the parameter regularisation is
equivalent to a maximised a posterior PDF (MAP) of
parameters from bayesian viewpoint by adopting a gaussian
prior for parameters.

The regularisation [9, 10] uses a penalty function on l2

norms of the parameters. Alternatively the model sparsity
can be achieved by a novel concept of the basis pursuit or
least-angle regression [20, 21] that aims to obtain a model
by minimising the l1 norm of the parameters. The bayesian
interpretation for the basis pursuit method is simply by
adopting an exponential prior for parameters (Section 2.1).
The advantage of basis pursuit is that it can achieve much
sparser models by forcing more parameters to zero than
models derived from the minimisation of the l p norm, as
most l p norms will produce parameters small, but nonzero,
values. Compared with the method of regularisation [9, 10]
the basis pursuit method will not generally be computa-
tionally efficient because by simply changing from l2 norm
to l1 norm in the cost function, this effectively changes a
quadratic optimisation problem with a simple solution into
a more sophisticated problem for which a convex,
nonquadratic optimisation is generally required [20, 21].

In this paper a new model identification technique is
introduced by using forward regression with basis pursuit
and D-optimality design. Based on previous work [15] we
incorporate the concept of basis pursuit to tune the
parameter estimates as derived from the orthogonal least
squares method. A gradient-descent parameter learning
method is initially introduced with proven convergence,
followed by its application to the parameters tuning in the
modified Gram–Schmidt algorithm. It is shown that
parameter tuning by basis pursuit, following the initializa-
tions of least squares inherent in the Gram–Schmidt
procedure, will enforce model sparsity yet fit well in the
procedure automated by the D-optimality model selective
criterion. In the proposed algorithm the gradient descent of
the basis pursuit contributes as a tuning procedure, rather
than the main optimisation method, so the computational
efficiency of the method due to the forward OLS regression
maintains.

2 Preliminaries

A linear regression model (RBF neural network, B-spline
neurofuzzy network) can be formulated as [1, 2]

yðtÞ ¼
XM

k¼1

pkðxðtÞÞyk þ �ðtÞ ð1Þ

where t ¼ 1; 2; . . . ;N; and N is the size of the estimation data
set, y(t) is system output variable, xðtÞ ¼ ½yðt � 1Þ; . . . ;
yðt � nyÞ; uðt � 1Þ; . . . ; uðt � nuÞ�T is the system input vector
with assumed known dimension of ðny þ nuÞ; u(t) is system
input variable, pkð�Þ is a known nonlinear basis function such

as RBF or B-spline fuzzy membership functions and �ðtÞ is an
uncorrelated model residual sequence with zero mean and
variance of s2: Equation (1) can be written in matrix form as

y ¼ PQþ X ð2Þ
where y ¼ ½yð1Þ; . . . ; yðNÞ�T is the output vector. Q ¼
½y1; . . . ; yM�T is parameter vector, X ¼ ½�ð1Þ; . . . ; �ðNÞ�T is

the residual vector, and P is the regression matrix

P ¼

p1ð1Þ p2ð1Þ . . . pMð1Þ
p1ð2Þ p2ð2Þ . . . pMð2Þ
..............................................

p1ðNÞ p2ðNÞ . . . pMðNÞ

2
664

3
775

with pkðtÞ ¼ pkðxðtÞÞ: Denote the column vectors in P as
pk ¼ ½pkð1Þ; . . . ; pkðNÞ�T ; k ¼ 1; . . . ;M: An orthogonal
decomposition of P is

P ¼ WA ð3Þ
where A ¼ faijg is an M � M unit upper triangular matrix
and W is an N � M matrix with orthogonal columns that
satisfy

WT W ¼ diagfk1; . . . ; kMg ð4Þ
with

kk ¼ wT
k wk; k ¼ 1; . . . ;M ð5Þ

so that (2) can be expressed as

y ¼ ðPA�1ÞðAQÞ þ X ¼ WGþ X ð6Þ
where G ¼ ½g1; . . . ; gM�T is an auxiliary vector.

2.1 Modified Gram–Schmidt algorithm,
parameter regularisation and basis pursuit

For the orthogonalised system (6) the least squares estimates
is given by

gð0Þk ¼ wT
k y

wT
k wk

; k ¼ 1; . . . ;M ð7Þ

The original model coefficient vector Q ¼ ½y1; . . . ; yM�T can
then be calculated from AQ ¼ G through back substitution.
The modified Gram–Schmidt procedure, described sub-
sequently, can be used to perform the orthogonalisation of
(3) and parameter estimation (7). Starting from k ¼ 1; the
columns pj; k þ 1 � j � M are made orthogonal to the kth
column at the kth stage. The operation is repeated for 1 �
k � M � 1: Specifically, denoting p

ð0Þ
j ¼ pj; 1 � j � M;

then for k ¼ 1; . . . ;M � 1

wk ¼ p
ðk�1Þ
k

akj ¼
wT

k p
ðk�1Þ
j

wT
k wk

; k þ 1 � j � M

p
ðkÞ
j ¼ p

ðk�1Þ
j � akjwk; k þ 1 � j � M ð8Þ

where akj’s are components of the upper triangular matrix A.
The last stage of the procedure is simply wM ¼ p

ðM�1Þ
M : The

elements of the auxiliary vector G are computed by
transforming yð0Þ ¼ y in a similar way. For 1 � k � M

gð0Þk ¼ wT
k yðk�1Þ

wT
k wk

yðkÞ ¼ yðk�1Þ � gð0Þk wk ð9Þ

It can be easily verified that gð0Þk as derived from (9) is
equivalent to (7). Geometrically the system output vector y
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at step k is projected onto a set of orthogonal basis vectors
fw1; . . .wkg: The model residual is decreased by projecting
the system output vector y onto a new basis wk at this step.
Effectively (9) can be regarded as a linear fitting of yðk�1Þ by
using a single variable wðkÞ; and to derive the new model
residual yðkÞ; and so on. This observation is explored further
in Section 3.1 for the development of the proposed
algorithm in Section 3.2.

For better model parameter estimation bias=variance
tradeoff, regularisation can be applied. If regularisation is
performed to the parameter in orthogonal space, gk, then (9)
is simply replaced by the following

gðrÞk ¼ wT
k y

wT
k wk þ lk

; k ¼ 1; . . . ;M

yðkÞ ¼ yðk�1Þ � gðrÞk wk

ð10Þ

where lk � 0 are regularisation parameters which can be
optimised by being treated as hyperparameters in the
Bayesian approach [18]. These results are obtained by
setting the parameter optimiser as

V ðrÞ ¼ 1

2
E½�2ðtÞ� þ

XM
k¼1

lkg
2
k

Because the regularisation term is given as the l2 norm,
the closed-form parameter estimates solution given by
(10) is available as solution to a quadratic form
optimisation.

Alternatively the basis pursuit method is simply given by
changing the l2 norm into l1 such that

V ¼ 1

2
E½�2ðtÞ� þ lTkGk1 ð11Þ

where l¼½l1;...;lny
�T ; kGk1¼½jg1j;...;jgny

j�T ; and ny�M
denotes the size of parameter vector of G with nonzero
parameters; lk � 0 are basis pursuit parameters. Note that
only nonzero parameters that are actually included in the
model are penalised, because a regressor with zero
parameter does not influence model performance.

The basis pursuit method tends to produce model with
greater sparsity than that of l2 parameter regularisation.
Because the solution of (11) is a nonquadratic optimisation
problem, there is no readily available closed-form solution
as simple as (10). In general, the basis pursuit will not be
computationally efficient since this is a more sophisticated
problem for which a convex, nonquadratic optimisation is
required [20]. The objective of this paper is to tackle this
problem by introducing some simple model identification
algorithm using the idea of basis pursuit, as introduced in
Section 3.

2.2 Bayesian regularisation and basis pursuit

The regularised parameter estimator by optimising VðrÞ is
equivalent to a maximised a posterior PDF (MAP) of
parameters in a bayesian approach [19, 18]. By the bayesian
theorem

pðGjDNÞ / pðGÞpðDN ;GÞ ð12Þ
It can be assumed that � � Nð0; s2Þ; and observations are
independent, so

pðDN ;GÞ ¼
1

ð2ps2ÞN=2
exp � 1

2s2

XN

t¼1

�2ðtÞ
" #

ð13Þ

whose maximisation leads to maximum likelihood (ML)
parameter estimator, which is equivalent to the least squares

estimator for linear-in-the-parameters models. The prior
pðGÞ serves as a solution to the inadequacy of ML estimator
by using prior knowledge of pðGÞ that controls superfluous
parameters for improved generalization. If the prior pðGÞ for
the parameters is gaussian

pðGÞ ¼ exp � 1

s2

XM

k¼1

lkg
2
k

 !,
Z
ðrÞ
G ð14Þ

where Z
ðrÞ
G is a normalising coefficient. The MAP estimator

can be derived by minimising VðrÞ [1, 18, 19]. Clearly for
basis pursuit estimator, the prior pðGÞ is simply set as

pðGÞ ¼ exp � 1

s2
lTkGk1


 �,
ZG ð15Þ

where ZG is a normalising coefficient. This means that, from
a bayesian viewpoint, the basis pursuit method can be
regarded as adopting a multivariable exponential distri-
bution as a prior for parameters.

2.3 Model structure selection by D-optimality

A significant advantage due to orthogonalisation is that the
contribution of model regressors to the model can be
evaluated. The forward OLS estimator involves selecting a
set of ny variables pk ¼ ½pkð1Þ; . . . ; pkðNÞ�T ; k ¼ 1; . . . ; ny;
from M regressors to form a set of orthogonal basis wk;
k ¼ 1; . . . ; ny; in a forward regression manner. As the
orthogonality property wT

i wj ¼ 0 for i 6¼ j holds, if (6) is
multiplied by itself and then the time average is taken, the
following equation is easily derived:

1

N
yT y ¼ 1

N

XM
k¼1

g2
kwT

k wk þ
1

N
XTX ð16Þ

The error reduction ratio ½ERR�k; which is defined as the
increment towards the overall output variance E½y2ðtÞ� due
to each regressor or input variable pkðtÞ divided by the
overall output variance, is computed through [8]

½ERR�k ¼
g2

kwT
k wk

yT y
; k ¼ 1; . . . ;M ð17Þ

The most relevant ny regressors can be forward-selected
according to the value of the error reduction ratio ½ERR�k: At
the kth selection a candidate regressor is selected as the kth
basis of the subset if it produces the largest value of ½ERR�k
from the remaining ðM � k þ 1Þ candidates. By setting an
appropriate tolerance r; which can be found by trial and
error or via some statistical information criterion such as
Akaike’s information criterion (AIC) [11] that forms a
compromise between the model performance and model
complexity, the variable selection is terminated when

1 �
Xny
k¼1

½ERR�k < r ð18Þ

This procedure can automatically select a subset of ny
regressors to construct a parsimonious model. Equivalently,
this procedure can be expressed as

JðkÞ ¼ Jðk�1Þ � 1

N
g2

kkk ð19Þ

where Jð0Þ ¼ yT y: At the kth forward regression stage a
candidate regressor is selected as the kth regressor if it
produces the smallest JðkÞ: Equation (19) can be modified to
form an alternative model selective criterion to enhance
model robustness. The D-optimality-based cost function is
one of robustness design criterion in experimental design
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criteria [14]. The D-optimality criterion is to maximise the
determinant of the design matrix defined as WT

k Wk; where
Wk 2 <N�ny denotes the resultant regression matrix, con-
sisting of ny regressors selected from M regressors in W

max JD ¼ det WT
k Wk

� �
¼
Yny
k¼1

kk

( )
ð20Þ

It can be easily verified that the selection of the a subset of
Wk from W is equivalent to the selection of the a subset of ny
regressors from P [16]. To include D-optimality as a model
selective criterion for improved model robustness, construct
an augmented cost function as

J ¼ 1

N
XTXþ a log

1

JD


 �

¼ 1

N
yT y �

Xny
k¼1

g2
kkk

 !
þ a

Xny
k¼1

log
1

kk

� �
ð21Þ

where a is a positive small number. Note that this composite
cost function simultaneously minimises (19) and maximises
(20) [16]. Equation (21) can be directly incorporated into the
forward OLS algorithm to select the most relevant kth
regressor at the kth forward regression stage, via

JðkÞ ¼ Jk�1 � 1

N
g2

kkk þ a log
1

kk

� �
ð22Þ

At the kth forward regression stage, a candidate regressor is
selected as the kth regressor if it produces the smallest JðkÞ

and further reduction in Jðk�1Þ: Because logð1=JDÞ is an
increasing function if kk < 1; which is true for some k>K;
the selection procedure will terminate if JðkÞ � Jðk�1Þ at the
derived model size ny if an proper a is set. This is significant
because this means that the proposed approach can detect a
parsimonious model size in an automatic manner. The
D-optimality-based model selective criterion is applied in
the proposed new model identification algorithm introduced
in following Section.

3 Model identification algorithm using forward
regression with basis pursuit and D-optimality

3.1 Parameter estimation by basis pursuit
function’s gradient descent

Before the introduction of the proposed algorithm we
initially introduce a general concept (algorithm) of par-
ameter estimation by basis pursuit function’s gradient
descent, followed by the basis idea as how to incorporate
this algorithm in the modified Gram–Schmidt orthogonal
procedure.

Theorem 1: Suppose that the dynamics underlying data set
DN can be described by

yðtÞ ¼ f ðxðtÞ;YÞ þ �ðtÞ ð23Þ
where functional f ð�Þ is given as appropriate. If the
following parameter learning law is applied:

Yðt þ 1Þ ¼ YðtÞ þ ��ðtÞ @f

@Y
� �lTsgnYðtÞ ð24Þ

where the operator ð�Þ denotes the time averaging, and
sgnY ¼ ½sgn y1; . . . ; sgn yM�T ; in which

sgn u ¼
1 if u>0

0 if u ¼ 0

�1 if u< 0

8<
: ð25Þ

� is an arbitrarily small positive number, then

ðiÞ lim
t!þ1

VðtÞ ! c

ðiiÞ lim
t!þ1

kYðtÞ �Yðt � kÞk ¼ 0 for any finite k

ð26Þ
where the basis pursuit cost function VðtÞ ¼ 1

2
�2ðtÞ þ

lTkYk1; and kYk1 ¼ ½jy1j; . . . ; jyny
j�T is constructed

based on a subvector of Y with nonzero parameters (see
also (11)); c ¼ minVðtÞ is the lower bound of V(t).

Proof: Consider VðtÞ ¼ 1
2
�2ðtÞ þ lTkYk1>0 as a Lyapu-

nov function. For an arbitrarily small neighbourhood
around a current parameter estimate YðtÞ ¼ ½y1ðtÞ; . . . ;
yMðtÞ�T ; by the first-order Taylor series expansion of V(t)

DVðtÞ � @VðtÞ
@Y

� �T

DYðtÞ

¼ ��ðtÞ @f

@Y
þ lTsgn YðtÞ

� �
DYðtÞ ð27Þ

where DYðtÞ ¼ Yðt þ 1Þ �YðtÞ; DVðt þ 1Þ ¼ Vðt þ 1Þ
�VðtÞ: When the learning law of (24) is applied,

DVðtÞ ¼ � � �ðtÞ @f

@Y
� lTsgnYðtÞ

� �T

� �ðtÞ @f

@Y
� lTsgnYðtÞ

� �
� 0 ð28Þ

that is, V(t) is nonincreasing with a lower bound. Hence

lim
t!þ1

DVðtÞ ¼ 0 ð29Þ

Hence property (i) is established.

lim
t!þ1

DVðtÞ ¼ �DYTðtÞDYðtÞ

¼ �kYðtÞ �Yðt � 1Þk2 ð30Þ

yielding

lim
t!þ1

kYðtÞ �Yðt � 1Þk ¼ 0 ð31Þ

for a finite k

kYðtÞ �Yðt � kÞk2 ¼
Xk

i¼1

Yðt � iþ 1Þ �Yðt � iÞ
�����

�����
2

¼
Xk

i¼1

Yðt � iþ 1Þ �Yðt � iÞk k2 ! 0

ð32Þ
so property (ii) follows.

In the proposed algorithm of Section 3.2, this gradient
descent of basis pursuit error function is combined with the
modified Gram–Schmidt algorithm of Section 2.1 to derive
a new model identification procedure. The basic idea is
introduced here. Consider (9), which can be regarded as a
linear fitting of yðk�1Þ by using a single variable wðkÞ with the
least-squares method. The derived model residual vector J
is then set as yðkÞ: This observation suggests that for each
step k in the modified Gram–Schmidt algorithm the
parameter estimates calculated by (9) can be further tuned
by the learning algorithm of (24) that optimises the
basis pursuit’s function given by (11). Following (9),

denote yðk�1Þ ¼ ½yðk�1Þð1Þ; yðk�1Þð2Þ; . . . ; yðk�1ÞðNÞ�T and
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wk ¼ ½wkð1Þ; . . . ;wkðNÞ�T : The tuning process is an extre-
mely simple case based on theorem 1, as illustrated by the
following theorem.

Theorem 2: If the learning law given by (24) is applied to
a special case of one-dimensional linear system

yðk�1ÞðtÞ ¼ gkwkðtÞ þ �ðtÞ ð33Þ
with the parameter estimates gk initialised as the least-
square parameter estimate gð0Þk 6¼ 0; given by (9), and if
lk <

1
2N

wT
k y

�� ��; then the final converged parameter esti-
mate gk

ðiÞ jgkj< gð0Þk

��� ���
ðiiÞ sgnðgkÞ ¼ sgn gð0Þk

� �
ð34Þ

Proof:

(i) The learning law given by (24), when applied to the
system (33), can be rewritten as

gkðt þ 1Þ ¼ gkðtÞ þ ��ðtÞwkðtÞ � �lksgnðgkðtÞÞ ð35Þ

The least-squares solution means that 1
2
�2ðt; gkÞ �

1
2
�2 t; gð0Þk

� �
; and vðtÞ ¼ 1

2
�2ðtÞ þ lkjgkj is non-increasing,

with an initial value as 1
2
�2ðtÞ þ lk gð0Þ

k

�� ��; so for t ! 1

VðtÞ ¼ 1

2
�2ðt; gkÞ þ lkjgkj �

1

2
�2 t; gð0Þk

� �
þ lk gð0Þk

��� ��� ð36Þ

yields jgkj< gð0Þk

��� ���: Hence (i) follows.

(ii) For an arbitrary small learning rate � it can be
assumed that the parameter changes in an arbitrarily
small range per time-step. Initially it is assumed that gk

change sign at a time-step denoted as t0; i.e. the parameter
trajectory needs to pass zero at a point t0 gkðt0Þ ¼ e where
e � 0; and by the property that V(t) is nonincreasing,
yields

Vðt0Þ ¼ 1

2
�2ðt; eÞ þ lkjej ¼

1

2
½yðk�1ÞðtÞ � ewkðtÞ�2 þ lkjej

� 1

2N
½ yðk�1Þ�T yðk�1Þ � 1

2
�2 t; gð0Þk

� �
þ lk gð0Þk

��� ���
¼ 1

2N
½ yðk�1Þ�T yðk�1Þ � 1

2N
gð0Þk

h i2

wT
k wk þ lk gð0Þk

��� ���
ð37Þ

So

1

2N
½ yðk�1Þ�T yðk�1Þ � 1

2N
½ yðk�1Þ�T yðk�1Þ

� 1

2N
gð0Þk

h i2

wT
k wk þ lk gð0Þk

��� ��� ð38Þ

lk gð0Þk

��� ��� � 1

2N
gð0Þk

h i2

wT
k wk ð39Þ

and by applying the least-square solution gð0Þk ¼ wT
k yðk�1Þ

wT
k

wk

h i
yields

lk �
1

2N
wT

k yðk�1Þ
��� ��� ¼ 1

2N
wT

k y
�� �� ð40Þ

This is contradictory to the assumption for lk: Therefore
gk should not change sign throughout conditional on
lk <

1
2N

wT
k y

�� ��; hence property (ii) follows.

The significance of theorem 2 is that by setting the basis
pursuit parameters lk below a certain value, for each step k,
the overall effect of the tuning process is that the parameters
gk is pulled towards 0. In forward regression, as the model
size k increases, the parameter estimates gk as initialised by
least-squares algorithm with very small magnitudes fol-
lowed by basis pursuit gradient tuning, will shrink below
some threshold value and can therefore be obtained as zero
to achieve model sparsity. For a sufficiently small lk the
optimality condition can be derived as

�ðtÞwkðtÞ � lk sgn gkðtÞ ¼ 0 ð41Þ
or

gk ¼
wT

k yðk�1Þ � Nlk sgn gk

wT
k wk

¼ gð0Þk � Nlk sgn g
ð0Þ
k

wT
k wk

ð42Þ

3.2 New algorithm using combined modified
Gram–Schmidt algorithm, basis pursuit and
D-optimality

The model selective criteria by D-optimality of Section 2.2
[16] is applied in the proposed algorithm. The algorithm is
introduced as follows, in which, the basis pursuit parameters
are assumed to be predetermined.

3.2.1 Modified Gram–Schmidt algorithm
combining basis pursuit and D-optimality: The
Gram–Schmidt orthogonalisation scheme can be used to
derive a simple and efficient algorithm for selecting subset
models. Introducing the definition of Pðk�1Þ as

Pðk�1Þ ¼ w1; . . . ;wk�1; p
ðk�1Þ
k ; . . . ; p

ðk�1Þ
M

h i
ð43Þ

If some of the columns p
ðk�1Þ
k ; . . . ; p

ðk�1Þ
M in Pðk�1Þ have been

interchanged, this will still be referred to as Pðk�1Þ for
notational convenience. The kth stage of the forward
regression selection procedure is given as follows

(i) For k � j � M; compute

gðjÞk ¼
p
ðk�1Þ
j

� �T

yðk�1Þ

p
ðk�1Þ
j

� �T

p
ðk�1Þ
j

ð44Þ

J
ðkÞ
j ¼ Jðk�1Þ � 1

N
gðjÞk

h i2

kðjÞk þ a log
1

kðjÞk

" #
ð45Þ

(ii) Find

JðkÞ ¼ J
ðkÞ
jk

¼ min J
ðkÞ
j ; k � j � M

n o
ð46Þ

Then the jkth column of Pðk�1Þ is interchanged with the kth
column of Pðk�1Þ; and the jkth column of A up to the
ðk � 1Þth row is interchanged with the kth column of A. This
effectively selects the jkth candidates as the kth regressor in
the subset model. Then set gð0Þk ¼ gðjkÞk :
(iii) Perform the orthogonalisation as follows:

wk ¼ p
ðk�1Þ
k

akj ¼
wT

k p
ðk�1Þ
j

wT
k wk

; k þ 1 � j � M

p
ðkÞ
j ¼ p

ðk�1Þ
j � akjwk; k þ 1 � j � M ð47Þ
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to transform Pðk�1Þ into PðkÞ and derive the kth row of A.
Update kk:
(iv) With gð0Þk 6¼ 0 as initialised parameter estimates, the
optimal solution of learning law (35) is given by (42), and is
rewritten here

gk ¼ gð0Þk � Nlksgng
ð0Þ
k

wT
k wk

ð48Þ

where

lk <
1

2N
wT

k yðk�1Þ
��� ���:

(v) Update yðk�1Þ into yðkÞ by

yðkÞ ¼ yðk�1Þ � gkwk ð49Þ

and update

JðkÞ ¼ Jðk�1Þ � 1

N
g2

kkk þ a log
1

kk

� �
ð50Þ

(vi) The selection is terminated at the nyth stage where a
subset model containing ny significant regressors by the
D-optimality model selective criteria JðkÞ achieves a
minimum.

Note that the assumption gð0Þk 6¼ 0 in theorem 2 is actually
true for the selected regressors before the model achieves
sufficient approximation. By (50) of step (v), it is clear that
if gk ¼ 0; the procedure terminates. In forward regression
selection each regressor is selected from step (ii) charac-
terised by the largest reduction in JðkÞ; hence gð0Þk 6¼ 0;
before the current model residual yðk�1Þ becomes white.
Clearly, as the model size k increases, if the parameter
estimates are initialised with very small magnitudes from
least-squares estimates the basis pursuit gradient tuning
procedure in step (iv) will pull it even more towards zero by
theorem 2. If an arbitrary small threshold was set for zero
the parameter gk is obtained as zero; JðkÞ will then increase
to terminate the selection procedure at a sparser model than
that of without basis pursuit gradient tuning procedure.

3.2.2 Method of choosing l: The identification
algorithm introduced uses a predetermined basis pursuit
parameter l; which reflects a tradeoff between modelling
errors and the l1 norm of parameter vector. An inappropriate
choice of l (too large) will cause the term representing the
modelling error in V of (11) to become insignificant in
deriving parameter estimates and result in poor model
approximation. By the general principle in data modelling
of a model with generalisation is preferred, the choice of
l may be derived based on the commonly used method of
cross-validation. In the following we introduce a simple
method of choosing l by the basic principle of cross-
validation, i.e. using two data sets, one for training and
another for testing. This method is only a heuristic
approach; other optimisation methods of l are still under
investigation. For simplicity a single global basis pursuit
l is used, i.e. l1 ¼ l2 ¼ . . . ¼ l: By using the constraints of
lk < ð1=2NÞjwT

k yj; a feasible initial choice of l is deter-
mined as l ¼ ð1=2NÞjwT

nð0Þ
yj; where n

ð0Þ
y is the size of the

model derived with the D-optimality selective criterion, by
setting a arbitrarily small, without using basis pursuit [16].
To derive a model with excellent generalisation the
complete modelling procedure of iterating the proposed
algorithm by incrementally increasing l from zero in a
controlled manner is given as follows.

3.2.3 Iterative procedure of proposed
algorithm including choosing basis pursuit
parameters:

(i) Initialisation. Set an arbitrarily small a; applying the
modelling procedure of [16] to derive a model with size n

ð0Þ
y :

(This is equivalent to the proposed algorithm with l ¼ 0)
and set l ¼ ð1=2NÞjwT

n
ð0Þ
y

yj: Set a counter for iteration j ¼ 1:

(ii) Apply the proposed algorithm with the new l to derive a

model with size n
ðjÞ
y < n

ðj�1Þ
y : Set a new l ¼ ð1=2NÞjwT

n
j

y
ðjÞyj

for the next iteration of this step, while the mean squares
error (MSE) of the test data set is monitored; j ¼ j þ 1:
(iii) Step (ii) is terminated when the MSE of the test data set
achieves a minimum.

Note that heuristically, for each step j, l / jw
n
ðjÞ
y
j: Forward

regression selects the term with the largest reduction of

modelling error. It can be assumed that jwij> jwjj; for i> j:

This means that lk ¼l¼ð1=2NÞjwT

n
ðjÞ
y

yj< ð1=2NÞjwT
k yðk�1Þj;

for k< n
ðjÞ
y : As the iteration step j increases, the effect of

basis pursuit cost function (shrinking the small parameters
to zero) would derive at the smaller size n

ðjÞ
y compared with

the previous iteration step. Because a smaller model size

means a larger value of jw
n
ðjÞ
y
j; l increases gradually with the

iteration, which is terminated at a proper stage via it
performance over the test data set. Alternatively l can be set
as a very small value for general improvement in model
sparseness.

4 Modelling examples

4.1 Example 1

Consider the benchmark Henon time series given by

zðtÞ ¼ 1:4 � z2ðt � 1Þ þ 0:3zðt � 2Þ ð51Þ
1000 data points were generated with an initial condition
zð0Þ ¼ 0; zð1Þ ¼ 0: The data set was then added a very small

noise eðtÞNð0; 0:0012Þ to form a noisy data set yðtÞ ¼
zðtÞ þ eðtÞ: The input vector is set as xðtÞ ¼ ½yðt � 1Þ;
yðt � 2Þ�T ; 498 data samples from t ¼ 1 � 500 were used as
estimation set, and 500 data samples t ¼ 499 � 1000 were
used as test data. The gaussian radial basis function was
used to construct a full model set by using all the data in the
estimation data set as centres ci; i ¼ 1; . . . 498; and
piðxðtÞÞ ¼ exp �kxðtÞ � cik2=s2

i

# $
; with si ¼ 1; 8i: The

modelling starts with l ¼ 0; and a ¼ 10�8 (an arbitrarily
small coefficient for D-optimality). The iterative procedure
of the proposed algorithm was applied. The model was
automatically terminated at 30 centres. The final basis-
pursuit parameter was derived at l ¼ 1:77 � 10�8:

The modelling MSE for the test data set is derived as

4:7841 � 10�5: Equivalently a 99:97% output variance of
the test data has been explained by the model. The
modelling results for the test data set are shown in Fig. 1.

4.2 Example 2

Consider the chaotic two-dimensional time series, Ikeda
map [22], given by

xðtÞ
yðtÞ

� �
¼

1 þ 0:9½xðt � 1Þ cosðrÞ � yðt � 1Þ sin r�
0:9½xðt � 1Þ sinðrÞ þ yðt � 1Þ cos r�

� �

with r ¼ 0:4 � 6:0

1 þ x2ðt � 1Þ þ y2ðt � 1Þ
ð52Þ
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1000 data points were generated with an initial condition
xð1Þ ¼ 0:1; yð1Þ ¼ 0:1: Two models were constructed to
model x(t) and y(t), respectively. For both models the input
vector is set as xðtÞ ¼ ½xðt � 1Þ; yðt � 1Þ�T : A total of 498
data samples from t ¼ 1 � 500 were used as estimation set,
and 500 data samples t ¼ 499 � 1000 were used as test
data. The gaussian radial basis function was used to
construct full model sets by using all the data in
the estimation data set as centres ci; i ¼ 1; . . . ; 498; and
piðxðtÞÞ ¼ exp �kxðtÞ � cik2=s2

i

# $
; with si ¼ 0:5; 8 i:

For the first model that model x(t), modelling starts
with l ¼ 0 and a ¼ 10�8 (an arbitrarily small coefficient for
D-optimality). The iterative procedure of the proposed
algorithm was applied. The model was automatically
terminated at 63 centres. The final basis-pursuit parameter
was derived at l ¼ 7:7 � 10�8: The modelling MSE for
the test data set is derived at 3:13 � 10�5: Equivalently a
99:81% output variance of the test data has been explained
by the model. For the second model that models, y(t), the
modelling starts with l ¼ 0 and a ¼ 10�8 (an arbitrarily

Fig. 2 Modelling results for example 2

a Training set
b Test set

Fig. 3 Modelling results for example 3

a System input
b Model prediction and model output
c Model prediction error

Fig. 1 Modelling results for example 1
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small coefficient for D-optimality). The iterative procedure
of the proposed algorithm was applied. The model was
automatically terminated at 66 centres. The final basis
pursuit parameter was derived at l ¼ 1:7 � 10�8: The
modelling MSE for the test data set is derived at 1:36 �
10�5: Equivalently a 99:94% output variance of the test data
has been explained by the model. To illustrate the overall
performance of the model in capturing the underlying
system dynamics the modelling results for both estimation
and test data set 5 are shown in Fig. 2.

4.3 Example 3

The benchmarking gas furnace data (series J in [23]) set
consists of 296 input = output pairs representing coded input
gas-feed rate as input, u(t), and CO2 concentration from the
gas furnace as output y(t). All the data were used as training
data set. A RBF network with the input vector xðtÞ¼
½uðt�1Þ;uðt�2Þ;uðt�3Þ;yðt�1Þ;yðt�2Þ;yðt�3Þ�T ; and
the thin-plate-spline basis function piðxðtÞÞ ¼ kxðtÞ �
cik2 log kxðtÞ � cik was used as the basis function with all
data sets as candidate centres ci:

The iterative procedure of the proposed algorithm was
applied with b ¼ 10�4: The model was automatically
terminated at 36-centres. The final basis-pursuit parameter
was derived at l ¼ 0:0052: The modelling MSE for the test
data set is derived at 0.045. A list of results on the same data
can be found in [24]. It can be seen that the results obtained
in this study are comparable. The modelling results for both
estimation and test data sets are shown in Fig. 3.

5 Conclusions

This paper has introduced a model identification
algorithm for linear-in-the-parameters models. The pro-
posed approach is based on the forward orthogonal least-
square algorithm using the modified Gram–Schmidt
procedure. The approach aims to simultaneously optimise
the model approximation ability, sparsity and robustness
by combining the modified Gram–Schmidt algorithm
with basis pursuit and D-optimality design. The main
contribution is to tune the model parameters, in each
forward regression step, with the basis pursuit that
minimises the l1 norm of the parameter estimates vector.
The D-optimality design criterion is used for model
selection to ensure the model robustness and automati-
cally terminates at a sparse model. The choice of basis-
pursuit parameters is discussed and a simple iterative
procedure of the proposed algorithm is introduced to
obtain a model with good generalisation. Both the
parameter tuning procedure, based on basis pursuit, and
the model selection criterion, based on the D-optimality
that is effective in ensuring model robustness, are
integrated with forward regression to maintain compu-
tational efficiency.
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