
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Sparse model selection via integral terms
Hayden Schaeffer and Scott G. McCalla

Phys. Rev. E 96, 023302 — Published  2 August 2017
DOI: 10.1103/PhysRevE.96.023302

http://dx.doi.org/10.1103/PhysRevE.96.023302


Sparse Model Selection via Integral Terms

Hayden Schaeffer∗ and Scott G. McCalla
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA, USA 15213 and

Department of Mathematical Sciences, Montana State University, Bozeman, MT, USA 59717

Model selection and parameter estimation are important for the effective integration of experi-
mental data, scientific theory, and precise simulations. In this work, we develop a learning approach
for the selection and identification of a dynamical system directly from noisy data. The learning is
performed by extracting a small subset of important features from an overdetermined set of possible
features using a non-convex sparse regression model. The sparse regression model is constructed
to fit the noisy data to the trajectory of the dynamical system while using the smallest number
of active terms. Computational experiments detail the model’s stability, robustness to noise, and
recovery accuracy. Examples include nonlinear equations, population dynamics, chaotic systems,
and fast-slow systems.

Scientific progress is based on advancements in the-
ory, experiment, and simulation. Experiments produce
quantitive data that provide sufficient evidence to formu-
late theoretical equations that model the true behavior
of the observed system. A famous example includes the
electromagnetic equations of Coulomb, Gauss, Ampère,
Faraday, and Maxwell which were formulated from sev-
eral nineteenth century physical experiments and unified
under one large system of differential equations. Compu-
tational methods utilize theoretical models to simulate
results, thereby providing scientists with a tool to val-
idate theory with experimental data and study the be-
havior of the system under many physical conditions. In
computational fluid dynamics, theory and simulation are
used together to help scientists understand the Navier-
Stokes equations, whose solutions are often difficult to
construct analytically.

With the increasing size of experimental datasets and
advances in computational methods for analytics, there
is a growing demand for data-driven exploration of sci-
entific laws. In particular, machine learning and fitting
algorithms can be used to explore large datasets with the
goal of extracting important features, recognizing signif-
icant patterns, and parameterizing the observed behav-
iors. In this work, a computational method is developed
for exploration, analytics, and model identification from
noisy time-series data controlled by a dynamical system.
The differential equation defines the governing model for
some physical process. By learning the underlying dy-
namical system from noisy measurements, the method
is able to extract information on the system, garner in-
sight into the collective behavior of the data and, in some
cases, provide a smooth approximation of the dataset.

In recent years, several methods have been proposed
for fitting dynamical systems to data. In [1, 2], symbolic
regression is used to extract physical laws (conservation
laws, Hamiltonians, Lagrangians, equations of motion,
etc) from a combination of synthetic and experimental
data. The computational approach estimates the partial
derivatives of each state variable with respect to each
other and compares them to candidate functions. The

candidate is chosen by measuring the accuracy of the
fit as well as the efficiency of the candidate model. In
another direction, several sparsity-promoting optimiza-
tion methods have been proposed for fitting dynamical
systems to a set of candidate functions. In [3], a se-
quential thresholded least-squares algorithm is used to
fit a set of candidate polynomials to computed velocity
data. Sparse optimization for learning partial differen-
tial equations from spatio-temporal data is detailed in
[4, 5]. In [6], a sparse optimization problem is proposed
for joint model selection and outlier detection, which al-
lows for learning in the presence of time-intervals with
large corruption. In this work, we propose a sparse opti-
mization method for identifying the underlying dynami-
cal system from a given data set, where the entire dataset
is corrupted by noise. It is worth noting that sparse opti-
mization and modeling has seen some recent applications
to differential equation, scientific computing, and data-
driven modeling, see for example [7–12].

A key tool in fitting the dataset to the most impor-
tant features (candidate functions) is the use of spar-
sity, typically via the `0 or `1 penalty and the related
thresholding operator, first proposed in [13]. The least
absolute shrinkage and selection operator (LASSO) was
introduced in [14], which regularizes the least-squares
problem by penalizing the number of terms used in the
fitting. Also, algorithms using soft and hard threshold-
ing (the proximal operators of `1 and `0, respectively)
are often used for denoising, reconstruction, and learn-
ing. In [15, 16], the `1 regularized problem (used as a
relaxation to the non-convex `0) was shown to recover
sparse signals in underdetermined system under certain
assumptions. This has lead to many application in com-
pressive sensing and image processing.

MODEL

Consider the evolution x(t) ∈ Rn governed by

ẋ = F (x) with x(0) = x0. (1)
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Our goal is to extract the model F (x) from noisy mea-
surements of x(t). The function F : Rn → Rn should
be Lipschitz continuous and each component should re-
side in the span of a set of (redundant) trial functions
{fj(x)}Nj=1, i.e.:

Fi(x) = Ci,j fj(x) with C ∈ Rn×N .

Given data x̃(t) over some interval t ∈ [0, T ], we would
like to recover the function F , and thus the governing
equation. We assume that the set of trial functions is
large; however, the set of active terms in the underly-
ing dynamics is sparse. As F (x) is unknown, we could
estimate it by the time derivative:

ẋi = Ci,j fj(x). (2)

In the ideal case, x solves Eq. [1] and C can be esti-
mated through Eq. [2]. In particular, the support of the
coefficient matrix C defines the model selected from the
set of trial functions and the learned coefficients estimate
the model parameters. In practice, measurement noise
η corrupts the dataset x̃(t) = x(t) + η(t). We assume
that the measurement error is mean zero Gaussian noise
η(t) ∼ N (0, σ2) with variance σ2 > 0. Taking derivatives
of noisy data is known to be unstable, making it difficult
to use Eq. [2]. Instead, consider the integral formulation:

xi(t) = xi(0) + Ci,j dj(x, t)

where we denote the integral terms dj by

dj(x, t) :=

∫ t

0

fj(x(τ)) dτ. (3)

The collection of terms dj(x, t) will be referred to as the
features since they are data-dependent and thus observed
behaviors. In the integral formulation, Eq. [2] becomes
the following linear system (in terms of C):

xi(t)− xi(0) = Ci,j dj(x, t). (4)

By discretizing the equation over time-stamps tk for
k = 1, ..,K, Eq. [4] admits a linear inverse problem for C.
Define the feature matrix D ∈ RK×N as the collection of
(column-wise) feature vectors d1(x, t), d2(x, t), ...dp(x, t),
where the columns represents the temporal components
and the rows represent the features, i.e. (D(x))i,j =
dj(x, ti). Let δx(t) := [x(t) − x0]T be the displacement
from the initial data and define the vector X ∈ RKn as
the column-wise collection of all displacements:

X(x) = [δx1(t1) · · · δx1(tK) · · · δxn(t1) · · · δxn(tK)]T.

Similarly, let c ∈ RnN be the vector of all coefficients
collected column-wise, i.e. c := vec(C). Lastly define
D(x) := diag[D(x), ...,D(x)] ∈ RKn×nN as the block di-
agonal matrix generated by D. Then the discrete linear
system is

X(x) = D(x)c. (5)

The vector X and matrix D are generated from the data
itself. Even in the ideal case, the feature matrix may be
redundant: if x(t) = 0 for all time and fj(x) = xj−1

with j ≥ 1, the matrix D has one non-zero column and
uniqueness is not expected.

In practice Eq. [5] does not hold because of the noise
and we are left with the more difficult inverse problem,
i.e. X(x̃) ≈ D(x̃)c. Instead, we determine the coefficient
vector c that satisfies the least-squares constraint

‖X(x̃)−D(x̃)c‖2 ≤ ε (6)

for some parameter ε(σ2). To solve Eq. [6], we regularize
the problem using the `0 penalty:

min
C
||c||0 s.t. ‖X −Dc‖2 ≤ ε (7)

where we drop the dependence on x̃ for simplicity of no-
tation. The constraint in Eq. [7] uses integrated rather
than differentiated data, thus we expect this process to
be more stable to noise. The `0 penalty, defined as
||z||0 =

∑
j |sign(zj)|, counts the number of non-zero co-

efficients limiting the number of features that may be
used to represent the dataset. This penalty enforces
model sparsity. This minimization problem is non-convex
and will likely be algorithm and data dependent. One key
benefit is that the method does not require pre-processing
of the data in order to compute the trial functions. In
particular, the features (trial functions) are calculated
directly from the noisy data without smoothing or de-
noising the data. Another is that once the coefficients
are learned, an approximate solution xL(t) is generated,
xL(t) = x̃(0)+DC, for a cleaner, and possibly more accu-
rate, representation of the data. Alternatively a cleaner
approximation can be found by solving ẋS = D(xS)C.

ALGORITHM

Henceforth, we assume F (x) is well-represented as
a combination of polynomials (or in some examples,
trigonometric functions) and define fj(x) = xj−1, unless
otherwise stated. The number of feature vectors used in
the learning process must be large enough to include all
the terms present in the underlying system. Each of the
feature vectors dj(x, t) are approximated using piecewise
constant quadrature:

dj(x, tk) =

∫ tk

0

fj(x(τ)) dτ ≈ ∆t

k∑
`=1

fj(x(t`)) (8)

where k = 1, ...,K and dj(x, t0) = dj(x, 0) = 0. The
piecewise constant quadrature produces a closer approx-
imation to the noiseless signal without smoothing. For
polynomial trial functions, Eq. [8] effectively calculates a
scaled expectation for a sum of random variables of the
form xnηp. As the noise is sampled independently of the
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sample x(t), we have E(xnηp) ≈ E(xn)E(ηp). The sec-
ond term arises from our Gaussian distribution and is 0
when p is odd and E(ηp) = σp(p − 1)!! when p is even.
Effectively, many of the noise dependent cross terms are
near zero when piecewise constant quadrature is used to
approximate the feature vector.

To solve Eq. [7], we apply the Douglas-Rachford algo-
rithm [17, 18] along with an auxiliary variable. Introduc-
ing the auxiliary variable w with the constraint w = Dc
and w ∈ Bε(X) yields a helpful splitting of the equations.
Define the variable z := (c, w) ∈ RnN×Kn, then Eq. [7]
becomes

minz G1(z) +G2(z) (9)

where the two functions are defined as:

G1(z) := ‖c‖0 + IndBε(X)(w), G2(z) := IndK(z)(10)

with K = {z = (w, c)| w = Dc} and Ind is the indicator
function on the set (zero if satisfied, infinite otherwise).
Although both G1 and G2 are non-differentiable and the
`0 penalty is non-convex, we only need that the func-
tions emit an explicit proximal operator. The proximal
operator for a functional H(z) is defined as

proxγG(z) = argmin
z′

γ G(z′) +
1

2
‖z − z′‖2

where z′ is an auxiliary variable in the optimization (not
to be confused with the time-derivative). The proximal
operator for G1 acts on each variable (c, w) separately
(since their optimization subproblems decouple):

proxγG1
(z) =

(
Hγ(c), ProjBε(X)(w)

)
where Hγ is the hard thresholding function which acts
component-wise on c

(Hγ(c))j =

{
cj , if |cj | ≥

√
γ

0, otherwise

and the projection onto the ball is defined as

ProjBε(X)(w) = X + max

(
1,

ε

‖w −X‖

)
(w −X).

The proximal operator for G2 is simply the projection
onto the set K

proxγG2
(z) =(

(I +DTD)−1(c+DTw), D(I +DTD)−1(c+DTw)
)

The Douglas-Rachford iteration is defined by the follow-
ing two-step process:

z̃k+1 =
(

1− µ

2

)
z̃k +

µ

2
rproxγG2

(
rproxγG1

(
z̃k
))

zk+1 = proxγG1
(z̃k+1) (11)

where rproxγG(z) = 2proxγG(z) − z. Two important
properties are worth noting. First, the order of the prox-
imal operators are important, in particular, using the or-
der in Eq. [11] ensures that the output will remain sparse.
Second, the solution zk depends on the parameter γ al-
though it does not appear in the original minimization
problem. For sparse model identification, γ represents
the meaningful scales that appear in the solution c∗.

NUMERICAL EXAMPLES

The method is tested on a variety of ordinary differen-
tial equations. The underlying data x(t) is either explic-
itly found or approximated with Runge-Kutta 45. The
data is then corrupted by additive Gaussian noise giving
x̃(t) = x(t) + η(t) for the learning algorithm. The set of
features is pre-determined for each example, and may in-
clude either polynomial or trigonometric functions. Each
term dj is numerically approximated using Eq. [8]. The
noise level

noise level :=
||η(t)||2
||x(t)||2

× 100% =
σ

||x(t)||2
× 100%

is defined as the ratio between the `2 norms of the noise
and underlying data. The parameter µ used in the
Douglas–Rachford algorithm is set to µ = 1, while the
thresholding parameter γ is example dependent. The
sample size is denoted as n. The maximum number of
iterations varies; however, a maximum iteration value of
5000 is more than sufficient as convergence is reached
prior to the maximum iteration.

The examples below serve to highlight several impor-
tant results of the method, features about the conver-
gence, and some potential issues that may arise. The
trajectories need to take sufficiently large excursions with
respect to the noise level in each of the equation compo-
nents if the reconstruction is to be successful. Addition-
ally if these excursions are faster (i.e. large variations),
then the reconstruction is more accurate. The main dif-
ficulties are then in learning near equilibrium behavior,
or in learning the governing equations along a slow man-
ifold. To some degree, the most instructive and difficult
cases are low dimensional stable systems near an equilib-
rium. It is expected that chaotic systems are the most
robust cases as there is uniform re-sampling of the sys-
tem’s phase space at different rates. In all of the examples
below, the noisy data is plotted with red markers and the
approximations are plotted with black curves.
Linear Scalar Equations– Consider the linear model

ẋ = −αx, x0 = 1⇒ x(t) = e−α t (12)

where α > 0 is the decay parameter and the trial func-
tions are given by fi = xi−1 for i ≤ 25. This simple model
is used to investigate the relationship between (compu-
tational) recovery rates and the maximum noise level.
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TABLE I. Sensitivity to Linear Decay Rate: The data is
simulated with the parameters t ∈ [0, 15], ∆t = 0.005, x0 = 1,
and ε = 1.1

√
nσ. The value of γ is adapted to the example.

The first column contains the values of α, the second shows
the total distance traveled by the trajectory, the third displays
the largest noise level achieved while maintaining recoverabil-
ity, the fourth shows the percentage of non-equilibrium to
equilibrium data that is used in the learning, and the fifth
records the L2 relative error between the approximate solu-
tion using the learned equation and the original data.

α ∆x Noise Ratio Equilibrium Ratio L2 Relative Error

0.25 0.976 0.449 0 0.055

0.3 0.989 0.511 0.090 0.041

0.4 0.998 0.579 0.270 0.069

0.5 0.999 0.672 0.386 0.060

0.75 ≈ 1 0.775 0.555 0.058

1 ≈ 1 0.859 0.647 0.057

1.25 ≈ 1 0.866 0.706 0.056

In particular, this example describes the dependence be-
tween the size and location of the samples needed for
nearly-exact recovery. In both cases below ε = 1.1

√
nσ

is fixed, but γ is varied until the learned solution is suf-
ficiently accurate.

For the first experiment, we discretize the solution to
Eq. [12] over t ∈ [0, 15] with time-step ∆t = 0.005. Fixing
the decay rate α, the learning is performed with increas-
ing noise levels in order to find the largest possible cor-
ruption that can occur while maintaining recoverability
with respect to coefficient identification (see Table I). It
is worth noting that the relative error for each α is com-
parable to the least squares fitting method when the form
of the governing equation is known. As α increases, the
data decays faster and the portion of data near equilib-
rium increases. Note that the total variation in x is nearly
one in all cases. These results suggest that for compa-
rable sized variations in the data faster transit times in
the dependent variables improve the robustness, thereby
allowing our learning model to correctly identify the gov-
erning equation with higher noise levels. Also, the rela-
tive error appears to be stable with respect to the noise
and decay rate variations, indicating that the method is
robust to the coefficient values.

To test the robustness of this approach to variations in
the sample size n, we discretize the solution to Eq. [12]
over t ∈ [0, 10] while varying ∆t = 10/n. Starting with 25
data points and increasing the size to 5000 data points,
the method recovers the governing equation with higher
accuracy and in the presence of larger noise variance (see
Table II). Again, it is worth noting that the relative er-
rors are comparable to the least squares fitting method
applied to the exact model. The results from Table II
confirm that increasing the sample size improves recov-
ery, but relatively strong results can be found with a

TABLE II. Sensitivity to Sample Size: The data is sim-
ulated with t ∈ [0, 10], x0 = 1, ∆t = 10/n, and ε = 1.1

√
nσ.

The parameter γ is adapted to the example.

Data Size, n Noise Ratio Relative Error

25 0.145 0.229

50 0.185 0.049

100 0.353 0.057

250 0.404 0.053

500 0.558 0.032

1000 0.692 0.036

5000 0.744 0.036

small number of samples.

Generalized Logistic Equations– Consider the general-
ized logistic growth model, aka the Richards’ differential
equation,

ẋ = δ(x− xp); (13)

this is a classical model for population dynamics, and
the solutions correspond to a family of sigmoid curves.
By varying δ and p, we will explore how the learning
algorithm responds to different size excursions in the de-
pendent variable, different governing equations (includ-
ing governing equations not exactly represented by the
trial functions), and what regions of the trajectory con-
tribute most to the learned governing equation.

FIG. 1. Logistic Growth. The left plot displays the log of
the relative `2 error on the learned coefficients versus the pa-
rameter δ. The data is simulated with t ∈ [0, 10], ∆t = 0.01,
and x0 = 0.01. The parameters are fixed at ε = 1.1

√
nσ and

γ2 = 0.5. The noise level is fixed at 2% with the same realiza-
tions between experiments. The jump at between δ = 0.3 and
δ = 0.4 marks a transition, where the approximation identi-
fies the correct terms (and continues to refine the values). On
the right, the data is plotted with t ∈ [0, 10], ∆t = 0.01,
x0 = 0.01, ε = 1.1

√
nσ, and γ2 = 0.5. The noise level is 5%

and the error between the learned solution and the original
data in the L2 norm is 9.4× 10−3.

First, consider the standard logistic equation with
p = 2 and δ = 1. Figure 1 illustrates the recovery of
this equation from noisy data with two noise levels. The
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learned equations are given by

Noise = 2% : ẋ =
∑

j=0,...,24

1.003 δj1 x
j − 1.004 δj2 x

j

Noise = 5% : ẋ =
∑

j=0,...,24

1.033 δj1 x
j − 1.036 δj2 x

j

where the Kronecker delta notation is used to emphasize
the terms used in the learning process with a learned
coefficient of zero.

Fixing p = 2 and t ∈ [0, T ], we vary δ > 0 to show
that the method will undergo a transition between low
accuracy and nearly-exact recovery once the data is suf-
ficiently far from the equilibrium state. The graph in
Fig. 1 shows the log of the relative error on the learned
coefficients versus the scale δ. A sharp decrease in the
error occurs between δ = 0.3 and δ = 0.4 and marks
the transition from learning only the linear term (for
δ < 0.3) to learning both the linear and quadratic terms
(for δ ≥ 0.4). This transition occurs as the solution to
Eq. [13] introduces sharper gradients and takes a larger
excursion in x.

FIG. 2. Logistic Growth. The data is simulated over
t ∈ [0, 10], with time-step ∆t = 0.01, and initial data
x0 = 0.01. The learning parameters are set to ε = 1.1

√
nσ

and γ2 = 0.5. The noisy data is plotted with red markers
(darker gray), the interval of strongest influence is marked in
green (lighter gray), and the learned solution is in black. On
the left (2% noise level), the interval of strongest influence is
given by [1.5, 5] and on the right, (noise level 5%) the interval
of strongest influence is given by [1.25, 6.5].

Next, we look for the interval of strongest influence to
the recovery. Considering two noise levels, we perform a
coarse search for the smallest interval that leads to an ac-
curate result. The results in Fig. 2 suggest that the region
of high variation (away from the equilibrium) controls the
accuracy of the solution to the learning model.

As the logistic equation is typically used to model sat-
urating population dynamics, we apply this method to
U.S. census data (population in millions) collected from
1790 to 1990, with time-step ∆t = 10. The data is fit
without assuming the model form– using a total of 25
terms in the dictionary (more terms than data samples).
Even though the noise variance in the raw data is not
known a priori, we choose the parameters so that the
learned solution has minimal error while using the min-
imal amount of terms in the governing equation. With

FIG. 3. U.S. Census Data. Using the US census data
(population in millions) collected from 1790 to 1990, with
time-step ∆t = 10, we fit the data without assuming the
model form. The learning parameters are set to ε = 1, and
γ2 = 1.9×10−3. The learned governing equation corresponds
to a parameterized logistic equation and agrees closely with
data.

TABLE III. Generalized Logistic Equations: The data
is simulated from t ∈ [0, 10], with time-step ∆t = 0.01, and
initial data x0 = 0.01. The noise is fixed at 2%. The learn-
ing parameters are set to ε = 1.1

√
nσ and γ2 = 0.5. The

method identifies the correct coefficients and estimates the
parameters within the scale of the noise. The error between
the approximated solution and the original data in the L2

norm is 5.3 × 10−3, 5.8 × 10−3, 7.2 × 10−3, and 8.0 × 10−3,
for p = 2, 3, 4, and 5.1 respectively.

Terms p = 2 p = 3 p = 4 p = 5.1

1 0 0 0 0

x 1.003 1.002 1.001 1.006

x2 −1.002 0 0 0

x3 0 −0.999 0 0

x4 0 0 −0.997 0

x5 0 0 0 −0.999

| | | | |
x24 0 0 0 0

this choice of parameters, the learned governing equa-
tion corresponds to a parameterized logistic equation. To
check the efficiency of the learned equations, γ is varied
and fitting-error is checked. Shrinking values of γ dra-
matically increase the number of terms in the recovered
model (due to overfitting). On the other hand, increasing
γ leads to high recovery error with less terms. As seen in
Fig. 3, the learned solution (in black) agrees closely with
raw data (in red).

We now vary p = 2, 3, 4, and 5.1 to see how the al-
gorithm performs with respect to changes in the govern-
ing equations. Qualitatively, the solutions are similar in
structure, with small differences in the slope of the tran-
sition towards the equilibrium x = 1. The addition of
noise makes it difficult to differentiate the solutions in
the “eye-ball” norm. In Table III, the resulting learned
coefficients are presented for various p’s. For p = 2, 3,
and 4, the method identifies the correct coefficients and
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FIG. 4. FitzHugh-Nagumo Model The data uses t ∈
[0, 50], ∆t = 0.01, and x0 = (1, 2)T . The parameters are
set toε = 1.1

√
nσ, γ2 = 0.05, and noise level 9%. The left

graph plots the approximate solution in black and the right
graph the solution is re-simulated using the learned governing
equation in black.

estimates the parameters within the scale of the noise.
In the p = 5.1 case, the method, as expected, approx-
imates the governing equation with p = 5. The error
between the approximated solution and the original data
in the L2 norm is 5.3 × 10−3, 5.8 × 10−3, 7.2 × 10−3,
and 8.0× 10−3, for p = 2, 3, 4, and 5.1 respectively. Note
that even though x5.1 is not within the span of the fea-
ture space, the method is able to approximate the data
and equation using p = 5. This suggest that the method
could approximate systems where the feature space may
be difficult to parameterize.

Singularly Perturbed Systems– The following two ex-
amples both address learning in systems with mixed time
scales. First consider the FitzHugh–Nagumo equation

{
ẋ = 0.1 + x− x3

3 − y
ẏ = 0.1(x− y)

for excitable systems such as a neuron.

In Fig. 4, the noisy data (noise level 9%) is plotted
in red. The left graph plots the approximate solution
in black and the right graph the solution is re-simulated
using the learned governing equation (in black). Com-
paring the two plots, it can be seen that for large noise
levels it may be necessary to use the re-simulated so-
lution in order to maintain an accurate approximation.
The learned solution is accurate to within the noise level
(trial functions fi,j = xi−1yj−1 for i+ j ≤ 5):

Noise = 2% :

{
ẋ = 0.101 + 1.001x− .334x3 − 1.001 y

ẏ = 0.1 (x− y)

Noise = 9% :

{
ẋ = .105 + .991x− .327x3 − .986 y

ẏ = .1x− .101 y
.

Next consider the multiscale system which can be
shown to reduce to the 3D Rössler System as the scale

FIG. 5. Fast-Slow Approximation The data uses t ∈
[0, 50], ∆t = 0.01, x0 = (5, 2, 1, 1)T , and ε1 = 5 × 10−3. The
learning parameters are set to ε = 0.1, and γ2 = 0.1. The left
figure plots the noisy data projected onto the xy-plane with
noise level 3.5%. The right figure plots the noisy data along
with the data-driven approximation.

parameter ε1 → 0+
ẋ = −y − z
ẏ = x+ 0.2y

ż = 0.2 + w − 5z

ε1ẇ = −w − xz

⇒


ẋ = −y − z
ẏ = x+ 0.2y

ż = 0.2 + z(x− 5).

(14)

For ε1 small, the first three variable are slow and the
fourth variable is fast. In this experiment, we simulate
the solution using the 4D fast-slow system, corrupt the
data with additive noise, and then only use the first three
components in the learning algorithm. By restricting our
attention to the first three components, we test the meth-
ods ability to identify the slow (dominant) behavior: see
Fig. 5. In the 3.5% noise case, the corrupted trajecto-
ries are self-intersecting, which can cause difficulty for
learning methods. The learned equations are

Noise = 1% :


ẋ = −y − z
ẏ = x+ 0.2y

ż = 0.2 + z(x− 5)

Noise = 3.5% :


ẋ = −y − z
ẏ = x+ 0.2y

ż = 0.2 + z(x− 5)

.

with trial functions fi,j,k = xi−1yj−1zk−1 for i+j+k ≤ 4.
In both cases, the method is able to correctly identify the
active features and approximate the coefficients.
Pendulum– Consider the nonlinear pendulum problem

and its linearization{
ẋ = y

ẏ = −1.5 sinx.
≈

{
ẋ = y

ẏ = −1.5x

in the small-angle regime. In Fig. 6, we learn the solution
using a polynomial and trigonometric feature space in
the two different regimes. In the nonlinear regime on the
left, we simultaneously use both the polynomial (fi,j =
xi−1yj−1 for i+ j ≤ 5) and trigonometric (fsi (·) = sin(i·)
and f ci (·) = cos(i·) for i ∈ {1, . . . , 4}) trial functions. For
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FIG. 6. Pendulum Problem The data uses t ∈ [0, 18],
∆t = 0.1, x0 = (1, 1)T (left) and x0 = (0.01, 0.1)T (right),
ε = 1.1

√
nσ, and γ2 = 0.2. The noise level is fixed at 2.5%.

On the left, the data-driven approximation (black) uses a
polynomial and trigonometric feature space. On the right,
the data-driven approximation (black) uses a polynomial fea-
ture space. The plot on the right is in the small-angle regime
and the correct linearized system is identified.

FIG. 7. Lorenz System. The data uses t ∈ [0, 10], ∆t =
0.001, and x0 = (−5, 1, 20)T . The parameter is ε = 1.1

√
nσ.

The left plot is the noisy data projected onto the xy-plane
with noise level 3%. The right plot is the noisy data along
with the data-driven approximation.

the small-angle regime only the polynomial functions fi,j
are used. The learned equations are{

ẋ = 1.009 y

ẏ = −1.500 sinx.
≈

{
ẋ = .997 y

ẏ = −1.483x.

The right plot is in the small-angle regime, and as ex-
pected the correct linearization is learned (i.e. sinx ≈ x).
The results in this example suggest that the method is
able to discriminant between possible approximations,
even when redundant features are used.

Lorenz– Finally consider the Lorenz system with the
following parameters:

ẋ = 10(y − x)

ẏ = x(28− z)− y
ż = xy − 8

3z

which is a model for atmospheric behavior and is known
to exhibit a strange attractor. As seen in Fig. 7, the
noisy trajectories are self-intersecting, which can cause
difficulty for learning methods. The learned governing

equations are:

Noise = 1.5% :


ẋ = 10.000 y − 10.005x

ẏ = x(27.799− .995 z)− .922 y

ż = .999xy − 2.666 z

Noise = 3% :


ẋ = 9.872 y − 9.899x

ẏ = x(27.963− 1.005 z)− .847 y

ż = 1.003xy − 2.671 z

with trial functions fi,j,k = xi−1yj−1zk−1 for i+j+k ≤ 4.
In both cases, the method is able to correctly identify the
active features and approximate the coefficients. This
shows the method’s robustness to corrupted trajectories
without the need for explicit denoising or pre-processing.

Note on Parameter Tuning– To detail a procedure for
tuning the parameter, consider the logistic equation ẋ =
x − x2. The original data is simulated over t ∈ [0, 15],
with time-step ∆t = 0.01, and initial data x0 = 0.01.
Noise is added directly to the simulated solution. Using
our method with a optimally tuned γ and fixed ε = 2
yields:

ẋ = 1.00x− 1.00x2

the exact solution up to two significant digits. To ob-
tain the optimal parameter, one may start with a rela-
tively large value (compared to the coefficients), γ = 2.
This results in all coefficients being zero. Next, reducing
the parameter to γ = 1.25, yields a 1-sparse solution,
ẋ = 1.2657. Next, reducing the parameter to the inter-
val 0.05 < γ < 1, the method selects 2-sparse solutions,
in particular, x and x2 are the only two terms selected,
with a L2 error between the approximation and the data
of 0.05. If we decrease to γ < 0.05, the algorithm outputs
3-sparse or denser models; however, the denser models do
not decrease the L2 error between the approximation and
the data. Thus, we see that when γ < 0.05, the method
begins to overfit the data. The results are in Fig. 8, along
side a comparison.

Automated procedures for parameter tuning can be
constructed, for example, using various information cri-
teria. In [19], the authors propose a method for learn-
ing dynamical models from an appropriate selection of
trial functions. The trial functions that are used form a
complete basis for smooth dynamics. Their method iter-
atively increases the number of allowed trial functions
until the Bayesian information criterion exhibits a lo-
cal maximum (which can prevent overfitting). In [20],
the Akaike information criterion is used to compare sev-
eral selected models that were learned using the sparse
model selection approach. Methods for selecting parame-
ters and comparing between learned model are important
for applications.
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FIG. 8. Comparison, Logistic Growth. The data is sim-
ulated over t ∈ [0, 15], with time-step ∆t = 0.01, and initial
data x0 = 0.01. The black curves are the various solutions of
the ODE when using the learned coefficients for each model.
In both plots, two terms are chosen from the 15 term trial
set. The first plot is shows the result of a sparse optimization
method for fitting the trial functions directly to the ODE,
inspired by the trial functions used in [3–6] but using a sim-
ilar model to Eq. [7]. The terms 1 and x14 were chosen by
the method. The second plot shows the solution using the
method in this work, which selected the terms x and x2.

CONCLUSION

A sparse regression approach for the identification of a
dynamical system directly from noisy data is presented.
Using the integral, or weak, formulation, noisy data is
handled in a stable and robust way. For moderate noise
levels, the algorithm produces an approximation to the
noisy data without the need for completely re-solving the
learned system of differential equations. Computational
experiments show that this approach is stable with re-
spect to data-size, robust to noise, and accurate when
dynamic behavior is included in the dataset. The results
presented here suggest the ability of sparse regression
to reduce the dynamics of the data onto the important
terms and to extract meaningful mathematical equations
from the data.
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