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Sparse MRI: The Application of Compressed Sensing
for Rapid MR Imaging

Michael Lustig,1∗ David Donoho,2 and John M. Pauly1

The sparsity which is implicit in MR images is exploited to

significantly undersample k -space. Some MR images such as

angiograms are already sparse in the pixel representation;

other, more complicated images have a sparse representation

in some transform domain–for example, in terms of spatial

finite-differences or their wavelet coefficients. According to

the recently developed mathematical theory of compressed-

sensing, images with a sparse representation can be recov-

ered from randomly undersampled k -space data, provided an

appropriate nonlinear recovery scheme is used. Intuitively, arti-

facts due to random undersampling add as noise-like inter-

ference. In the sparse transform domain the significant coef-

ficients stand out above the interference. A nonlinear thresh-

olding scheme can recover the sparse coefficients, effectively

recovering the image itself. In this article, practical incoher-

ent undersampling schemes are developed and analyzed by

means of their aliasing interference. Incoherence is intro-

duced by pseudo-random variable-density undersampling of

phase-encodes. The reconstruction is performed by minimiz-

ing the ℓ
1 norm of a transformed image, subject to data

fidelity constraints. Examples demonstrate improved spatial

resolution and accelerated acquisition for multislice fast spin-

echo brain imaging and 3D contrast enhanced angiography.
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INTRODUCTION

Imaging speed is important in many MRI applications.
However, the speed at which data can be collected in
MRI is fundamentally limited by physical (gradient ampli-
tude and slew-rate) and physiological (nerve stimulation)
constraints. Therefore, many researches are seeking for
methods to reduce the amount of acquired data without
degrading the image quality.

When k-space is undersampled, the Nyquist criterion is
violated, and Fourier reconstructions exhibit aliasing arti-
facts. Many previous proposals for reduced data imaging
try to mitigate undersampling artifacts. They fall in three
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groups: (a) Methods generating artifacts that are incoher-
ent or less visually apparent, at the expense of reduced
apparent SNR (1–5); (b) Methods exploiting redundancy
in k-space, such as partial-Fourier, parallel imaging, etc.
(6–8); (c) Methods exploiting either spatial or temporal
redundancy or both (9–13).

In this article we aim to exploit the sparsity which is
implicit in MR images, and develop an approach combin-
ing elements of approaches a and c. By implicit sparsity
we mean transform sparsity, i.e., the underlying object we
aim to recover happens to have a sparse representation in a
known and fixed mathematical transform domain. To begin
with, consider the identity transform, so that the transform
domain is simply the image domain itself. Here sparsity
means that there are relatively few significant pixels with
nonzero values. For example, angiograms are extremely
sparse in the pixel representation. More complex medi-
cal images may not be sparse in the pixel representation,
but they do exhibit transform sparsity, since they have a
sparse representation in terms of spatial finite differences,
in terms of their wavelet coefficients, or in terms of other
transforms.

Sparsity is a powerful constraint, generalizing the notion
of finite object support. It is well understood why support
constraints in image space (i.e., small FOV or band-pass
sampling) enable sparser sampling of k-space. Sparsity
constraints are more general because nonzero coefficients
do not have to be bunched together in a specified region.
Transform sparsity is even more general because the spar-
sity needs only to be evident in some transform domain,
rather than in the original image (pixel) domain. Spar-
sity constraints, under the right circumstances, can enable
sparser sampling of k-space as well (14,15).

The possibility of exploiting transform sparsity is moti-
vated by the widespread success of data compression in
imaging. Natural images have a well-documented suscep-
tibility to compression with little or no visual loss of
information. Medical images are also compressible, though
this topic has been less thoroughly studied. Underlying the
most well-known image compression tools such as JPEG,
and JPEG-2000 (16) are the discrete cosine transform (DCT)
and wavelet transform. These transforms are useful for
image compression because they transform image content
into a vector of sparse coefficients; a standard compres-
sion strategy is to encode the few significant coefficients
and store them, for later decoding and reconstruction of
the image.

The widespread success of compression algorithms with
real images raises the following questions: Since the images
we intend to acquire will be compressible, with most
transform coefficients negligible or unimportant, is it really
necessary to acquire all that data in the first place? Can we
not simply measure the compressed information directly
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from a small number of measurements, and still reconstruct
the same image which would arise from the fully sampled
set? Furthermore, since MRI measures Fourier coefficients,
and not pixels, wavelet, or DCT coefficients, the question
is whether it is possible to do the above by measuring only
a subset of k-space.

A substantial body of mathematical theory has recently
been published establishing the possibility to do exactly
this. The formal results can be found by searching for
the phrases compressed sensing (CS) or compressive sam-
pling (14,15). According to these mathematical results,
if the underlying image exhibits transform sparsity, and
if k-space undersampling results in incoherent artifacts
in that transform domain, then the image can be recov-
ered from randomly undersampled frequency domain
data, provided an appropriate nonlinear recovery scheme
is used.

In this article we aim to develop a framework for using
CS in MRI. To keep the discussion as short and simple
as possible, we focus this work only on Cartesian sam-
pling. Since most product pulse sequences in the clinic
today are Cartesian, the impact of Cartesian CS can be sub-
stantial. We keep in mind though, that non-Cartesian CS
has great potential and may be even more advantageous
than Cartesian for some applications. Some very promising
results for radial and spiral imaging have been presented
by (17–21).

THEORY

Compressed Sensing

CS was first proposed in the literature of Information
Theory and Approximation Theory in an abstract general
setting. One measures a small number of random linear
combinations of the signal values–much smaller than the
number of signal samples nominally defining it. The signal
is reconstructed with good accuracy from these measure-
ments by a nonlinear procedure. In MRI we look at a special
case of CS, where the sampled linear combinations are
simply individual Fourier coefficients (k-space samples).
In that setting, CS is claimed to be able to make accurate
reconstructions from a small subset of k-space rather than
an entire k-space grid.

The CS approach requires that: (a) the desired image have
a sparse representation in a known transform domain (i.e.,
is compressible), (b) the aliasing artifacts due to k-space
undersampling be incoherent (noise like) in that trans-
form domain. (c) a nonlinear reconstruction be used to
enforce both sparsity of the image representation and con-
sistency with the acquired data. To help keep in mind
these ingredients, consider Fig. 1, which depicts relation-
ships among some of these main concepts. It shows the
image, the k-space and the transform domains, and the
operators connecting these domains and the requirements
for CS.

A Simple, Intuitive Example of Compressed Sensing

To get intuition for the importance of incoherence and
the feasibility of CS in MRI, consider the example in
Fig. 2. A sparse 1D signal (Fig. 2a), 256 samples long, is

FIG. 1. Illustration of the domains and operators used in the paper

as well as the requirements of CS: sparsity in the transform domain,

incoherence of the undersampling artifacts, and the need for non-

linear reconstruction that enforces sparsity. [Color figure can be

viewed in the online issue, which is available at www.interscience.

wiley.com.]

undersampled in k-space (Fig. 2b) by a factor of eight. Here,
the sparse transform is simply the identity. Later, we will
consider the case where the transform is nontrivial.

Equispaced k-space undersampling and reconstruction
by zero-filling results in coherent aliasing, a superposition
of shifted replicas of the signal as illustrated in Fig. 2c. In
this case, there is an inherent ambiguity; it is not possible
to distinguish between the original signal and its replicas,
as they are all equally likely.

Random undersampling results in a very different
situation. The zero-filling Fourier reconstruction exhibits
incoherent artifacts that actually behave much like additive
random noise (Fig. 2d). Despite appearances, the artifacts
are not noise; rather, undersampling causes leakage of
energy away from each individual nonzero coefficient of
the original signal. This energy appears in other recon-
structed signal coefficients, including those which had
been zero in the original signal.

It is possible, if all the underlying original signal coef-
ficients are known, to calculate this leakage analytically.
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FIG. 2. An intuitive reconstruction of a sparse signal from pseudo-

random k -space undersampling. A sparse signal (a) is 8-fold

undersampled in k -space (b). Equispaced undersampling results in

coherent signal aliasing (c) that cannot be recovered. Pseudo-random

undersampling results in incoherent aliasing (c). Strong signal com-

ponents stick above the interference, are detected (e) and recovered

(f) by thresholding. The interference of these components is com-

puted (g) and subtracted (h), lowering the total interference level

and enabling recovery of weaker components. [Color figure can be

viewed in the online issue, which is available at www.interscience.

wiley.com.]

This observation enables the signal in Fig. 2d to be accu-
rately recovered although it was 8-fold undersampled.
An intuitive plausible recovery procedure is illustrated in
Fig. 2e–h. It is based on thresholding, recovering the strong
components, and calculating the interference caused by
them and subtracting it. Subtracting the interference of the
strong components reduces the total interference level and
enables recovery of weaker, previously submerged com-
ponents. By iteratively repeating this procedure, one can
recover the rest of the signal components. A recovery pro-
cedure along these lines was proposed by Donoho et al.
(Sparse Solution of Underdetermined Linear Equations by
Stagewise Orthogonal Matching Pursuit, 2006, Stanford
University, Statistics Department, technical report #2006-
02) as a fast approximate algorithm for CS reconstruction.
A similar approach of recovery of MR images was proposed
in Ref. (22).

Sparsity

Sparsifying Transform

A sparsifying transform is an operator mapping a vector of
image data to a sparse vector. In recent years, there has been
extensive research in sparse image representation. As a
result, we currently possess a library of diverse transforma-
tions that can sparsify many different type of images (23).

For example, piecewise constant images can be sparsely
represented by spatial finite-differences (i.e, comput-
ing the differences between neighboring pixels); indeed,
away from boundaries, the differences vanish. Real-life
MR images are of course not piecewise smooth. But in
some problems, where boundaries are the most important
information (angiograms for example) computing finite-
differences results in a sparse representation.

Natural, real-life images are known to be sparse in the
discrete cosine transform (DCT) and wavelet transform
domains (16). The DCT is central to the JPEG image com-
pression standard and MPEG video compression, and is
used billions of times daily to represent images and videos.
The wavelet transform is used in the JPEG-2000 image
compression standard (16). The wavelet transform is a mul-
tiscale representation of the image. Coarse-scale wavelet
coefficients represent the low resolution image compo-
nents and fine-scale wavelet coefficients represent high
resolution components. Each wavelet coefficient carries
both spatial position and spatial frequency information
at the same time (see top Fig. 4b for a spatial position
and spatial frequency illustrations of a mid-scale wavelet
coefficient).

Since computing finite-differences of images is a high-
pass filtering operation, the finite-differences transform can
also be considered as computing some sort of fine-scale
wavelet transform (without computing coarser scales).

Sparsity is not limited only to the spatial domain.
Dynamic images are extremely sparse in the temporal
dimension. Dynamic sparsity is beyond our scope; some
preliminary results of dynamic CS imaging are reported in
Refs. (24) and (25).

The Sparsity of MR Images

The transform sparsity of MR images can be demonstrated
by applying a sparsifying transform to a fully sampled
image and reconstructing an approximation to the image
from a subset of the largest transform coefficients. The spar-
sity of the image is the percentage of transform coefficients
sufficient for diagnostic-quality reconstruction. Of course
the term “diagnostic quality” is subjective. Nevertheless,
for specific applications, it is possible to get an empirical
sparsity estimate by performing a clinical trial and eval-
uating reconstructions of many images quantitatively or
qualitatively.

To illustrate this, we performed such an experiment on
two representative MR images: an angiogram of a leg and a
brain image. The images were transformed by each trans-
form of interest and reconstructed from several subsets of
the largest transform coefficients. The results are depicted
in Fig. 3. The left column images show the magnitude
of the transform coefficients; they illustrate that indeed
the transform coefficients are sparser than the images
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themselves. The DCT and the wavelet transforms have sim-
ilarly good performance with a slight advantage for the
wavelet transform for both brain and angiogram images
at reconstructions involving 5–10% of the coefficients.
The finite-difference transform does not sparsify the brain
image well. Nevertheless, finite differences do sparsify
angiograms because they primarily detect the boundaries
of the blood vessels, which occupy less than 5% of the
spatial domain.

Incoherent Sampling: “Randomness is too Important
to be Left to Chance1”

Incoherent aliasing interference in the sparse transform
domain is an essential ingredient for CS. This can be well
understood from our previous simple 1D example. In the
original CS papers (14,15), sampling a completely random
subset of k-space was chosen to simplify the mathematical
proofs and in particular to guarantee a very high degree of
incoherence.

Random point k-space sampling in all dimensions is
generally impractical as the k-space trajectories have to
be relatively smooth because of hardware and physiolo-
gical considerations. Instead, we aim to design a practical
incoherent sampling scheme that mimics the interference
properties of pure random undersampling as closely as
possible yet allows rapid collection of data.

There are numerous ways to design incoherent sampling
trajectories. To focus and simplify the discussion, in this
article, we consider only the case of Cartesian grid sam-
pling where the sampling is restricted to undersampling
the phase-encodes and fully sampled readouts. Alternative
sampling trajectories are possible and some very promis-
ing results have been presented by Refs. (19–21) (radial
imaging), and by Refs. (17) and (18) (spiral imaging).

We focus on Cartesian sampling because it is by far
the most widely used in practice. It is simple and
also highly robust to numerous sources of imperfection.
Nonuniform undersampling of phase encodes in Carte-
sian imaging has been proposed in the past as an accel-
eration method because it produces incoherent artifacts
(1,3,5)–exactly what we are looking for. Undersampling
phase-encode lines offers pure randomness in the phase-
encode dimensions, and a scan time reduction that is
exactly proportional to the undersampling. Finally, imple-
mentation of such an undersampling scheme is simple
and requires only minor modifications to existing pulse
sequences.

Point Spread Function and Transform Point Spread
Function Analysis

The point spread function (PSF) is a natural tool to mea-
sure incoherence. Let Fu be the undersampled Fourier
operator and let ei be the ith vector of the natural basis
(i.e, having “1” at the ith location and zeroes elsewhere).
Then PSF(i; j) = e∗

j F
∗
uFuei measures the contribution

of a unit-intensity pixel at the ith position to a pixel
at the jth position. Under Nyquist sampling there is no

1Robert R. Coveyou, Oak Ridge National Laboratory.

interference between pixels and PSF(i; j)|i �=j = 0. Under-
sampling causes pixels to interfere and PSF(i; j)|i �=j to
assume nonzero values. A simple measure to evaluate the
incoherence is the maximum of the sidelobe-to-peak ratio

(SPR), maxi �=j
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The PSF of pure 2D random sampling, where samples
are chosen at random from a Cartesian grid, offers a stan-
dard for comparison. In this case PSF(i; j)|i �=j looks random
as illustrated in Fig. 4a. Empirically, the real and the
imaginary parts separately behave much like zero-mean
random white Gaussian noise. The standard deviation of
the observed SPR depends on the number, N , of sam-
ples taken and the number, D, of grid points defining the
underlying image. For a constant sampling reduction factor
p = D

N the standard deviation obeys the formula:

σSPR =
√

p − 1

D
. [1]

A derivation of Eq. [1] is given in Appendix II.
The MR images of interest are typically sparse in a trans-

form domain rather than the usual image domain. In such a
setting, incoherence is analyzed by generalizing the notion
of PSF to Transform Point Spread Function (TPSF) which
measures how a single transform coefficient of the underly-
ing object ends up influencing other transform coefficients
of the measured undersampled object.

Let � be an orthogonal sparsifying transform (nonortho-
gonal TPSF analysis is beyond our scope and is not
discussed here). The TPSF(i; j) is given by the following
equation,

TPSF(i; j) = e∗
j �F

∗
uFu�∗ei . [2]

In words, a single point in the transform space at the ith
location is transformed to the image space and then to the
Fourier space. The Fourier space is subjected to undersam-
pling, then transformed back to the image space. Finally, a
return is made to the transform domain and the jth location
of the result is selected. An example using an orthogonal
wavelet transform is illustrated by Fig. 4b. The size of the
sidelobes in TPSF(i; j)|i �=j are used to measure the incoher-
ence of a sampling trajectory. We would like TPSF(i; j)|i �=j

to be as small as possible, and have random noise-like
statistics.

Single-slice 2DFT, multislice 2DFT, and 3DFT Imaging

Equipped with the PSF and TPSF analysis tools, we con-
sider three cases of Cartesian sampling: 2DFT, multislice
2DFT, and 3DFT. In single-slice 2DFT, only the phase
encodes are undersampled and the interference spreads
only along a single dimension. The interference standard
deviation as calculated in Eq. [1] is D1/4 times larger
than the theoretical pure random 2D case for the same
acceleration–(16 times for a 256 × 256 image). Therefore,
in 2DFT one can expect relatively modest accelerations
because mostly 1D sparsity is exploited.

In multislice 2DFT we sample in a hybrid k-space ver-
sus image space (ky − z space). Undersampling differently
the phase-encodes of each slice randomly undersamples
the ky − z space. This can reduce the peak sidelobe in the
TPSF of some appropriate transforms, such as wavelets, as
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FIG. 3. Transform-domain sparsity

of images. (a) Axial T1 weighted brain

image; (b) axial 3D contrast enhanced

angiogram of the peripheral leg. The

DCT, wavelet, and finite-differences

transforms were calculated for all the

images (Left column). The images

were then reconstructed from a sub-

set of 5, 10, and 20% of the largest

transform coefficients.

long as the transform is also applied in the slice dimension.
Hence, it is possible to exploit some of the sparsity in the
slice dimension as well. Figure 5a, b shows that undersam-
pling each slice differently has reduced peak sidelobes in
the TPSF compared to undersampling the slices the same

way. However, it is important to mention that for wavelets,
randomly undersampling in the hybrid ky − z space is not
as effective, in terms of reducing the peak sidelobes, as
randomly undersampling in a pure 2D k-space (Fig. 5c).
The method of multislice 2DFT will work particularly well

FIG. 4. (a) The PSF of random 2D k -space undersampling. (b) The wavelet TPSF of random 2D Fourier undersampling. FDWT and IDWT

stand for forward and inverse discrete wavelet transform. Wavelet coefficients are band-pass filters and have limited support both in space

and frequency. Random k -space undersampling results in incoherent interference in the wavelet domain. The interference spreads mostly

within the wavelet coefficients of the same scale and orientation.
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when the slices are thin and finely spaced. When the slices
are thick and with gaps, there is little spatial redundancy
in the slice direction and the performance of the recon-
struction would be reduced to the single-slice 2DFT case.
Undersampling with CS can be used to bridge gaps or
acquire more thinner slices without compromising the scan
time.

Randomly undersampling the 3DFT trajectory is our
preferred method. Here, it is possible to randomly under-
sample the 2D phase encode plane (ky −kz) and achieve the
theoretical high degree of 2D incoherence. Additionally, 2D
sparsity is fully exploited, and images have a sparser repre-
sentation in 2D. Three-dimensional imaging is particularly
attractive because it is often time consuming and scan time
reduction is a higher priority than 2D imaging. Figure 5c
illustrates the proposed undersampled 3DFT trajectory and
its wavelet TPSF. The peak interference of the wavelet
coefficients is significantly reduced compared to multislice
and plain 2DFT undersampling.

Variable Density Random Undersampling

Our incoherence analysis so far assumes the few nonzeros
are scattered at random among the entries of the transform
domain representation. Representations of natural images
exhibit a variety of significant nonrandom structures. First,
most of the energy of images is concentrated close to the
k-space origin. Furthermore, using wavelet analysis one
can observe that coarse-scale image components tend to be
less sparse than fine-scale components. This can be seen
in the wavelet decomposition of the brain and angiogram
images of Fig. 3, left column.

These observations show that, for a better performance
with “real images,” one should be undersampling less
near the k-space origin and more in the periphery of
k-space. For example, one may choose samples randomly
with sampling density scaling according to a power of
distance from the origin. Empirically, using density pow-
ers of 1–6 greatly reduces the total interference and, as
a result, iterative algorithms converge faster with better
reconstruction. The optimal sampling density is beyond
the scope of this article, and should be investigated in
future research.

Variable-density sampling schemes for Cartesian, radial
(radial has natural linear density), and spiral imaging have
been proposed in the past by (1–5) because the alias-
ing appears incoherent. In such schemes, high energy
low-frequency image components alias less than lower
energy higher-frequency components, and the interference
appears as white noise in the image domain. This is exactly
the desired case in CS, only in CS it is also possible to
remove the aliasing interference without degrading the
image quality.

How Many Samples to Acquire?

A theoretical bound on the number of Fourier sample
points that need be collected with respect to the number of
sparse coefficients is derived in Refs. (14) and (15). How-
ever, we as well as other researchers have observed that in
practice, for a good reconstruction, the number of k-space
samples should be roughly two to five times the number of

sparse coefficients (The number of sparse coefficients can
be calculated in the same way as in the The Sparsity of
MR Images section). Our results, presented in this article,
support this claim. Similar observations were reported by
Candès et al. (26) and by Tsaig and Donoho (27).

Monte-Carlo Incoherent Sampling Design

Finding an optimal sampling scheme that maximizes the
incoherence for a given number of samples is a combi-
natorial optimization problem and might be considered
intractable. However, choosing samples at random often
results in a good, incoherent, near-optimal solution. There-
fore, we propose the following Monte-Carlo design proce-
dure: choose a grid size based on the desired resolution
and FOV of the object. Undersample the grid by construct-
ing a probability density function (pdf) and randomly draw
indices from that density. Variable density sampling of
k-space is controlled by the pdf construction. A plausi-
ble choice is diminishing density according to a power of
distance from the origin as previously discussed. Because
the procedure is random, one might accidentally choose a
sampling pattern with a “bad” TPSF. To prevent such situ-
ation, repeat the procedure many times, each time measure
the peak interference in the TPSF of the resulting sampling
pattern. Finally, choose the pattern with the lowest peak
interference. Once a sampling pattern is determined it can
be used again for future scans.

Image Reconstruction

We now describe in more detail the processes of nonlinear
image reconstruction appropriate to the CS setting. Sup-
pose the image of interest is a vector m, let � denote
the linear operator that transforms from pixel represen-
tation into a sparse representation, and let Fu be the
undersampled Fourier transform, corresponding to one
of the k-space undersampling schemes discussed earlier.
The reconstruction is obtained by solving the following
constrained optimization problem:

minimize ‖�m‖1 [3]

s.t. ‖Fum − y‖2 < ǫ

Here m is the reconstructed image, where y is the measured
k-space data from the scanner, and ǫ controls the fidelity
of the reconstruction to the measured data. The threshold
parameter ǫ is usually set below the expected noise level.

The objective function in Eq. [3] is the ℓ1 norm, which
is defined as ‖x‖1 =

∑

i |xi |. Minimizing ‖�m‖1 promotes
sparsity (28). The constraint ‖Fum − y‖2 < ǫ enforces data
consistency. In words, among all solutions which are con-
sistent with the acquired data, Eq. [3] finds a solution which
is compressible by the transform �.

When finite-differences is used as a sparsifying trans-
form, the objective in Eq. [3] is often referred to as Total-
Variation (TV) (29), since it is the sum of the absolute
variations in the image. The objective then is usually
written as TV(m). Even when using other sparsifying trans-
forms in the objective, it is often useful to include a TV
penalty as well (27). This can be considered as requiring
the image to be sparse by both the specific transform and
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FIG. 5. Transform point spread function (TPSF) analysis in the wavelet domain. The k -space sampling patterns and the associated TPSF

of coarse-scale and fine-scale wavelet coefficients are shown. (a) Random phase encode undersampling spreads the interference only in 1D

and mostly within the same wavelet scale. The result is relatively high peak interference. (b) Sampling differently for each slice, i.e., randomly

undersampling the ky − z plane causes the interference to spread to nearby slices and to other wavelets scales and reduces its peak value.

(c) Undersampling the phase encode plane, i.e., ky − kz spreads the interference in 2D and results in the lowest peak interference. [Color

figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

FIG. 6. Simulation: Reconstruction artifacts as a function of acceleration. The LR reconstructions exhibit diffused boundaries and loss of

small features. The ZF-w/dc reconstructions exhibit an significant increase of apparent noise due to incoherent aliasing, the apparent noise

appears more “white” with variable density sampling. The CS reconstructions exhibit perfect reconstruction at 8- and 12-fold (only var. dens.)

accelerations. With increased acceleration there is loss of low-contrast features and not the usual loss of resolution. The reconstructions from

variable density random undersampling significantly outperforms the reconstructions from uniform density random undersampling. [Color

figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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finite-differences at the same time. In this case Eq. [3] is
written as

minimize ‖�m‖1 + αTV (m)

s.t. ‖Fum − y‖2 < ǫ,

where α trades � sparsity with finite-differences sparsity.
The ℓ1 norm in the objective is a crucial feature of the

whole approach. Minimizing the ℓ1 norm of an objective
often results in a sparse solution. On the other hand, mini-
mizing the ℓ2 norm, which is defined as ‖x‖2 = (

∑

i |xi |2)1/2

and commonly used for regularization because of its sim-
plicity, does not result in a sparse solution and hence is not
suitable for use as objective function in Eq. [3]. Intuitively,
the ℓ2 norm penalizes large coefficients heavily, therefore
solutions tend to have many smaller coefficients–hence not
be sparse. In the ℓ1 norm, many small coefficients tend to
carry a larger penalty than a few large coefficients, therefore
small coefficients are suppressed and solutions are often
sparse.

Special purpose methods for solving Eq. [3] have been
a focus of research interest since CS was first introduced.
Proposed methods include: interior point methods (28,30),
projections onto convex sets (26), homotopy (Donoho et al.,
Fast solution of ℓ1 minimization where the solution may
be sparse 2006, Statistics Department, Stanford Univer-
sity, technical report #2006 18), iterative soft thresholding
(31–33), and iteratively reweighted least squares (20,34).
In the Appendix we describe our approach which is simi-
lar to (19,21,35), using nonlinear conjugate gradients and
backtracking line-search.

It is important to mention that some of the above itera-
tive algorithms for solving the optimization in Eq. [3] in
effect perform thresholding and interference cancellation
at each iteration. Therefore, there is a close connection
between our previous simple intuitive example of inter-
ference cancellation and the more formal approaches that
are described above.

Low-Order Phase Correction and Phase Constrained
Partial k -space

In MRI, instrumental sources of phase errors can cause
low-order phase variation. These carry no physical infor-
mation, but create artificial variation in the image which
makes it more difficult to sparsify, especially by finite dif-
ferences. By estimating the phase variation, the reconstruc-
tion can be significantly improved. This phase estimate
may be obtained using very low-resolution fully sampled
k-space information. Alternatively, the phase is obtained
by solving Eq. [3] to estimate the low-order phase, and
repeating the reconstruction while correcting for the phase
estimate.

The phase information is incorporated by a slight modi-
fication of Eq. [3],

minimize ‖�m‖1 [4]

s.t. ‖FuPm − y‖2 < ǫ

where P is a diagonal matrix whose entries give the
estimated phase of each pixel.

METHODS

All experiments were performed on a 1.5T Signa Excite
scanner. All CS reconstructions were implemented in
Matlab (The MathWorks, Natick, MA) using the nonlin-
ear conjugate gradient method as described in Appendix I.
Two linear schemes were used for comparison, zero-filling
with density compensation (ZF-w/dc) and low-resolution
(LR). ZF-w/dc consists of a reconstruction by zero-filling
the missing k-space data and k-space density compen-
sation. The k-space density compensation is computed
from the probability density function from which the
random samples were drawn. LR consists of reconstruc-
tion from a Nyquist sampled low-resolution acquisition.
The low-resolution acquisition contained centric-ordered
data with the same number of data points as the under-
sampled sets. A software implementation of the recon-
struction as well as some of the examples in this article
are available at http://www.msrl.stanford.edu/∼mlustig/
software/

Simulation: CS Reconstruction Performance and
Reconstruction Artifacts with Increased Undersampling

For the simulation we constructed a phantom by placing
18 features with 6 different sizes (3–75 pixel area) and
3 different intensities (0.33, 0.66, and 1). The features
were distributed randomly in the phantom to simulate
an angiogram. The phantom had 100 × 100 pixels out of
which 575 are nonzero (5.75%). The finite-differences of
the phantom consisted of 425 nonzeros (4.25%).

The first aim of the simulation was to examine the perfor-
mance of the CS reconstruction and its associated artifacts
with increased undersampling compared to the LR and
ZF-w/dc methods. The second aim was to demonstrate the
advantage of variable density random undersampling over
uniform density random undersampling.

From the full k-space we constructed sets of randomly
undersampled data with uniform density as well as vari-
able density (density power of 12) with corresponding
accelerations factors of 8, 12, and 20 (1,250, 834, and 500
k-space samples). Since the phantom is sparse both in
image space and by finite differences, the data were CS
reconstructed by using an ℓ1 penalty on the image as well
as a TV penalty (finite differences as the sparsifying trans-
form) in Eq. [3]. The result was compared to the ZF-w/dc
and LR linear reconstructions.

Undersampled 2D Cartesian Sampling in the
Presence of Noise

CS reconstruction is known to be stable in the presence of
noise (36,37), and can also be used to further perform non-
linear edge preserving denoising (29,38) of the image. To
document the performance of CS in the presence of noise,
we scanned a phantom using a 2D Cartesian spin-echo
sequence with scan parameters yielding measured SNR =
6.17. The k-space was undersampled by a factor of 2.5 by
randomly choosing phase-encodes lines with a quadratic
variable density. A CS reconstruction using a TV penalty
in Eq. [3] was obtained, with two different consistency RMS
errors of ǫ = 10−5 and ǫ = 0.1. The result was compared to
the ZF-w/dc reconstruction, and the reconstruction based



1190 Lustig et al.

on complete Nyquist sampling. Finally, the image quality
as well as the resulting SNR of the reconstructions were
compared.

Multislice 2DFT Fast Spin-Echo Brain Imaging

In the theory section, it was shown that brain images exhibit
transform sparsity in the wavelet domain. Brain scans are
a significant portion of MRI scans in the clinic, and most
of these are multislice acquisitions. CS has the potential to
reduce the acquisition time, or improve the resolution of
current imagery.

In this experiment we acquired a T2-weighted multi-
slice k-space data of a brain of a healthy volunteer using
a FSE sequence (256 × 192 × 32, res = 0.82 mm, slice
= 3 mm, echo-train = 15, TR/TE = 4, 200/85 ms). For
each slice we acquired different sets of 80 phase-encodes
chosen randomly with quadratic variable density from 192
possible phase encodes, for an acceleration factor of 2.4.
The image was CS reconstructed by using a wavelet trans-
form (Daubechies 4) as sparsifying transform together with
a TV penalty in Eq. [3]. To reduce computation time and
memory load, we separated the 3D problem into many
2D CS reconstructions, i.e, iterating between solving for
the y − z plane slices, and solving for the x − y plane
slices. To demonstrate the reduction in scan time, as well
as improved resolution, the multislice reconstruction was
then compared to the ZF-w/dc and LR linear reconstruc-
tions and to the reconstruction based on complete Nyquist
sampling.

The TPSF analysis shows that the multislice approach
has considerable advantage over the 2DFT in recovering
coarse scale image components. To demonstrate this, the
multislice CS reconstruction was compared to a reconstruc-
tion from data in which each slice was undersampled in
the same way. To further enhance the effect, we repeated
the reconstructions for data that was randomly undersam-
pled with uniform density where the coarse scale image
components are severely undersampled.

Contrast-Enhanced 3D Angiography

Angiography is a very promising application for CS. First,
the problem matches the assumptions of CS. Angiograms
appear to be sparse already to the naked eye. The blood
vessels are bright with a very low background signal.
Angiograms are sparsified very well by both the wavelet
transform and by finite-differences. This is illustrated in
Fig. 3; blood vessel information is preserved in reconstruc-
tions using only 5% of the transform coefficients. Second,
the benefits of CS are of real interest in this application. In
angiography there is often a need to cover a very large FOV
with relatively high resolution, and the scan time is often
crucial.

To test the behavior of CS for various degrees of under-
sampling in a controlled way, we simulated k-space data
by computing the Fourier transform of a magnitude post-
contrast 3DFT angiogram of the peripheral legs. The scan
was RF-spoiled gradient echo (SPGR) sequence with the
following parameters: TR = 6 ms, TE = 1.5 ms, Flip = 30◦.
The acquisition matrix was set to 480 × 480 × 92 with cor-
responding resolution of 1 mm × 0.8 mm × 1 mm. The

imaging plane was coronal with a superior-inferior readout
direction.

From the full k-space set, five undersampled data sets
with corresponding acceleration factors of 5, 6.7, 8, 10,
and 20 were constructed by randomly choosing phase
encode lines with the quadratic variable k-space den-
sity. To reduce complexity, prior to reconstruction, a 1D
Fourier transform was applied in the fully sampled readout
direction. This effectively creates 480 separable purely ran-
dom undersampled 2D reconstructions. Finally, the images
were CS reconstructed by using a TV penalty in Eq. [3].
The result was compared to the ZF-w/dc and LR linear
reconstructions.

We further tested the method, now with true k-space data
on a first-pass abdominal contrast enhanced angiogram
with the following scan parameters: TR/TE = 3.7/0.96 ms,
FOV = 44 cm, matrix = 320×192×32 (with 0.625 fractional
echo), BW = 125 kHz.

The fully sampled data were undersampled 5-fold in
retrospect with a quadratic k-space density effectively
reducing the scan time from 22 s to 4.4 s. The images were
CS reconstructed from the undersampled data using a TV
penalty in Eq. [3] and the result was again compared to

FIG. 7. 2DFT CS reconstruction from noisy data. CS reconstruction

can perform denoising of the image as well as interference removal

by relaxing the data consistency. (a) Reconstruction from complete

noisy data. (b) ZF-w/dc, the image suffers from apparent noise due

to incoherent aliasing as well as noise. (c) CS reconstruction with

TV penalty from noisy undersampled data. Consistency RMS error

set to 10−5. (d) CS reconstruction with TV penalty from noisy under-

sampled data. Consistency RMS error set to 0.1. Note interference

removal in both (c) and (d) and the denoising in (d). [Color figure can

be viewed in the online issue, which is available at www.interscience.

wiley.com.]
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FIG. 8. Multislice 2DFT fast spin echo

CS at 2.4 acceleration. (a) The CS-wavelet

reconstruction exhibits significant resolution

improvement over LR and significant sup-

pression of the aliasing artifacts over ZF-w/dc

compared to the full Nyquist sampling. (b) CS

wavelet reconstructions from several under-

sampling schemes. The multi-slice approach

outperforms the single-slice approach and

variable density undersampling outperforms

uniform undersampling. (c) The associated

undersampling schemes; variable density

(top) and uniform density (bottom), single-

slice (left) and multi-slice (right).

the ZF-w/dc and LR linear reconstructions. To compen-
sate for the fractional echo, a Homodyne partial-Fourier
reconstruction (6) was performed in the readout direction.

RESULTS

Simulation: CS Reconstruction Performance and
Reconstruction Artifacts with Increased Undersampling

Figure 6 presents the simulation results. The LR recon-
struction, as expected, shows a decrease in resolution with
acceleration characterized by loss of small structures and
diffused boundaries. The ZF-w/dc reconstructions exhibit
a decrease in apparent SNR because of the incoherent
interference, which completely obscures small and dim
features. The uniform density undersampling interference
is significantly larger and more structured than the vari-
able density. In both ZF-w/dc reconstructions the features
that are brighter than the interference appear to have well-
defined boundaries. In the CS reconstructions, at 8-fold
acceleration (approximately 3 times more Fourier samples
than sparse coefficients) we get exact recovery from both

uniform density and variable density undersampling! At
12-fold acceleration (approximately 2 times more Fourier
samples than sparse coefficients) we still get exact recov-
ery from the variable density undersampling, but lose
some of the low-contrast features in the uniform density
undersampling. At 20-fold acceleration (similar number
of Fourier samples as sparse coefficients) we get loss of
image features in both reconstructions. The reconstruction
errors are severe from the uniform density undersam-
pling. However, in reconstruction from the variable density
undersampling, only the weak intensity objects have recon-
struction errors; the bright, high contrast features are well
reconstructed.

2DFT CS Reconstruction in the Presence of Noise

Figure 7 presents the reconstruction results. Figure 7a
shows the reconstruction of a fully sampled phantom
scan. The measured SNR is 6.17. The ZF-w/dc reconstruc-
tion result in Fig. 7b exhibits significant apparent noise
in the image with measured SNR of 3.79. The apparent
noise is mostly incoherent aliasing artifacts due to the
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undersampling as well as noise increase from the density
compensation (which is essential to preserve the reso-
lution). Some coherent aliasing artifacts are also visible
(pointed to by arrows). In Fig. 7c the artifacts are sup-
pressed by the CS reconstruction, recovering the noisy
image with an SNR of 9.84. The SNR is slightly better
because the CS reconstruction is inherently a denoising
procedure. By increasing the RMS consistency parameter
to ǫ = 0.1 (less consistency) the CS reconstruction recovers
and denoises the phantom image. Measured SNR increases
dramatically to 26.9 without damaging the image quality.
The denoising is nonlinear edge-preserving TV denoising
and is shown in Fig. 7d.

Multislice Fast Spin-Echo Brain Imaging

Figure 8 shows the experiment results. In Fig. 8a coronal
and axial slices of the multislice CS reconstruction are com-
pared to the full Nyquist sampling, ZF-w/dc, and LR recon-
structions. CS exhibits significant resolution improvement
over LR and significant suppression of the aliasing artifacts
over ZF-w/dc compared to the full Nyquist sampling.

Figure 8b shows CS reconstructions from several under-
sampling schemes. The corresponding undersampling
schemes are given in Fig. 8c. Low-resolution aliasing arti-
facts are observed in the reconstructions in which the data
was undersampled the same way for all slices. The arti-
facts are more pronounced for uniform undersampling.
The reason is that some of the coarse-scale wavelet com-
ponents in these reconstructions were not recovered cor-
rectly because of the large peak interference of coarse-scale
components that was documented in the TPSF theoreti-
cal analysis (see Fig. 5a). These artifacts are significantly
reduced when each slice is undersampled differently. This
is because the theoretical TPSF peak interference in such
sampling scheme is significantly smaller (see Fig. 5b),
which enables better recovery of these components. The
results in Fig. 8b show again that a variable density
undersampling scheme performs significantly better than
uniform undersampling.

Contrast Enhanced 3D Angiography

Figure 9 shows a region of interest in the maximum inten-
sity projection (MIP) of the reconstruction results as well
as a slice reconstruction from 10-fold acceleration. The LR
reconstruction (left column), as expected, shows a decrease
in resolution with acceleration characterized by loss of
small structures and diffused blood vessel boundaries.
The ZF-w/dc reconstruction (middle column), exhibits a
decrease in apparent SNR because of the incoherent inter-
ference, which obscures small and dim vessels. Interest-
ingly, the boundaries of the very bright vessels remain sharp
and are diagnostically more useful than the LR. The CS
reconstruction (right column), on the other hand, exhibits
good reconstruction of the blood vessels even at very high
accelerations. The resolution as well as the contrast are
preserved with almost no loss of information at up to 10-
fold acceleration. Even at acceleration of 20-fold the bright
blood vessel information is well preserved. These results
conform with the thresholding experiment in Fig. 3 as well
as the simulation results in Fig. 6.

Figure 10 shows the reconstruction result from the first-
pass contrast experiment. The imaged patient has an aorto-
bifemoral bypass graft. This is meant to carry blood from
the aorta to the lower extremities and is seen on the left
side of the aorta (right in the image). There is a high-grade
stenosis in the native right common illiac artery, which is
indicated by the arrows. Again, at 5-fold acceleration the LR
acquisition exhibits diffused boundaries and the ZF-w/dc
exhibits considerable decrease in apparent SNR. The CS
reconstruction exhibits a good reconstruction of the blood
vessels, in particular, we see that in Fig. 10d flow across
the stenosis is visible, but it is not visible in Figs. 10b,c.

DISCUSSION

Computational Complexity

Development of fast algorithms for solving Eq. [3] accu-
rately or approximately is an increasingly popular research
topic. Many of these methods have been mentioned in the
Theory section. Overall, the reconstruction is iterative and
more computationally intensive than linear reconstruc-
tion methods. However, some of the methods proposed
show great potential to significantly reduce the overall
complexity.

FIG. 9. Contrast-enhanced 3D angiography reconstruction results

as a function of acceleration. Left column: acceleration by LR. Note

the diffused boundaries with acceleration. Middle column: ZF-w/dc

reconstruction. Note the increase of apparent noise with accelera-

tion. Right column: CS reconstruction with TV penalty from randomly

undersampled k -space. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]
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FIG. 10. Reconstruction from

5-fold accelerated acquisition

of first-pass contrast enhanced

abdominal angiography. (a) Re-

construction from a complete data

set. (b) LR (c) ZF-w/dc (d) CS

reconstruction from random

undersampling. The patient has

a aorto-bifemoral bypass graft.

This is meant to carry blood from

the aorta to the lower extremities.

There is a high-grade stenosis

in the native right common illiac

artery, which is indicated by the

arrows. In figure parts (a) and

(d) flow across the stenosis is

visible, but it is not on (b) and (c).

The examples in this article were reconstructed using
a nonlinear conjugate gradient method with backtracking
line-search. In a Matlab (The MathWorks, Natick, MA)
implementation, it takes about 150 CG iterations (approxi-
mately 30 s) to reconstruct a 480 × 92 angiogram using a
TV-penalty at 5-fold acceleration. We expect a significant
reduction in the reconstruction time by code optimiza-
tion.

Reconstruction Artifacts

The ℓ1 reconstruction tends to slightly shrink the magni-
tude of the reconstructed sparse coefficients. The resulting
reconstructed coefficients are often slightly smaller than
in the original signal. This coefficient shrinkage decreases
when the reconstruction consistency parameter ǫ in Eq. [3]
is small.

In some wavelet-based CS reconstructions, small high-
frequency oscillatory artifacts may appear in the recon-
struction. This is due to false detection of fine-scale wavelet
components. To mitigate these artifacts it is recommended
to add a small TV penalty on top of the wavelet penalty.
This can be considered as requiring the image to be sparse
in both wavelet and finite-differences transforms.

In CS, the contrast in the image plays a major part in the
ability to vastly undersample and reconstruct images. High
contrast often results in large distinct sparse coefficients.
These can be recovered even at very high accelerations.
For example, a single bright pixel will most likely appear
in the reconstruction even with vast undersampling (See
Figs. 6 and 9 for an example). However, features with
lower contrast at the same accelerations will be so deeply
submerged by the interference that they would not be
recoverable. As such, with increased acceleration the

most distinct artifacts in CS are not the usual loss of
resolution or increase in aliasing interference, but loss
of low-contrast features in the image. Therefore, CS is
particularly attractive in applications that exhibit high
resolution high contrast image features, and rapid imaging
is required.

Relation to Other Acceleration Methods

Vastly undersampled 3D radial trajectories–VIPR (39) have
demonstrated high acceleration for angiography. The VIPR
trajectory is a 3D incoherent sampling scheme in which
the interference spreads in all three dimensions. As such,
reconstruction from VIPR acquisitions can be further
improved by using the CS approach.

Wajer’s PhD thesis (11) suggested undersampling k-space
and employing a Bayesian reconstruction to randomized
trajectories. This approach, although different, is related to
finite difference sparsity.

Nonuniform sampling with maximum entropy recons-
truction has been used successfully to accelerate multi-
dimensional NMR acquisitions (40). Maximum entropy
reconstruction is also related to sparsity of finite
differences.

CS reconstruction exploits sparsity and compressibility
of MR images. It can be combined with other acceleration
methods that exploit different redundancies. For exam-
ple, constraining the image to be real in Eq. [4] effectively
combines phase constrained partial k-space with the CS
reconstruction. In a similar way, CS can be combined with
SENSE reconstruction by including the coil sensitivity
information in Eq. [3]. In general, any other prior on the
image that can be expressed as a convex constraint can be
incorporated in the reconstruction.
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CONCLUSIONS

We have presented the theory of CS and the details of its
implementation for rapid MR imaging. We demonstrated
experimental verification of several implementations for
2D and 3D Cartesian imaging. We showed that the spar-
sity of MR images can be exploited to significantly reduce
scan time, or alternatively, improve the resolution of MR
imagery. We demonstrated high acceleration in in-vivo
experiments, in particular a 5-fold acceleration of first pass
contrast enhanced MRA. CS can play a major part in many
applications that are limited by the scan time, when the
images exhibit transform sparsity.
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APPENDIX A: NONLINEAR CONJUGATE-GRADIENT
SOLUTION OF THE CS OPTIMIZATION PROCEDURE

Equation [3] poses a constrained convex optimization
problem. Consider the unconstrained problem in so-called
Lagrangian form:

argmin
m

‖Fum − y‖2
2 + λ‖�m‖1, [A1]

where λ is a regularization parameter that determines the
trade-off between the data consistency and the sparsity.
As is well-known, the parameter λ can be selected appro-
priately such that the solution of Eq. [A1] is exactly as
Eq. [3]. The value of λ can be determined by solving
Eq. [A1] for different values, and then choosing λ so that
||Fum − y ||2 ≈ ǫ.

We propose solving Eq. [A1] using a nonlinear conjugate
gradient descent algorithm with backtracking line search
where f (m) is the cost-function as defined in Eq. [A1].

ITERATIVE ALGORITHM FOR ℓ1-PENALIZED
RECONSTRUCTION

INPUTS:
y - k-space measurements
Fu - undersampled Fourier operator associated with the
measurements
� - sparsifying transform operator
λ - a data consistency tuning constant

OPTIONAL PARAMETERS:
TolGrad - stopping criteria by gradient magnitude
(default 10−4)
MaxIter - stopping criteria by number of iterations
(default 100)
α, β - line search parameters (defaults α = 0.05, β = 0.6)

OUTPUTS:
m - the numerical approximation to Eq. [A1]

% Initialization
k = 0; m = 0; g0 = ∇f (m0); �m0 = −g0

% Iterations
while (||gk ||2 < TolGrad and k > maxIter) {

% Backtracking line-search
t = 1; while (f (mk+t�mk ) > f (mk )+αt·Real(g∗

k�mk ))
{t = βt}

mk+1 = mk + t�mk

gk+1 = ∇f (mk+1)

γ = ||gk+1||22
||gk ||22

�mk+1 = −gk+1 + γ�mk

k = k + 1 }

The conjugate gradient requires the computation of ∇f (m)
which is,

∇f (m) = 2F∗
u(Fum − y ) + λ∇||�m||1 [A2]

The ℓ1 norm is the sum of absolute values. The absolute
value function, however, is not a smooth function and as
a result Eq. [A2] is not well defined for all values of m.
Instead, we approximate the absolute value with a smooth
function by using the relation |x| ≈

√
x∗x + µ, where µ is

a positive smoothing parameter. With this approximation,
d|x|
dx ≈ x√

x∗x+µ
.

Now, let W be a diagonal matrix with the diagonal
elements wi =

√

(�m)∗i (�m)i + µ. Equation [A2] can be
approximated by,

∇f (m) ≈ 2F∗
u(Fum − y ) + λ�∗W −1�m [A3]

In practice, Eq. [A3] is used with a smoothing factor
µ ∈ [10−15, 10−6]. The number of CG iterations varies with
different objects, problem size, accuracy and undersam-
pling. Examples in this paper required between 80 and 200
CG iterations.

APPENDIX B: DERIVATION OF THE INTERFERENCE
STANDARD DEVIATION FORMULA

Equation [1] is easily derived. The total energy in the PSF

is N
D and the energy of the main lobe is

(

N
D

)2
. The off-center

energy is therefore N
D −

(

N
D

)2
. Normalizing by the number

of off-center pixels and also by the main lobe’s energy and
setting p = D

N we get Eq. [1].
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