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Abstract. Diffusion magnetic resonance imaging (dMRI) is an impor-
tant tool that allows non-invasive investigation of neural architecture of
the brain. The data obtained from these in-vivo scans provides important
information about the integrity and connectivity of neural fiber bundles
in the brain. A multi-shell imaging (MSI) scan can be of great value in
the study of several psychiatric and neurological disorders, yet its usabil-
ity has been limited due to the long acquisition times required. A typical
MSI scan involves acquiring a large number of gradient directions for the
2 (or more) spherical shells (several b-values), making the acquisition
time significantly long for clinical application. In this work, we propose
to use results from the theory of compressive sampling and determine
the minimum number of gradient directions required to attain signal re-
construction similar to a traditional MSI scan. In particular, we propose
a generalization of the single shell spherical ridgelets basis for sparse rep-
resentation of multi shell signals. We demonstrate its efficacy on several
synthetic and in-vivo data sets and perform quantitative comparisons
with solid spherical harmonics based representation. Our preliminary re-
sults show that around 20-24 directions per shell are enough for robustly
recovering the diffusion propagator.

1 Introduction

A popular dMRI acquisition technique is High Angular Resolution Diffusion
Imaging (HARDI), which involves acquiring diffusion information for a single
b-value (single shell) in several gradient directions uniformly spread on a sphere
[1]. While this protocol allows for resolving the angular structure of the neural
fibers, it does not provide information about the radial signal decay, which is
sensitive to white matter anomalies.

To obtain accurate information about the neural architecture, diffusion spec-
trum imaging (DSI) was proposed by [2]. This high resolution technique requires
upwards of 512 gradient directions and more than an hour to scan each subject
(spatial resolution of 2mm3), which makes it impractical to use in clinical set-
tings. A few works have attempted to reduce the scan time using compressed
sensing for DSI [3,4], however, the acquisition time is still too long for clinical
applications. Consequently, other imaging schemes have been proposed, namely,
Hybrid Diffusion Imaging (HYDI) [5], Diffusion Propagator Imaging (DPI) [6],
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Diffusion Kurtosis Imaging (DKI) [7], spherical polar Fourier basis [8] and high-
order tensor models [9,10], all of which fall under the category of multi-shell
imaging (MSI). Each of these techniques captures different aspect of the un-
derlying tissue geometry. They acquire important information about the neural
tissues, which are missed by HARDI methods, yet, they are seldom used in clini-
cal studies due to their long scan times. In general, it takes around 30-50 minutes
to scan each subject with: 2mm3 spatial resolution, 60 gradient directions per
shell, 2-4 shells with b-values of 1000 to 6000. The acquisition time is directly
proportional to the number of gradient direction acquisitions. Thus, if we can
reduce the number of gradient acquisitions by half (without sacrificing the qual-
ity), the scan time reduces by 50%. This fact is the main motivation behind the
proposed work.

In order to recover the MSI signal from very few measurements N , we propose
to use the theory of compressive sampling (CS). Formalizing such a reconstruc-
tion approach in the context of MSI constitutes the main contribution of this
work. In particular, we propose to generalize the spherical ridgelets (SR) basis of
[11] for the case of multi-shell signals. We demonstrate that the MSI signal rep-
resentation in the proposed basis is indeed sparse and compute error statistics on
synthetic data sets. Further, the representation allows for a direct quantification
of the signal decay as a function of b-values, which can be a useful measure in
neuroimaging studies.

2 Compressive Sampling

The diffusion signal S(q) is a real-valued function, which determines the value
of S at location q in q-space. The scalar q is given by q = ‖q‖, with q = qu,
where u ∈ S

2. In the context of MSI, the signal S(q) is measured along N
discrete orientations {uk}N

k=1 for several different q values (Q shells). Thus, for
each q value, measurements are made along N directions uniformly spread on
a sphere, giving the measurements a multi-shell (also referred to as multi-b
or multi-q) structure. In such a case, all experimental information on S(q) is
represented by its NQ values {Sk}NQ

k=1 corresponding to each of the q values.
The most fundamental question in this regard is: what is the minimum number
of diffusion directions N (on each shell) required to unambiguously represent the
signal S(q) in terms of its discrete values Sk?

A particularly important answer to the above question is offered by the theory
of CS [12,13]. In particular, the theory specifies conditions under which the
original signal S(q) can be perfectly recovered from a much smaller number of
its samples than what would be required by the classical sampling theory. Since
diffusion measurements are linear, the discrete values Sk can be expressed in
the form of inner products Sk = 〈S(q), ϕjk

(q)〉, with {ϕjk
}N

k=1 being a subset
of a Dirac sampling basis {ϕi}i∈I . Moreover, let {ψj}j∈J be another basis in
the signal space, which we will use for representation of S(q). In particular, we
are interested in representing the diffusion (MSI) signal S(q) in the form of a
linear combination S(q) =

∑
j∈J cj ψj(q), where J denotes the set of indices
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over which the basis functions ψj are counted. Note that, in a more general
setup, the set {ψj}j∈J may be overcomplete, but finite, with its total number
of elements being equal to M . Then, the theory of CS proves that an accurate
approximation of S is possible from only O (

μ2 log(M)L
)

of its measurements,
if the following conditions are satisfied:

(a) S is assumed to be sparsely representable by {ψj}j∈J , which implies that
the number L of non-zero coefficients cj is significantly less than M .

(b) The bases {ϕi}i∈I and {ψj}j∈J are incoherent, implying that the value of
μ = supi,j |〈ϕi(q), ψj(q)〉| is relatively small.

The above considerations suggest that the applicability of CS to MSI depends on
the availability of a basis {ψj}j∈J for which the assumptions (a) and (b) above
would be valid. Such a basis was introduced for HARDI data in [11], where it is
called a basis of spherical ridgelets. In the next section, we demonstrate how to
generalize this basis for sparse representation of MSI signals. Just as in the case
of HARDI, the energy of the proposed basis of spherical ridgelets is distributed
alongside the great circles of S2 (for every shell), which is very incoherent with
respect to the Dirac sampling basis {ϕi}i∈I . Thus, the amount of incoherence μ
for this basis is 0.56. Note that, this value is computed by normalizing each of
the basis elements {ψj}j∈J to unit norm.

3 Methods

Spherical ridgelets (SR) were proposed in [14,11] following the theory of mul-
tiresolution analysis on the sphere. For the case of HARDI data, the SR basis is
given by: IF :=

{
Ψj,v | v ∈ S2, j ∈ IN ∪ {−1}} , where

Ψj,v =
1
2π

{
K0,v, if j = −1,
Kj+1,v −Kj,v, if j ∈ IN, with,

Kj,v(u) =
∞∑

n=0

2n+ 1
4π

λn κj(n)Pn(u · v), where, κj(n) = κ(ρ, 2−jn)

(1)

κ(ρ, x) = exp{−ρ x (x+ 1)}, λn =

{
2π(−1)n/2 1·3···(n−1)

2·4···n , if n is even
0, if n is odd.

where Pn is the legendre polynomial of order n, u ∈ S2 and ρ is a user-defined
parameter. Notice that, the basis functions Ψj,v can only represent signals defined
on a single spherical shell.

3.1 From Single to Multiple Shells

The structure and magnitude of the signal varies significantly as the b-value
(or q-value) increases. This is evident from Figure 1, where in the top row we

show the frequency spectrum (in spherical harmonic basis) required to represent
signals with increasing b-values. Notice that, a). higher frequencies are required
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Fig. 1. Top row (bar graph) shows
the spherical harmonic frequency
spectrum (upto order 8) required to
represent each of the signals at the
bottom. Also notice the decay in am-
plitude of the signal as the b-values
increase.

to represent sharper diffusion signals, and b). the signal decays in magnitude
with b-values. We propose to use these two important facts in designing the
MSI SR basis:

Kj,v(q) = exp(−αq2){1 −
h∑

m=0

amHm(q)}
︸ ︷︷ ︸

I1

∞∑

n=0

2n+ 1
4π

λn κj(q, n)Pn(u · v)

︸ ︷︷ ︸
I2

, (2)

where Hm are hermite polynomials of order m, and κj(q, n) is now a function
of q given by: κ(q, n) = exp (−βW (q)n(n+ 1)), with W (q) given by the Weibull
distribution function: W (q) = k

l

(
q
l

)k−1 exp(−(q/l)k) where we set k = 0.8, l = 2
in this work and β is a constant. We now describe the rationale behind choosing
such a function K by individually examining the terms I1 and I2.

The term I1 essentially models the decay rate of the signal magnitude.
Some studies have shown a biexponential decay of the signal [15], while oth-
ers have seen diffraction patterns with high q-values [16]. The expression I1 =
exp(−αq2){1 − ∑h

m=0 amHm(q)} can model both these phenomena, with the
term 1 − ∑h

m=0 amHm(q) modeling the departure from an exponential decay.
Note that, the Hermite polynomials are capable of modeling diffraction patterns
as shown in [16] and hence we use it in our model.

The term I2 models the frequency component (sharpness) of the signal. As
n increases in the summation in I2, the legendre polynomial Pn incorporates
higher frequencies. The desired behavior of the combined term κ(q, n)Pn is to
use only low frequencies for lower q-values and incrementally allow higher fre-
quencies with increasing q. Thus, the term κ(q, n) should act as a bandpass
filter by selectively adding high frequency components of Pn for the appropri-
ate q-values. This behavior can be modeled by choosing W (q) to be a Weibull
distribution function with parameters l = 2, k = 0.8. This function has a heavy
tail, preventing the value of W (q) from converging to zero too quickly as in an
exponential function.

Combining the effects of increasing frequency and decreasing signal magnitude
results in the desired behavior for sparse representation of multi-shell signals.
The free parameters of this model are α and {am}h

m=1 along with the sparse
set of weights c for the overcomplete basis. Note that, if we set α = 0 and
{am}h

m=1 = {0}, then the expression for Kj,v(q) in (2) reduces to that for a
single shell HARDI (1), with the parameter ρ in (1) determined by evaluating
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W (q) for a specific q-value. Thus, the proposed basis is a generalization of the
spherical ridgelets of [14]. We should note that the basis is still given by IF :={
Ψj,v | v ∈ S2, j ∈ IN ∪ {−1}} , as defined before, albeit with the modified form

of the function Kj,v(q).

3.2 Sparse Estimation

Given the measurements {S(qi)}NQ
i=1 , one can use (2) to compute the values of

the spherical ridgelet basis for all qi (Q is the total number of shells and N is the
number of gradient directions per shell). The resulting values can be then stored
into an NQ×M matrix A, where M is the number of elements in the overcom-
plete basis A as defined in [11]. We use 3 discrete resolution levels {−1, 0, 1} for
each shell and set h = 3 in equation (2). Subsequently, if c ∈ IRM is defined to be
a (column) vector of ridgelet coefficients and y := [S(q1), S(q2), . . . , S(qNQ)]T ,
then the measurement model can be formally expressed as A c = y+ e, where e
is an error vector that accounts for both measurement and model noises. From
the theory of CS, a sparse estimate of coefficients c can be found by solving

c = arg min
c

‖c‖1 subject to ‖A c− y‖2 ≤ η., (3)

where η depends on the level of noise expected in the signal. Note that (3)
is a convex optimization problem, and can be solved using the L1 homotopy
algorithm of [17]1.

In the present scenario, we not only have to estimate the sparse vector c, but
also the parameters for the radial decay. We do this by the method of coordinate
descent, wherein the coefficients c and {α, am} are estimated alternately. The
estimation framework is as follows:

Algorithm 1. Algorithm for sparse estimation of MSI data
1: Initialize α = α0 and am = {0}.
2: while ‖c‖1 is decreasing do
3: Estimate c using equation (3).
4: Update α and {am}h

m=1 using gradient descent of ‖A c − y‖2.
5: end while

The gradient with respect to am is given by < [..�amΨj,v..]c,A c−y >, where
< ., . > is the euclidean inner product. The gradient only affects the radial part
of Ψj,v, resulting in �amΨj,v = −2e−αq2

Hm(q)I2, where I2 is as defined in (2).
A similar expression for gradient of α can be easily deduced from (2).

4 Experiments

Synthetic Data: We tested the proposed algorithm on synthetic data and quan-
titatively compared it with the solid spherical harmonics (SH) based method of
1 http://users.ece.gatech.edu/~sasif/homotopy/

http://users.ece.gatech.edu/~sasif/homotopy/
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(a) NMSE

(b) AAE

Fig. 2. The left two figures (a) show the NMSE for different values of K = [16, 32]
(x-axis) and for b={1000, 2000, 4000, 6000}. First figure is with SR basis and second
with SH basis. (b) shows AAE in degrees (x-axis is K) for different number of crossing
fibers (1,2,3). 3rd figure is with the proposed SR basis and 4th with the SH basis of [6].

[6]. Synthetic data sets were generated using a mixture of biexponential models:
S(q) =

∑
i fiGi(q), where fi are weight fractions set to 1/F , where F is the

number of fibers and Gi(q) = 0.7 exp(−q2uDuT ) + 0.3 exp(−θq2uDuT ), where
D = diag{0.0017, 0.0003, 0.0003} and θ = 1/3. Four different b-values were used
b = {1000, 2000, 4000, 6000} to obtain 4 shells. Rician noise was added to each
shell so that the SNR for each of the shells was: {5, 4, 3, 2} respectively, where
SNR is defined by σs/σn, with σs being the standard deviation of signal and σn

the standard deviation of noise. 1000 random samples were generated by randomly
choosing the number of fiber crossings (maximum of 3) and random orientation
between the fibers. Two different error metrics were used to determine the quality
of fit using the proposed SR basis and the SH basis of [6]: (i) Normalized Mean
Squared Error (NMSE) given by ‖S(q)−Ŝ(q)‖2

‖S(q)‖2 , where Ŝ(q) is the estimated sig-
nal. (ii) Average Angular Error (AAE) was computed between principal diffusion
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(a) K=60 (all samples) (b) K=16 (c) K=28

Fig. 3. Top left (a) shows the propagator for radius R0 = 20μm with K = 60. The
remaining figures show a zoomed-in version (the black box) of the propagator as com-
puted by estimating the signal with K = 16, 28 per shell. Note that the values of the
propagator were scaled to uniform size for better visualization.

directions of the known ground truth and the ones estimated from the diffusion
propagator. For the SR basis, the propagator was computed numerically as in [5].
Error statistics were computed by estimating the signal using different number
of measurements K = [16, 32] per shell. Thus, with K = 16, only a total of 64
measurements (for 4 shells) were used in estimating the signal.

Figure 3(a) shows NMSE as computed for each of the 4 shells for various K.
Also shown is the AAE for various K and different number of crossing fibers.

As seen in the figures, the proposed SR basis better fits the signal with lower
errors for higher b-values. K = [20, 24] per shell seems to be sufficient to model
the MSI signal without significant errors. The SH basis on the other hand tends to
oversmooth the signal (as seen by higher NMSE and AAE). We should note that,
having 4 shells is not a necessity for our method, but we used it to demonstrate
the accuracy with which the proposed SR basis fits the signal for all b-values.

In-vivo Data: Our in-vivo data consisted of a human brain scanned on a 3T
Siemens scanner with the following parameters: 2.5mm3 spatial resolution, b =
{900, 2000, 5600} and 60 gradient directions per shell. For each shell, the signal
was subsampled to obtain the desired measurements for different K = [16, 32]
and the proposed SR basis was used to fit the data. Figure 4 shows the diffusion
propagator for various K and radius R0 = 20μm.

5 Conclusion

In this paper, we introduced a generalization of the spherical ridgelet basis for
modeling multi-shell diffusion signal. The representation in this basis is sparse
and as such allows one to faithfully recover the signal with few gradient direc-
tions (around 20-24 per shell). The proposed representation models the radial de-
cay and the frequency components separately.Thus, one can compute a measure
of the “overall” signal decay at each voxel. Future work involves examining its
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correlation with the underlying tissue properties. This work also showed results
on in-vivo data with 3 shells and the same number of directions for each shell.
Figuring out the optimum number of shells, the corresponding b-value and the
distribution of gradient directions is still a topic of active research. We hope that
by recovering the signal from sparse measurements on each shell and with a few
(2-3) shells, we will be able to reduce the scan time of MSI significantly and thus
make it clinically feasible.
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