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Pattern recognition applied to whole-brain neuroimaging data, such as functional Magnetic Resonance Imaging

(fMRI), has proved successful at discriminating psychiatric patients from healthy participants. However, predic-

tive patterns obtained fromwhole-brain voxel-based features are difficult to interpret in terms of the underlying

neurobiology.Many psychiatric disorders, such as depression and schizophrenia, are thought to be brain connec-

tivity disorders. Therefore, pattern recognition based on network models might provide deeper insights and po-

tentially more powerful predictions than whole-brain voxel-based approaches. Here, we build a novel sparse

network-based discriminative modeling framework, based on Gaussian graphical models and L1-norm regular-

ized linear Support Vector Machines (SVM). In addition, the proposed framework is optimized in terms of both

predictive power and reproducibility/stability of the patterns. Our approach aims to provide better pattern inter-

pretation than voxel-based whole-brain approaches by yielding stable brain connectivity patterns that underlie

discriminative changes in brain function between the groups. We illustrate our technique by classifying patients

withmajor depressive disorder (MDD) and healthy participants, in two (event- and block-related) fMRI datasets

acquiredwhile participants performed a gender discrimination and emotional task, respectively, during the visu-

alization of emotional valent faces.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

Introduction

Recent research using pattern recognition methods applied to

whole-brain neuroimaging data, such as structural/functional Magnetic

Resonance Imaging (s/fMRI) data, has proved successful at diagnosing

individual psychiatric patients based on their brain activity and structure

(Klöppel et al., 2012; Orrù et al., 2012; Phillips, 2012; Kipli et al., 2013).

In particular, functional studies of major depressive disorder (MDD)

have shown high predictive power of pattern recognition models ap-

plied to whole-brain task-based fMRI data. For instance, Fu et al.

(2008), applied Support Vector Machines (SVM, Cortes and Vapnik,

1995) to discriminate MDD patients from healthy controls, based on

patterns of brain activity induced by processing of facial expressions

with different levels of sadness. Fu et al. (2008) correctly classified up

to 72% of patients and 82% of controls, using all facial stimuli, and up

to 84% of patients and 89% of controls, using only neutral faces.

Marquand et al. (2008) used a verbal (N-Back) working memory task

and SVM to significantly classify 65% of MDD patients and 70% of con-

trols. In addition, within the patients group, the authors classified with

69% accuracy those who responded to treatment and those who did

not respond. Similarly, Costafreda et al. (2009a) accurately identified

71%ofMDDpatients, before treatment, that responded fully to cognitive

behavioral therapy (CBT) fromwhole-brain patterns of brain activity in-

duced oncemore by a sad facial processing task. Brain structure, includ-

ing gray and white matter measures, has also been found to be highly

predictive of MDD (Costafreda et al., 2009b; Gong et al., 2011;

Mwangi et al., 2012; Qiu et al., 2013).

Despite these promising results, whole-brain (voxel-based) predic-

tive models can be difficult to interpret. The first issue relates to the

fact that, although whole-brain pattern recognition studies commonly

report coordinates for the most discriminative brain regions (Fu et al.,

2008; Marquand et al., 2008; Costafreda et al., 2009a), the pattern is

not sparse and all voxels in the brain contributed to the predictions.

More generally, although it is possible to create voxel-wise maps from
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the parameters of pattern recognition models, local spatial inferences

on thesemaps are not straightforward. In contrast to univariatemodels,

multivariate maps do not naturally provide a null-hypothesis (and cor-

responding statistical test) associated with each voxel (Gaonkar and

Davatzikos, 2013). Ways to alleviate this issue include feature selection

approaches (Guyon and Elisseeff, 2003; Mwangi et al., 2013), or the use

of sparse methods, which automatically select, within the pattern rec-

ognition model, the most relevant subset of voxels to the predictions

(Rasmussen et al., 2012; Grosenick et al., 2013).

The second issue relates to the difficulty in interpreting whole-brain

(voxel-based) results in termsof theunderlyingneurobiology of psychi-

atric disorders. As is well accepted, many psychiatric disorders, such as

MDD and schizophrenia, are thought to be brain connectivity disorders

(Konrad and Eickhoff, 2010; Lynall et al., 2010; Hulvershorn et al., 2011;

Müller et al., 2011; Zhang et al., 2011; Whitfield-Gabrieli and Ford,

2012; Hulshoff Pol and Bullmore, 2013). In other words, what differen-

tiates these disorders from normal brain function are abnormal connec-

tions between brain regions rather that themalfunctioning of a single or

set of brain regions alone. This evidence motivates the search for

connectivity-based imaging biomarkers of psychiatric disorders. More-

over, in this context, pattern recognition approaches based on brain

connectivity models might provide deeper insights and potentially

more powerful predictions than whole-brain voxel-based approaches.

Brain connectivity analyses for functional MRI data can be divided

into two groups (Friston, 1994): functional connectivity measures,

which assess statistical dependencies between signals from distributed

brain regions (Van Den Heuvel and Hulshoff Pol, 2010; Varoquaux and

Craddock, 2013), and effective connectivitymeasures, which assess net-

works of causal effects of one region over another (Friston et al., 2003;

Deshpande et al., 2009). Here we focus on functional connectivity ap-

proaches for fMRI (fcMRI). In the context of pattern recognition-based

predictive models, fcMRI-derived features have recently been success-

fully used to identify network-based biomarkers of schizophrenia

(Cecchi et al., 2009; Shen et al., 2010), Alzheimer's disease andmild cog-

nitive impairment (Stonnington et al., 2010; Wee et al., 2012), autism

(Anderson et al., 2011; Nielsen et al., 2013), attention-deficit–hyperac-

tivity-disorder (ADHD, Zhu et al., 2008) and brain maturation

(Dosenbach et al., 2010). In the context of depression, Craddock et al.

(2009) used SVMand resting state fMRI to compare different feature se-

lection approaches for classifying MDD patients based on the pair-wise

correlation between the signals of 15 regions of interest. More recently,

Zeng et al. (2012) and Cao et al. (2014) used SVM in combination with

univariate feature selection procedures on resting-state fMRI data, to

successfully classify MDD patients and identify the most discriminative

networks from all possible pair-wise correlations between anatomically

defined regions.

These results have shown that pattern recognition techniques are

well suited for measuring whether discriminative information about

psychiatric disorders, and MDD in particular, exists in distributed

brain networks. However, the majority of modeling approaches used

to date do not directly (within the feature extraction and predictive

model) identify the connections that are most relevant to the predic-

tions, without relying on ad-hoc and often time-consuming feature se-

lection approaches (Craddock et al., 2009; Zeng et al., 2012).

On the feature extraction side, oneway of minimizing the number of

connections between brain regions is to estimate the sparse inter-

regional inverse covariance matrix (Friedman et al., 2008). Sparsity is

imposed via an L1-norm penalty on the connection estimates and the

zero entries in this matrix correspond to conditional independence be-

tween the signals of two brain regions, given all others. These matrices

also define Gaussian graphical models, where a missing edge between

two nodes is equivalent to a zero entry in the inverse covariancematrix.

Thismethod can be useful to select only a subset of relevant connections

andhas been shown to bemore sensitive to detect underlying networks,

under different signal conditions, than other functional connectivity ap-

proaches, such as full correlation-based approaches (Smith et al., 2011).

Sparse inverse covariance-based features have been used in classifica-

tionproblemsofmental illnesses (Cecchi et al., 2009; Bohland et al., 2011;

Wee et al., 2012) but, to our knowledge, they have not yet been combined

with a sparse discriminative classifier to provide a fully (from feature ex-

traction to prediction) sparse modeling framework for the classification

of patients suffering from psychiatric disorders. In this paper, we extend

previous efforts on combining the two (Rosa et al., 2013). We build a

novel connectivity-based discriminative framework combining sparse in-

verse covariance-based features (Friedman et al., 2008) estimated from

task-based fMRI data and L1-norm regularized linear Support VectorMa-

chines (SVMs, Fan et al., 2008) for classification. The advantage of com-

bining these two approaches is two-fold: linear L1-norm SVMs are very

efficient on large sparse datasets, as opposed to more commonly used

L2-norm SVMs (Mourão-Miranda et al., 2005; Orrù et al., 2012) and

yield a sparse linear decision boundary, revealing only a small set of fea-

tures that best discriminate the two groups (Fan et al., 2008).

Previous work has been published where sparse connectivity-based

features and classification is jointly optimized. Zhou et al. (2014) devel-

oped an optimization framework to maximize the discriminative power

of graphical LASSO-based generative models. The authors applied this

framework to Alzheimer's patient classification using Positron Emission

Tomography (PET) data. Eavani et al. (2014) jointly optimized a factoriza-

tion of correlationmatrices into small networks with an L2-norm SVM to

discriminate between healthy children and adults using resting state

fMRI. Although these frameworks also provide sparse connectivity-

based discriminative patterns, the stability/reproducibility of the solution

was not considered. Since the primary goal of this work is better pattern

interpretation, it is important to take into account the reproducibility of

themodel parameters (pattern), in terms of howmuch these parameters

overlap when estimated with different subsamples of the data. For this

purpose, Rasmussen et al. (2012) proposed a model evaluation scheme

where both the predictive power and reproducibility of the model are

jointly optimized, using a split-half subsampling approach of the data.

Here we use a similar procedure to optimize the L1-norm SVM. We use

not only its accuracy but also the reproducibility, defined as the overlap

between sparse patterns across cross-validation folds (also referred to

as stability), of its solution. To the best of our knowledge, stability mea-

sures, such as the mean overlap proposed in Baldassarre et al. (2012)

and/or stability selection (Meinshausen and Bühlmann, 2010; Ryali

et al., 2012) have not yet been used in connectivity-based predictive

models of fMRI data.

The framework proposed here therefore imposes two sparsity

levels: one at the features and one at the classification (model parame-

ters) level. By imposing these two sparsity levels we posit that task-

induced neuronal processing involves only a discrete number of con-

nections between brain regions, from which only a subset is affected

by the condition being discriminated (e.g. depression).

We apply our technique to two fMRI datasets acquired from two dif-

ferent samples of patientswith symptoms ofMDD andmatched healthy

participants. The first dataset has an event-related design involving im-

plicit processing of sad faces of different emotional intensity. This

dataset was used in Rosa et al. (2013) to test a prior version of our

framework. The second dataset comprises a block-related design exper-

iment inwhichparticipants viewed faces of different emotional content,

including happy, anxious, neutral and sad faces. We show that the

resulting pattern from our sparse network-based classification frame-

work has a more straightforward interpretation than whole-brain

(voxel-based) patterns as it finds a biologicallymeaningful multivariate

network signature that best differentiates MDD patients from controls.

In addition,we compare our approach to commonly used correlation

and partial correlation based metrics for functional connectivity.

This paper is organized as follows. The next section describes the

fMRI data and the sparse network-based pattern recognition frame-

work. We then present classification results for different network-

based features and the set of most discriminative connections for the

sparse inverse-covariance based models. Finally, we discuss the
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limitations of our approach and interpret our results in light of previous

work from the literature.

Materials

Event-related fMRI dataset

Participants and task

We use the same fMRI dataset of Fu et al. (2004, 2008), from nine-

teen medication-free patients (13 women; mean age 43.2 years; stan-

dard deviation (SD) 8.8 years) and nineteen controls (11 women;

mean age 42.8 years; SD 6.7 years), matched by age and intelligence

quotient (IQ). Patients were diagnosed with major depressive disorder

(score of at least 18 on Hamilton Rating Scale for Depression) according

to clinical interviews with a psychiatrist. The project was approved by

the Ethics Research Committee, Institute of Psychiatry, London,

England.

The experimental task followed an event-related design involving

images of faces with three different levels of emotional intensity (low,

medium, and high intensity of sadness) and baseline trials (crosshair

fixation), which were presented in random order for 3 s each (mean

inter-trial interval of 5 s). Each facial stimulus was presented twice at

the same intensity (60 faces total), along with 12 baseline trials, for a

total of 72 trials. For each face trial, participants were asked to indicate

the gender of the face with a joystick. This task design was used to elicit

incidental (not explicit) affective processing. More information on the

patients' demographic features and experimental task can be found in

the original studies (Fu et al., 2004, 2008).

fMRI acquisition and analysis

Gradient-echo single-shot echo-planar imaging was used to acquire

180 T2-weighted image volumes for each participant on a neuro-

optimized 1.5 T IGE LX System (General Electric, Milwaukee,Wisconsin)

at the Maudsley Hospital, South London and Maudsley National Health

Services (NHS) Trust, London. For each volume, 16 noncontiguous

axial planes parallel to the intercommissural plane were collected with

the following parameters: repetition time 2 s; echo time 40 ms; section

thickness 7 mm; skip .7 mm; in-plane resolution 3 × 3 mm. 180 scans

were used for the analyses.

The data were realigned, normalized to the Montreal Neuroimaging

Institute (MNI) template and smoothed (using an 8 mm Gaussian ker-

nel) using SPM2 (Wellcome Trust Centre for Neuroimaging, UK) as de-

scribed in Fu et al. (2004, 2008).

Block-related fMRI dataset

Participants and task

This dataset was collected for a previous study by Hahn et al. (2011).

Thirty patients (18 males, mean age 38.1 years, SD 11.0 years) from the

Department of Psychiatry, Psychosomatics, and Psychotherapy at the

University of Wuerzburg, Germany, diagnosed with recurrent depres-

sive disorder, depressive episodes, or bipolar affective disorder on the

basis of the consensus of two psychiatrists participated in the study. Pa-

tients were recruited on a variety of medications and, at the time of the

measurement procedures, presented varying degrees of depressive

symptoms (from severe to almost symptom free). Having a well-

diagnosed but heterogeneous group of patients with varying degrees

and types of medication provides a way of accounting for the medica-

tion confound (Hahn et al., 2011). Thirty control participants (19

males; mean age 36.0 years; SD 9.1 years) recruited from the local pop-

ulation were selected to match the patient group for sex, age, smoking

status, and handedness. Written informed consent was obtained from

all 60 participants and the study was approved by the ethics committee

of the University of Wuerzburg.

The experimental task followed a block-related design consisting of

passively viewing emotional faces. Sad, happy, anxious, and neutral

facial expressions were used. Each block contained pictures of faces

from 8 individuals (four female). Each face was shown against a black

background for 2 s and was immediately followed by the next face.

The pictures were obtained from the Karolinska Directed Emotional

Faces database. Every block was randomly repeated 4 times and lasted

16 s. Face blocks were alternated with blocks of the same length show-

ing a white fixation cross on which the participant had to focus. Partic-

ipants were instructed to attend to the faces and empathize with the

emotional expression. In contrast to the previous task, this design was

used to elicit explicit (not incidental) affective processing. A more de-

tailed description of the patients and experimental task can be found

in the original study (Hahn et al., 2011).

fMRI acquisition and analysis

Imagingwas performedusing a 1.5-TMagnetomAvanto total imaging

matrixMRI scanner (Siemens, Erlangen, Germany) equippedwith a stan-

dard 12-channel head coil. In a single session, twenty-four 4-mm-thick,

interleaved axial slices (in-plane resolution, 3.28 × 3.28 mm) oriented

at the anterior commissure - posterior commissure transverse plane

were acquired with a 1 mm inter-slice gap, using a T2*-sensitive single-

shot echo planar imaging sequence with the following parameters: repe-

tition time, 2 s; echo time, 40ms;flip angle, 90°;matrix, 64×64; andfield

of view, 210 × 210 mm2. The first 6 volumes were discarded to account

for magnetization saturation effects. The following 256 scans were used

for the analyses. Stimuli were presented via MRI-compatible goggles

(VisuaStim; Magnetic Resonance Technologies, Northridge, California).

The data were realigned, normalized to the MNI template and

smoothed (using an 8 mm Gaussian kernel) using SPM5 (Wellcome

Trust Centre for Neuroimaging, UK) as described in Hahn et al. (2011).

Regional mean time-series

In order to extract functional connectivity-based features for classi-

fication, the fMRI volumes from both datasets (nt time-points × nd
voxels) were parcellated into np regions using an anatomical atlas

(Fig. 1). Regional mean time-series (nt time-points × np regions) were

estimated by averaging the fMRI signals over all voxels within each

atlas region. Here we used the sulci probabilistic atlas from BrainVISA1

(Perrot et al., 2009) to define 122 cortical regions and the Harvard-

Oxford atlas2 for 15 subcortical regions. The total number of regions,

np, is therefore 137. We chose to use the sulci probabilistic atlas instead

of a more traditional atlas, such as the Automated Anatomical Labeling

(AAL) atlas, because as opposed to the AAL atlas, the sulci atlas is multi-

subject and probabilistic-based, and has been shown to provide good

support to define regions of interest in fMRI studies (Keller et al., 2009).

Tomake sure thatwe fully removed the effects ofmovement, thepa-

rameters from the realignment step of the preprocessing (nt time points

× 6 (3 rotation + 3 translation) parameters) were regressed out of the

averaged regional time-series using a residual formingmatrix (Worsley

and Friston, 1995). We note here that in functional connectivity analy-

ses, in particular for resting state data, there is still no consensus on

whether to regress out other confounds, such as the global signal (Fox

et al., 2009;Rubinov and Sporns, 2010). This issue is however more crit-

ical for resting state (as opposed to task-based) fMRI since many phys-

iological sources of noise overlap mostly with low-frequency BOLD

fluctuations that characterize resting state networks (Murphy et al.,

2009). In this work, we used only task-based fMRI data, and to increase

sensitivity, we chose not to correct for the global signal and other con-

founds. In addition, we did not regress out the task stimuli from the re-

gional signals, since our goalwas to detect changes in brain connectivity

induced by the emotional task that allow us to discriminate the two

groups.

1 BrainVISA atlas: http://lnao.lixium.fr/spip.php?article=229.
2 Harvard-Oxford atlas: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases.
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After this step, the averaged motion-corrected time-series were fil-

tered for low frequency components, using a set of five Discrete Cosine

Transforms with a cut off period of 128 s. The whole procedure was

done independently for each participant.

After parcellation, motion correction and filtering we computed dif-

ferent functional connectivity measures from the regional time-series.

Methods

In this section, we present a novel connectivity-based sparse frame-

work for classification using fMRI data. We first describe how to extract

functional connectivity-based features from fMRI, using sparse inverse

covariance models and other correlation-based metrics. We then

present the linear classifiers used for prediction.

Feature construction

Sparse network-based features

From the regional time-series (nt time-points × np regions), we can

compute the (np regions × np regions) pairwise inter-regional covari-

ance matrix, Σ, for each participant. From this covariance matrix we

can then estimate sparse functional brain networks using Gaussian

graphical models.

Graph theory has proved very useful to describe statistical depen-

dencies between random variables (Koller and Friedman, 2009). A

graph is a mathematical object defined by a pair G = (V, E), in which

V is a set of nodes (e.g. brain regions), and E is a set of edges connecting

pairs of nodes (e.g. functional connectivity between brain regions).

Gaussian graphical models, in particular, assume that the variables

have a multivariate Gaussian distribution with mean μ and covariance

Σ. In addition, if the edge linking nodes j and i is absent, then nodes j

and i are conditionally independent given all the others, and the corre-

sponding entry of the inverse covariance matrix, Ω = Σ−1, is zero.

One can therefore estimate functional connectivity between brain

regions using Gaussian graphical models by estimating the sparsity pat-

tern of the inverse covariance matrix, Ω. Here we used the graphical

Least Absolute Shrinkage and Selection Operator (LASSO)3 approach

for estimating these graphs (Friedman et al., 2008). Graphical LASSO

tries to find a positive definite matrix, Ω, which maximizes the penal-

ized Gaussian log-likelihood:

L Ωð Þ−λ Ωk k1 ¼ log detΩ−tr ΩΣð Þ−λ Ωk k1; ð1Þ

from the sample covariance matrix, Σ. Log det and tr correspond to the

logarithm of the determinant, and the trace of the matrix, respectively.

||.||1 is the matrix L1-norm (sum of absolute values of all entries in the

matrix) and λ is a regularization parameter, which controls the amount

of sparsity (zero elements) in the estimate of Ω. Graphical LASSO uses

the block-coordinate descent optimization algorithm proposed by

Friedman et al. (2008). In each descent step, the algorithm estimates a

single row (and column) of Ω by solving a modified LASSO regression

problem: the i, j element of Σ−1 is, up to a constant, the regression coef-

ficient of node j in a multiple linear regression of node i on all other

nodes (Tibshirani, 1996). We emphasize here that sparsity is deter-

mined only by the regularization term in graphical LASSO and not by ad-

ditional thresholding.

A graph is equivalent to its adjacency matrix, which in this case is

given by the sparse inverse covariance matrix,Ω. The graphs estimated

here are undirected (Ω is symmetric) and weighted (Ω is a real-valued

matrix, as opposed to binary). Examples of these matrices are shown in

Figs. 2 and 3.

Fig. 1. Sparse network-based predictive models for patient classification. Panel A: sparse network-based features. The preprocessed fMRI time-series are parcellated into regions using an

anatomical atlas. From the regional time-serieswe then compute pair-wise covariancematrices. From thesematriceswe estimate the sparse inverse covariance using graphical LASSO.We

use these as features for classification (see Panel B). This procedure is done separately for each participant. Panel B: sparse predictive model. We then feed the sparse inverse covariance

matrices into a sparse SVM framework for classification.We use nested cross-validation to make predictions and optimize parameters (i.e. the inner loop was used for parameter optimi-

zation and the outer loop was used tomake the predictions). Optimization is therefore performed using only training data. The resulting decision boundary is sparse and yields the set of

most discriminative brain connections between patients and controls.

3 We used the R software package glasso: http://cran.r-project.org/web/packages/

glasso/.
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Non-sparse network-based features

We used other common functional connectivity measures for com-

parisonwith the sparse inverse covariancematrices described in the pre-

vious section. The simplest non-sparsemeasure is the pair-wise Pearson's

correlation coefficient, between brain regions, Φ. We also used the full

(non-sparse and non-regularized) inverse covariance,Π ¼de f Σ−1
, for com-

parison.We note here that the covariancematrix can be directly inverted

when the number of nodes (brain regions) is smaller than the number of

time points, which is true for our data. When this is not the case, the co-

variancematrix is singular and therefore not directly invertible. The third

measure is partial correlation, Θ, which is the normalized correlation be-

tween two time-series, after each has been adjusted by regressing out all

other time-series in the data. This measure is related to the inverse co-

variance matrix as follows: each entry i, j of Θ is equal to
−Πi j
ffiffiffiffiffiffiffiffiffiffiffi

ΠiiΠ j j

p
; i≠ j.

Pattern classification

Linear L1-norm regularized SVM

Given the functional networks obtained in the previous step, we

then use a sparse supervised learning framework for participant classi-

fication (Fig. 1). Supervised learning approaches for binary classification

try to find a relationship between training inputs, xi∈ℜ
q, and their cor-

responding label, yi = {−1, + 1} (e.g. control and patient), by estimat-

ing a prediction function f(xi) :ℜ
q
→ℜ, where i is a training sample and

q is the dimensionality of x. For linear algorithms this function, also

known as decision function, can be written as f(xi) = sign(wTxi),

where w ∈ ℜ
q is a vector of coefficients, known as the weight vector,

to be estimated. If sign(wTxi) N 0 the input xi is classified as belonging

to class 1 (e.g. patient) and if sign(wTxi) b 0 it is attributed to class 2

(e.g. healthy participant). In sparse models, some of the entries of w

are set to zero (e.g. through regularization), which can potentially aid

interpretation since only a subset of the input features are selected as

being relevant for the predictive model. Here we used a sparse classifi-

cation approach based on linear L1-norm regularized Support Vector

Machines (SVM). In this section, we briefly introduce these machines,

aswell as the cross-validation and performance criteria used to evaluate

the model.

Linear L1-norm regularized SVM (Fan et al., 2008) are a binarymax-

imum margin classifier (Fig. 1), which yields a sparse weight vector, w

by solving the following optimisation problem:

minw f wð Þ ¼de f wj jj j1 þ C
X

nk

i¼1
ξ w; xi; yið Þ: ð2Þ

The parameter C N 0 controls the trade-off between the width of the

margin separating the two classes and the number of misclassified ex-

amples, and nk is the number of training examples. L1-norm SVM is a

non-kernel method. Therefore it works in the original feature or input

space and not in a feature space defined by a kernel function, as the

most commonly used L2-norm SVM (Cortes and Vapnik, 1995; Chang

and Lin, 2011). In our connectivity-based framework, the features that

comprise the training examples, xi ∈ ℜ
q, represent the vectorized

lower triangular entries of the functional connectivity matrices (Ω, Φ,

Π, and Θ) described above, where q = np(np − 1)/2. We note here

that for the sparse matrices, L1-SVM was trained on the entire lower-

triangular matrix (including both zero and non-zero entries) and not

on theunion of the non-zero entries in thematrices across different sub-

jects. L1-SVM is particularly well suited for high-dimensional sparse

Fig. 2. Covariance (COV) and sparse inverse covariance (SICOV,λ=0.01)matrices from the healthy participants and patientswithMDD for the event-related fMRI dataset. The covariance

and inverse covariance matrices were computed by pooling the time-series of all participants together for illustration purposes only.
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data (Fan et al., 2008). The class labels yi are either +1 for patients with

major depression symptoms or −1 for healthy participants. To train

SVM, we used the following squared loss function in Eq. (2):

ξ w; xi; yið Þ ¼ max 1−yiw
T
xi;0

� �2
ð3Þ

We used the LIBLINEAR4 software package to solve the SVM optimi-

zation problem (Fan et al., 2008).

Linear L2-norm SVM

In order to further test our initial hypothesis that only a small set of

connections best discriminates the patients from the controls, we com-

pare the sparse L1-norm SVM to the more commonly used non-sparse

L2-norm SVM (Chang and Lin, 2011). L2-norm SVM is amaximummar-

gin binary classifier that yields a non-sparse weight vector, w. It has

been extensively used in neuroimaging (Mourão-Miranda et al., 2005;

LaConte et al., 2005; Magnin et al., 2009; Meier et al., 2012; Gould

et al., 2014) and its formalism has been described in detail in Mourão-

Miranda et al. (2005), Lemm et al. (2011) and other works. For a critical

review see Orrù et al. (2012). Here we used a linear kernel L2-norm

SVM as implemented in the LIBSVM5 software toolbox and exactly the

same nested-cross validation scheme used for L1-norm SVM, as de-

scribed below.

Nested cross-validation

Cross-validation framework

To train the model, we used the following nested cross-validation

(CV) scheme (Fig. 1). We implemented an outer leave-one-subject-

per-group-out (LOSGO) cross-validation framework to make predic-

tions (i.e. classify patients and controls) using fixed parameters C (for

the SVM) and λ (when using the graphical LASSO). This means that in

every fold we leave two test participants out (one from each group)

and train the model (i.e. estimate the model parameters) with the re-

maining participants. The total number of outer folds is therefore the

number of participants in each group, ns. As mentioned above, the

input features for each participant are the vectorized lower triangular

entries of the connectivity matrices.

Inside each of the outer CV folds, we run another LOSGO-CV loop to

optimize the C and λ (when using graphical LASSO) parameters. The

inner CV loop contains a total of ns − 1 folds, where ns is the number

of participants in each group. The inner CV loop does not contain the

two participants left out in the outer CV loop. This guarantees a com-

plete separation of training and testing data for both optimization and

prediction.

Graphical LASSO parameter optimization

To optimize the graphical LASSO parameter λ we use the Bayesian

Information Criterion (BIC) (Schwarz, 1978):

BIC λð Þ ¼ −2L Ω λð Þð Þ þ d λð Þ log nt ; ð4Þ

where L(Ω(λ)) is the log-likelihood function as defined in Eq. (1) and

d(λ) are the degrees of freedom. A common practice is to calculate

d(λ) as d(λ) = m(λ)(m(λ) − 1)/2, where m(λ) is the number of non-

Fig. 3. Covariance (COV) and sparse inverse covariance (SICOV, λ=0.01)matrices from the healthy participants and patients withMDD for the block-related fMRI dataset. The covariance

and inverse covariance matrices were computed by pooling the time-series of all participants together for illustration purposes only.

4 LIBLINEAR software package: http://www.csie.ntu.edu.tw/~cjlin/liblinear/.
5 LIBSVM software package: http:www.csie.ntu.edu.tw/~cjlin/libsvm/.
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zero elements ofΩ for a given value of λ. We estimate oneΩmatrix for

the patients and one for the controls separately by concatenating (in

time) the data from all participants in each group. We then find λ
(from 0.1, 0.01 and 0.001) that more frequently minimizes Eq. (4) in

the inner CV folds for each group. We then use the average of the pa-

rameters chosen for each group to estimateΩ for each participant indi-

vidually in the outer CV loop. We chose three values for λ mainly for

computational reasons but since they span a wide range of sparsity

levels (from almost full to very sparse) we believe that these values

are sufficient for our subsequent analyses.

L1-norm SVM C parameter optimization

The C parameter is optimized by varying its value between 10−5 to

105 (in logarithmic steps) and then finding C that more frequentlymax-

imizes simultaneously the accuracy and reproducibility/stability of the

pattern in the inner CV folds.

Herewe use the definition of stability introduced in Baldassarre et al.

(2012). Let β(s) be the weight vector estimated in one of the inner CV

folds when the set of subjects s are left out. The model support can

then be defined as Is := {i|β(s)i ≠ 0} as the index set of the location of

non-zero weights. The model sparsity can be defined as the relative

number of non-zero weights, S sð Þ :¼ Isj j
q , and the corrected pairwise rel-

ative overlap between the weights of two different folds as:

Os;s0 :¼ Is∩Is0j j−E

max Isj j; Is0j jð Þ : ð5Þ

where q is the total number of weights (features) and E is the expected

overlap between the support of two random vectors with sparsity S(s)

and S(s′), respectively: E = S(S)S(s′)/q. Stability (reproducibility) is

then computed as the average overlap across all inner cross-validation

folds N:

O :¼ 1

N N−1ð Þ
X

N

s≠s0¼1

Os;s0: ð6Þ

Finally to select the parameter C to be used in the outer CV loop we

minimize the distancemetric proposed by Strother et al. (2002) and de-

fined as follows:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−Accð Þ2 þ 1−O
� �2

r

ð7Þ

where Acc is the accuracy of themodel andŌ is the stabilitymeasure de-

fined in Eq. (6). Both these values are calculated inside the inner CV

loop.

Model evaluation

There are differentways of assessing the generalization performance

of a classifier. Here, we use the accuracy, which is defined as the number

of correctly classified test examples divided by the total number of test

examples, averaged over all outer cross-validation folds. We also mea-

sure the sensitivity and specificity, which are commonly used in clinical

classification problems. These estimates can be obtained as follows:

Sensitivity ¼ TP

TP þ FN

Specificity ¼ TN

TN þ FP

ð8Þ

where TP, FP, TN and FN represent the number of true positives (patients

classified as patients), false positives (controls classified as patients),

true negatives (controls classified as controls), and false negatives (pa-

tients classified as controls), respectively.

To assess whether the estimated accuracy differs from what is ex-

pected if the classifier was randomly assigning labels we used permuta-

tion tests. By permuting the labels (i.e. assigning a label yi = {−1, + 1}

randomly for each example xi) and re-running the classification frame-

work every time we permute the labels, we can estimate the distribu-

tion of the accuracy under the null hypothesis (i.e. that we have a

random classifier). The probability of obtaining a given ormore extreme

value of the accuracy under the null hypothesis (p-value) can then be

estimated by dividing the number of times, nl, the accuracy obtained

with the permuted labels is equal or higher to the value of the accuracy

estimated with the true labels, divided by the total number of permuta-

tions, np, (i.e. p-value = max 1
np

;

nl

np

� �

).

Pattern interpretation

The weight vector, w, defines the decision boundary of the linear

classifier (i.e. the optimal separating hyperplane between the two clas-

ses) and its dimensionality equals that of the input feature vectors,w∈

ℜ
q. Therefore, each entry ofw corresponds to a particular feature, in this

case a functional connectivity measure between two brain regions. The

magnitude of the elements of the weight vector can thus be interpreted

as the contribution of each connection to the separation of the classes.

However, it is important to note that the predictions are based on all

non-zero features.

As mentioned above, the weight vector from our discriminative

modeling framework is sparse and each cross-validation fold yields a

slightly different vector (different connections will be zero). To recover

the overall set of the most discriminative connections, we retrain the

model using the entire dataset and the median value of the parameters

optimized within the nested cross-validation. We note here that it is

common practice in statistics to estimate a model using the entire

dataset once over-fitting has been accounted for using cross-validation

or another approach (Hastie et al., 2009).

To obtain the set of connections, which have a high probability of

contributing to the predictions, we use the same permutation testing

approach used to test the significance of the accuracy. By permuting

the labels and re-running thewhole classification framework (including

the nested cross-validation) we can generate a null distribution of the

weights associated with each connection. Comparing the value of the

weight obtained using the correct labels with the corresponding null

distribution allows one to estimate its statistical significance (i.e. its

probability of contributing to the predictions according to the permuta-

tion test). Given the amount of tests necessary tomake inferences on all

connections, we false discovery rate (FDR)-corrected the tests for mul-

tiple comparisons (p-value b 0.05).

The resulting statistically significant elements of w comprise a dis-

tributed connectivity signature that can discriminate patients from

controls.

Results

In this section, we present and compare the performance of the

connectivity-based classifiers using the two fMRI datasets described in

previous sections.We classify patients with symptoms of major depres-

sion and healthy participants and, for the sparse inverse covariance-

based L1-norm classifiers,6 we present the set of connections that best

discriminates the two groups during processing of emotional faces.

6 We only plot the discriminative connections obtained with L1-norm SVM for the

sparse inverse covariancemodel because this was the only model with significant predic-

tive accuracy (p-value b 0.05). Models for whichwe could not find a significant predictive

relationship between brain connectivity and the subjects' labels were not further

interpreted.
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Event-related fMRI dataset

Pattern classification

The sparse network models, based on the sparse inverse covariance,

whichwas estimatedwith graphical LASSO, correctly classified 68% of pa-

tients and 89% of controls from the event-related dataset, corresponding

to a total accuracy of 79% (p-value=0.02, permutation testwith 100 rep-

etitions, Table 1). In comparison, correlation, inverse covariance and par-

tial correlation-based measures did not perform better than chance.

Correlation-based features, correctly classified 84% of patients but only

47% of controls, total accuracy of 66% (p-value = 0.05, permutation test

with 100 repetitions). Partial correlation correctly classified 47% of pa-

tients and 21% of controls, corresponding to an accuracy of 34% (p-

value N 0.05, permutation test with 100 repetitions). Full inverse

covariance-based features correctly classified only 32% of patients and

26% of controls, total accuracy of 29% (p-value N 0.05, permutation test

with 100 repetitions). The classification results are summarized in

Table 1.

The results obtained with the L2-norm SVM are summarized in

Table 2. As can be seen, using sparse inverse covariances as features

yielded an accuracy of 74% (with 74% sensitivity and specificity) for

the event-related dataset (p-value = 0.01, permutation test with

100 repetitions, Table 2). Full correlation-based features yielded an

accuracy of 68% (84% sensitivity but only 53% specificity; p-value =

0.02, permutation test with 100 repetitions, Table 2). However, in-

verse covariance and partial correlation-basedmeasures did not per-

form better than chance. Partial correlation correctly classified 66%

of subjects (p-value N 0.05, permutation test with 100 repetitions)

and full inverse covariance-based features correctly classified only

45% of subjects (p-value N 0.05, permutation test with 100

repetitions).

Pattern stability/reproducibility

In addition to the predictive accuracy we also present the stability

measure (overlap across all inner cross-validation folds, Eq. (6), aver-

aged across all outer CV folds) for all connectivity features and classifiers

(Tables 1 and 2). Since the L2-normSVM is a non-sparse classifier, stabil-

ity was calculated by setting the smallest non-zeroweights, correspond-

ing to 1% of the L1-norm of w, to zero, as proposed in Baldassarre et al.

(2012). We also added the amount of sparsity (i.e. the mean percentage

of non-zero weights across all folds) for the L1-norm SVM (the L2-norm

SVM provides a non-sparse weight vector). As can be seen in Tables 1

and 2, L1-norm SVMs provided more stable patterns than L2-norm

SVMs (54.02% ± 6.00% compared to 37.81% ± 0.26%, respectively)

using the sparse inverse covariance as features. The same seems to be

true for all other connectivity measures. One thing to note is that al-

though the stability of the non-sparse correlation-based metrics seems

to be higher than the sparse inverse covariance for the L1-norm SVM,

conclusions cannot be taken since none of thesemetrics showed a signif-

icant relationship between the data and the labels (predictive accuracies

p-value N 0.05 for all measures).

Pattern interpretation

As described in theMethods section, theweight vector (that defines

the decision boundary of the classifier) yielded by the L1-norm SVM is

sparse and the non-zero elements, in this case, can be interpreted as

the most discriminative connections between patients with MDD and

healthy participants. After re-training the classifier using the sparse in-

verse covariance-based features and the entire even-related fMRI

dataset (SVM parameter C = 10, obtained as described in the

Methods section), we obtained a set of 62 (out of 9316 possible) con-

nections. The λ parameter (Eq. (1)) did not vary across folds and we

therefore used the optimal value of 0.01 to re-train the model. To test

Table 1

Classification accuracies, sensitivity and specificity, sparsity and stability for all the network-based models compared, obtained with L1-norm SVM. The ⁎ denotes a p-value b 0.05. p-values

were obtained using permutation tests, as described in the main text.

Classification results L1-norm SVM

Features Accuracy (%) Accuracy p-value Sensitivity (%) Specificity (%) Sparsity (%) Stability (%)

Event-related fMRI dataset

Sparse inverse covariance 78.95 0.02⁎ 68.42 89.47 0.47 ± 0.16 54.02 ± 6.00

Full inverse covariance 28.95 N0.05 31.58 26.32 6.60 ± 4.85 78.01 ± 7.64

Correlation 65.79 =0.05 84.21 47.37 1.37 ± 1.25 61.73 ± 3.39

Partial correlation 34.21 N0.05 47.37 21.05 3.50 ± 1.79 75.50 ± 4.02

Block-related fMRI dataset

Sparse inverse covariance 85.00 0.01⁎ 83.33 86.67 0.60 ± 0.60 57.25 ± 3.45

Full inverse covariance 50.00 N0.05 46.67 53.33 0.83 ± 0.56 60.62 ± 4.66

Correlation 56.67 N0.05 63.33 50.00 1.50 ± 1.57 51.53 ± 4.77

Partial correlation 48.33 N0.05 53.33 43.33 2.03 ± 1.34 65.95 ± 5.14

⁎ p-Value b 0.05.

Table 2

Classification accuracies, sensitivity and specificity, sparsity and stability for all the network-based models compared, obtained with L2-norm SVM. The ⁎ denotes a p-value b 0.05. p-values

were obtained using permutation tests, as described in the main text.

Classification results L2-norm SVM

Features Accuracy (%) Accuracy p-value Sensitivity (%) Specificity (%) Sparsity (%) Stability (%)

Event-related fMRI dataset

Sparse inverse covariance 73.68 0.01⁎ 73.68 73.68 – 37.81 ± 0.26

Full inverse covariance 44.73 N0.05 47.37 42.11 – 9.90 ± 0.78

Correlation 68.42 0.02⁎ 84.21 52.63 – 9.29 ± 1.56

Partial correlation 65.78 N0.05 73.68 57.89 – 11.33 ± 0.16

Block-related fMRI dataset

Sparse inverse covariance 78.33 0.01⁎ 80.00 76.67 – 25.81 ± 0.45

Full inverse covariance 40.00 N0.05 20.00 60.00 – 12.81 ± 0.89

Correlation 60.00 N0.05 86.67 33.33 – 8.61 ± 2.17

Partial correlation 58.33 N0.05 53.33 63.33 – 10.93 ± 0.78

⁎ p-value b 0.05.
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the significance of these connections we ran a permutation test on the

weights (100 samples) as described in Methods. The stability of the

final pattern (output of Eq. (6)) obtained with L1 and L2-norm SVM,

measured using a leave-one-subject-per-group-out CV and C = 10

and 0.01, respectively, is plotted in Fig. 6.

The resulting network with 59 statistically significant connections

(p b 0.05 FDR corrected) is shown in Table 3 and Fig. 4B. The majority

of these connections involve limbic-cortical, in particular striatal-cortical,

circuitry and include links between the: left putamen and right pre-

central cortex; right pallidum and right inferior frontal cortex; left puta-

men and right superior frontal cortex; right amygdala and right inferior

temporal cortex; left caudate and left superior frontal cortex; right

pallidum and superior frontal cortex; right putamen and right inferior

temporal cortex; right caudate and left superior frontal cortex; right

thalamus and left pre-central cortex; left amygdala and left pre-

central (motor) cortex; left putamen and left superior frontal cortex;

left amygdala and right superior frontal cotex; left nucleus accumbens

and left pre-central (motor) cortex. In addition, the network also high-

lights cingulate-cortical connections (left anterior cingulate cortex and

right middle frontal cortex; left anterior cingulate cortex and left sup-

plementary motor area; right anterior cingulate cortex and left superior

frontal cortex), limbic-cingulate connections (right anterior cingulate

cortex and right thalamus; left anterior cingulate cortex and left

pallidum), as well as insular-limbic/cortical/cingulate connections (right

insula and right inferior frontal cortex; left insula and left parietal

postcentral cortex; right insula and right medial frontal cortex; left

insula and left inferior frontal cortex; right insula and superior temporal

cortex; right insula and right anterior cingulate cortex).

From the set of connections obtained, we can determine the set of

most discriminate nodes (i.e. regionswithmore connections). These re-

sults are shown in Fig. 4A. The most discriminative node (with 4 con-

nections) for the event-related fMRI dataset is located in the right

insula. With a 3-node degree we then obtained the: left and right ante-

rior cingulate cortex, left putamen, right thalamus, left and right

subcallosal cortex, right superior frontal cortex, right inferior temporal

cortex, left superior temporal cortex and the right superior parietal cor-

tex. The rest of the nodes shown in Fig. 4A connectwith two or onenode

each.

It is important to note here that even though we have highlighted

well-known sub-networks and nodes with the highest degree of con-

nectivity from the set ofmost discriminative connections, all 62 connec-

tions and corresponding regions are part of the distributed response

that makes the predictions. The full list of connections and correspond-

ing coordinates in the atlas can be found in Table 3.

Patterns for the L2-norm SVM (for both datasets) are not displayed

since they are dense (all 9316 connections are present in the final pat-

tern) and therefore extremely difficult to interpret without introducing

any post-hocmeasures to reduce their complexity. This is however out-

side of the scope of this paper.

Block-related fMRI dataset

Pattern classification

We obtained similar results using the block-related fMRI dataset.

Our sparse network models, based on the sparse inverse covariance,

correctly classified 83% of patients and 87% of controls, corresponding

to a total accuracy of 85% (p-value = 0.01, permutation test with 100

repetitions, Table 1). In comparison, correlation, inverse covariance

and partial correlation-based measures again did not perform better

than chance. Correlation-based features correctly classified 63% of pa-

tients and 50% of controls, total accuracy of 57% (p-value N 0.05, permu-

tation test with 100 repetitions). Partial correlation correctly classified

53% of patients and 43% of controls, corresponding to an accuracy of

48% (p-value N 0.05, permutation test with 100 repetitions). Full inverse

covariance-based features correctly classified only 47% of patients and

53% of controls, total accuracy of 50% (p-value N 0.05, permutation test

with 100 repetitions). These results are summarized in Table 1.

The results obtained with the L2-norm SVM are summarized in

Table 2. For the block-related dataset, L2-norm SVM using sparse in-

verse covariances as features yielded an accuracy of 78% (with 80% sen-

sitivity and 77% specificity; p-value = 0.01, permutation test with 100

repetitions, Table 2). However, for this dataset, none of the other fea-

tures yielded significant predictive accuracies. Full correlation yielded

Table 3

The set of most discriminative connections for the event-related fMRI dataset. These con-

nections correspond to the (59 out of 9316) non-zero entries of the weight vector output

by the linear L1-norm SVM that survived permutation testing and FDR correction (p-

value b 0.05, 100 samples). The coordinates shown correspond to the atlas coordinates.

The atlas regions have been relabeled for easier interpretation. The full list of regions, as

well as the original and new labels can be found in the Supplementary material.

Event-related fMRI dataset: most discriminative connections

Region i [x y z] mm Region j [x y z] mm

R.occi.ling [16, −64, −6] R.occi.lob [35, −92, 0]

L.putamen [−24, 0, 0] R.front.prcent.lob [5, −37, 62]

R.sup.parie [30, −50, 66] L.front.prcent.lob [−4, −37, 64]

R.mid.front [37, 43, 31] L.cing.ant [−6, 22, 33]

R.inf.front.tri [48, 27, 2] R.inf.front.orb [36, 16, −15]

R.front.precent.motor [30, −15, 67] L.inf.front.orb [−43, 51, 8]

L.inf.parie [−62, −43, 39] L.parie.syl [−63, −3, 21]

R.sup.parie [6, −54, 34] L.cing.sub.call [−2, −21, 26]

R.sup.front [18, 62, 27] R.sup.front [16, 19, 64]

R.insula [44, 1, 5] R.inf.front.tri [48, 27, 2]

R.palladium [19, −4, −1] R.inf.front.tri [53, 19, 10]

L.sup.front.prcent.lob.SMA [−6,−24, 66] L.cing.ant [−6, 22, 33]

L.inf.front.orb [−4, 47, −3] L.inf.front.orb [−29, 39, −8]

R.thalamus [11, −18, 6] R.cing.ant [7, 25, 31]

R.hippocampus [26, −21, −13] L.inf.parie [−32, −75, 39]

R.inf.temp [65, −26, −20] R.inf.temp [55, −44, −22]

L.putamen [−24, 0, 0] R.sup.front [29, 21, 55]

R.inf.parie.ang.gy [55, −67, 18] L.occi.cun [−4, −95, 14]

L.inf.temp [−44, -24, −28] L.inf.front.orb [−36, 14, −18]

L.insula [−41, 1, 4] L.parie.pstcent [−51, −38, 48]

R.amygdala [23, −3, −18] R.inf.temp.fusi [38, −61, −20]

L.inf.front.orb [−29, 39, −8] R.mid.front [25, 63, 4]

L.caudate [−12, 8, 10] L.sup.front [−16, 63, 26]

R.sup.parie [6, −54, 34] R.cing.sub.call [4, −13, 27]

L.front.precent.moto [−41, −10, 57] L.parie.pstcent [−42, −27, 54]

L.occi.parie.fiss [−9, −78, 22] L.occi.temp.fusi [−26, −53, −16]

R.med.front [50, 42, 12] R.insula [44, 1, 5]

R.sup.front [29, 21, 55] R.mid.front [37, 43, 31]

R.palladium [19, −4, −1] R.sup.front [16, 19, 64]

R.front.precent.moto [49, 7, 45] R.sup.temp [59, −20, 16]

R.putamen [25, 1, 0] R.inf.temp [55, −44, −22]

R.caudate [13, 9, 10] L.sup.front [−16, 63, 26]

R.thalamus [11, −18, 6] L.front.prcent.lob [−4, −37, 64]

L.amygdala [−23, −4, −18] L.front.precent.moto [−30, −17, 66]

R.sup.temp [63, −25, 0] L.sup.temp [−57, −24, 13]

L.inf.parie.spmarg [−64, −25, 28] L.sup.temp [−57, −24, 13]

R.inf.temp [45, −21, −29] R.mid.front [25, 63, 4]

L.inf.parie.ang.gy [−50, −73, 15] R.cing.sub.call [4, −13, 27]

L.sup.front [−16, 19, 64] R.cing.ant [7, 25, 31]

L.inf.front [−48, 26, 28] L.insula [−41, 1, 4]

R.sup.parie [6, −54, 34] L.occi.ling [−10, −76, 0]

L.sup.temp [−61, −31, 0] L.parie.pstcent [−42, −27, 54]

L.sup.temp [−61, −31, 0] R.insula [44, 1, 5]

L.putamen [−24, 0, 0] L.sup.front [−27, 19, 54]

R.insula [44, 1, 5] R.cing.ant [7, 25, 31]

R.cing.sub.call [4, −13, 27] R.occi.ling [13, −72, 3]

R.inf.temp [55, −44, −22] L.sup.temp [−57, −24, 13]

L.inf.front.tri [−52, −3, 11] R.inf.front.tri [53, 19, 10]

L.sup.front.prcent.lob.sma [−6,−24, 66] R.front.precent.moto [30, −15, 67]

L.palladium [−19, −5, −1] L.cing.ant [−6, 22, 33]

L.inf.temp [−52, −51, −22] L.mid.front [−23, 61, 6]

L.amygdala [−23, −4, −18] R.sup.front [29, 21, 55]

L.front.precent.moto [−54, 5, 29] L.inf.front [−48, 26, 28]

R.inf.temp.occi [57, −66, −1] L.occi.parie.fiss [−9, −78, 22]

L.accumbens [−9, 11, −6] L.front.precent.moto [−30, −17, 66]

R.inf.temp [65, −26, −20] R.sup.temp [59, −20, 16]
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an accuracy of 60% (p-value N 0.05, permutation test with 100 repeti-

tions); partial correlation yielded an accuracy of 58%, while full inverse

covariance-based features yielded an accuracy of only 40% (p-value N

0.05, permutation test with 100 repetitions).

Pattern stability/reproducibility

Similarly to the results obtained for the event-related dataset, for the

block-related data L1-norm SVMs again provided more stable patterns

than L2-norm SVMs (57.25% ± 3.45% compared to 25.81% ± 0.45%, re-

spectively) using the sparse inverse covariance as features. The same

seems to hold for all other connectivity measures.

Pattern interpretation

The distributed connectivity response that discriminated between

patients with MDD symptoms and healthy participants in the block-

related fMRI dataset comprised a set of 45 (out of 9316 possible) con-

nections (Table 4 and Fig. 5B), after re-training the SVM using all data

and a C parameter of 1 (obtained as described in the Methods section).

The λ parameter (Eq. (1)) did not vary across folds and we therefore

used the optimal value of 0.01 to re-train the model. To test the signifi-

cance of these connections we ran a permutation test on the weights

(100 samples) as described in Methods. The stability of the final pat-

terns (output of Eq. (6)) obtained with L1 and L2-norm SVM, measured

using a leave-one-subject-per-group-out CV and C=1 for bothmodels,

is plotted in Fig. 6.

The resulting network with 38 statistically significant connections

(p-value b 0.05 FDR corrected) is shown in Table 4 and Fig. 5B. Again

this network highlights limbic-cortical, in particular striatal-cortical, cir-

cuitry and include links between the: left pallidum and right superior

frontal cortex; left nucleus accumbens and right superior frontal cortex;

left nucleus accumbens and right occipital cortex; right putamen and

right precentral (motor) cortex; right nucleus accumbens and right oc-

cipital cortex; right caudate and right superior frontal cortex; right

palligum and left precentral (motor) cortex; left thalamus and right

subcallosal cortex; right amygdala and left medial frontal cortex; right

pallidum and right inferior temporal cortex; left thalamus and left

precuneus. Limbic-orbitofrontal connections include: right nucleus ac-

cumbens and left orbito-frontal cortex; left putamen and right orbito-

frontal cortex; right putamen and left orbito-frontal cortex. In addition,

the network also highlights cingulate-cortical connections (right posteri-

or cingulate cortex and left superior parietal cortex; left posterior cingu-

late cortex and left postcentral cortex; right posterior cingulate cortex

and right occipital cortex; left posterior cingulate cortex and left inferior

parietal cortex; left posterior cingulate cortex and right occipital cortex),

as well as limbic-cingulate connections (right caudate and left posterior

cingulate cortex).

The most discriminative nodes (with 4 connections each) for the

block-related fMRI dataset were located in the left posterior cingulate

cortex and right occipital cortex. The rest of the nodes connected to

two or only one node each.

It is again important to emphasize here that all 45 connections and

corresponding regions contributed to the predictions. The full list of

connections and coordinates in the atlas can be found in Table 4.

Discussion

In this paper, we presented a novel connectivity-based discrimina-

tive framework combining sparse inverse covariance-based features

and L1-norm regularized linear SVMs. In addition, our framework was

optimized using not only the predictive accuracy, as is the common

practice, but also the reproducibility/stability of themodels. We applied

this technique to two (one event-related and one block-related) fMRI

Fig. 4. A. Set of most discriminative nodes for the event-related fMRI dataset. The size of the node is proportional to the number of connections that link the corresponding node to others

(visualizedwith BrainNetViewer). B. Set ofmost discriminative connections (weight vector) for the event-relateddataset. Thewidthof the connection is proportional to the absolute value

of the corresponding weight.

BrainNet Viewer: http://www.nitrc.org/projects/bnv/.
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datasets acquiredwith an emotional facial processing task from two dif-

ferent samples of patientswith symptoms ofMDD andmatched healthy

participants.

Ourmodeling framework provided similar ormore powerful predic-

tions than whole-brain (voxel-based) non-sparse classification models

applied to the same data (Fu et al., 2008; Hahn et al., 2011), with the ad-

vantage of being more straightforwardly interpretable in terms of the

underlying neurobiology of MDD. In particular, accuracy reported by

Fu et al. (2008), using all facial stimuli, reached 77%, compared to 79%

obtained with our approach. Similarly, the highest accuracy obtained

by Hahn et al. (2011) using facial expression stimuli did not reach

70%, while we obtained 85% accuracy using the same data. The fact

that we obtained lower sensitivity and specificity for the first dataset

could be due to the smaller sample size of these data (only 19 subjects

in each group, compared to 30 in the second dataset) and also the fact

that we had longer time-series for the second dataset (256 time-

points compared to 180).

To testwhether other connectivity-based features yielded similar re-

sults we compared the inverse covariance to commonly used correla-

tion and partial correlation based metrics. However, we obtained not

only better classification results using the sparse inverse covariancema-

trices but also these were the only models for which the predictions

were significantly different from chance. None of the compared features

(correlation, partial correlation and full inverse covariance) yielded sig-

nificant classification results. For this reason we were unable to com-

pare the patterns obtained with the sparse inverse covariance to the

patterns obtained with the other approaches. In addition, we note

here that although the mean non-sparse covariance matrices shown in

Fig. 2 suggest that there are differences between the groups, we did

not find any significant results supporting this observation, both using

univariate statistics (two-sample t-test on all features corrected for

multiple comparisons using False Discovery Rate, results not shown)

and multivariate pattern recognition models (Table 1). We also tested

if the total number of non-zero connections in the sparse inverse covari-

ance matrices differed between groups. Again, we did not find any sig-

nificant results for both datasets (p-value = 0.10 for the event-related

data and p-value = 0.37 for the block-related data). For these reasons

and given our a priori hypothesis, we conclude that it is themultivariate

pattern of non-zero and zero connections comprising the sparse inverse

covariance matrices (estimated with graphical lasso) that allows us to

discriminate between patients and controls.

To further substantiate our initial hypothesis that task induced neuro-

nal processing involves only a discrete number of connections between

brain regions, from which only a subset is affected by depression we

compared our results with the ones obtained with L2-norm SVMs

(a non-sparse classifier). The non-sparse SVMs did not provide better ac-

curacy, nor higher stability/reproducibility, than the sparse classifiers

(Table 2 and Fig. 6) therefore supporting our initial hypothesis.

Themost discriminative features revealed by our framework are con-

sistentwith the recent literature on functional connectivity in depression

(Anand et al., 2005; Greicius et al., 2007; Furman et al., 2011; Wu et al.,

2011; Fang et al., 2012; Ajilore et al., 2014), and highlight differences be-

tween the groups in cortico-limbic (in particular cortico-striatal) and

cortico-cingulate circuitry associatedwith emotional regulation. A recent

review on univariate and connectivity results from studies using fMRI

data from MDD patients and emotional facial processing tasks has

found a set of consistent regions that are though to be responsible for

both a negative and positive bias in patients when processing these

tasks (Stuhrmann et al., 2011). These regions comprise limbic areas,

such as the amygdala, hippocampus, insula, thalamus, and the striatum.

Abnormal activity in MDD patients is also reported in cingulate cortex,

motor, pre/orbito-frontal and temporal regions (Stuhrmann et al.,

2011). In addition, evidence is accumulating regarding the importance

of striatal-cortical and cingulate-cortical connections in populations

with depression-related symptoms (Ring and Serra-Mestres, 2002;

Furman et al., 2011; Gabbay et al., 2013). The most discriminative con-

nections yielded by our approach therefore overlap considerably with

these findings for both datasets.

Both datasets used in this work contain patients with depressive

symptoms and an emotion-processing task. However they differ in a

number of aspects: i) the first dataset has an event-related design,

while the second has a block-related one. These two types of design

have been shown to engage different networks in emotion related par-

adigms (Schäfer et al., 2005; Bühler et al., 2008); ii) thefirst dataset con-

tains a set of patients with a fairly homogeneous diagnosis of major

depressive disorder (score of at least 18 on Hamilton Rating Scale for

Depression),while the patients from the seconddataset presented vary-

ing degrees of depressive symptoms (from severe to almost symptom

free) and were diagnosed with recurrent depressive disorder, depres-

sive episodes, or bipolar affective disorder; and iii) patients from the

first dataset were not medicated at the time of the experiment, while

patients from the second dataset were recruited on a variety of medica-

tions. For these reasons we expected slightly different discriminative

patterns. Nevertheless, we expected these patterns to highlight differ-

ences in cortico-limbic/cingulate circuitry associated with emotional

regulation for both datasets, as was indeed observed.

One limitation of our approach, and network-based approaches in

general, is that it depends highly on the anatomical atlas used to

Table 4

The set ofmost discriminative connections for theblock-related fMRI dataset. These connec-

tions correspond to the (38 out of 9316) non-zero entries of theweight vector output by the

linear L1-norm SVM that survived permutation testing and FDR correction (p-value b 0.05,

100 samples). The coordinates shown correspond to the atlas coordinates. The atlas regions

have been relabeled for easier interpretation. The full list of regions, as well as the original

and new labels can be found in the Supplementary material.

Block-related fMRI dataset: most discriminative connections

Region i [x y z] mm Region j [x y z] mm

L. palladium [−19, −5, −1] R. sup. front [16, 19, 64]

R. caudate [13, 9, 10] L. cing. post [−7, −36, 51]

L. sup. parie [−29, −52, 65] R. cing. post [9, −34, 51]

R. inf. temp. occi [57, −66, −1] L. temp. occi [−45, −71, −17]

L. accumbens [−9, 11, −6] R. sup. front [7, 34, 30]

L. inf. temp. occi [−53, −69, −3] R. occi. ling [16, −64, −6]

L. occi. parie. fiss [−9, −78, 22] L. sup. temp [−57, −24, 13]

L. parie. pstcent [−51, −38, 48] L. cing. post [−7, −36, 51]

R. inf. parie. ang. gy [55, −67, 18] L. inf. parie [−32,−75, 39]

L. sup. temp [−61, −31, 0] L. inf. temp. fusi [−38, −60, −23]

L. accumbens [−9, 11, −6] R. occi [14, −101, −8]

R. front. precent. motor [20, −22, 73] R. parie. pstcent [50, −37, 52]

R. inf. temp. occi [57, −66, −1] L. occi. lob [−28, −96, −3]

L. front. precent. motor [−47, 3, 44] L. inf. parie [−44, −80, 33]

R. putamen [25, 1, 0] R. front. precent. motor [30, −15, 67]

R. accumbens [9, 12, −6] L. inf. front. orb [−10, 28, −16]

L. inf. temp [−29, −5, −35] R. inf. front. orb [11, 29, −15]

L. putamen [−24, 0, 0] R. inf. front. orb [45, 53, 7]

L. sup. temp [−61, −31, 0] L. temp. occi [−45, −71, −17]

R. occi [14, −101, −8] R. cing. post [9, −34, 51]

R. accumbens [9, 12, −6] R. occi [14, −101, −8]

L. inf. parie. ang. gy [−50, −73, 15] R. inf. parie [53, −71, 35]

L. inf. front. tri [−52, −3, 11] L. inf. front. tri [−51, 20, 11]

L. sup. parie [−5, −58, 31] L. sup. parie [−17, −65, 63]

R. caudate [13, 9, 10] R. sup. front [16, 19, 64]

L. front. precent. moto [−54, 5, 29] L. inf. temp [−52, −51, −22]

R. inf. temp [65, –26, −20] R. cing. sub. call [4, −13, 27]

R. palladium [19, −4, −1] L. front. precent. moto [−54, 5, 29]

L. thalamus [−10, −19, 6] R. cing. sub. call [4, −13, 27]

L. occi [−7, −102, −12] R. inf. front. orb [45, 53, 7]

L. occi [−7, −102, −12] L. front. prcent. lob [−4, −37, 64]

R. putamen [25, 1, 0] L. inf. front. orb [−43, 51, 8]

R. amygdala [23, −3, −18] L. med. front [−48, 41, 11]

L. inf. parie [−58, −57, 39] L. cing. post [−7, −36, 51]

R. palladium [19, −4, −1] R. inf. temp [45, −21, −29]

R. front. precent. moto [20, −22, 73] R. sup. front [7, 34, 30]

L. thalamus [−10, −19, 6] L. parie. precun [−7, −69, 47]

R. occi [14, −101, −8] L. cing. post [−7, −36, 51]
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segment the regions. Some atlases might be better than others for a

given problem, depending on how well the anatomical regions overlap

with functional regions determined by the data. Here we relied on an

inter-subject atlas of sulci probabilities (Perrot et al., 2009), which has

been shown to provide good anatomical regions for fMRI analyses

(Keller et al., 2009). However, since this issue affects all atlas-based con-

nectivity approaches, future connectivity models (both univariate and

multivariate) would benefit from a thorough investigation into this

issue. This investigation is however, outside of the scope of this work.

An alternative to the atlas approach is to apply a clustering algorithm

on the data to define brain regions based on their functional similarity,

for example see Bellec et al. (2010) and Craddock et al. (2012).

However, these approaches can be computationally expensive and the

choice of number of clusters can be somewhat arbitrary.

Even though sparse models in general aim to facilitate interpreta-

tion, in practice they can be highly irreproducible under certain condi-

tions, as shown in Rasmussen et al. (2012), which can hinder their

main goal. Here we introduced the stability (pattern overlap) measure

proposed by Baldassarre et al. (2012) as an additional criterion to opti-

mize our learning framework. This way the sparsity parameter of the

predictivemodel (the L1-norm SVM)was based not only on the accura-

cy of the model but also on how stable the patterns were across cross-

validation folds. This joint optimization procedure was proposed by

Rasmussen et al. (2012). Here we chose to assess reproducibility across

cross-validation folds, instead of using the proposed half-split subsam-

pling approach (Rasmussen et al., 2012), due to the relatively small

sample size of our datasets. Even though this method allowed us to

more confidently interpret the resulting sparse patterns, further inves-

tigation into the relation between differentmeasures of sparsity and ac-

curacy, would benefit the use of sparse predictive models in general

(Ryali et al., 2012).

In addition, the L1-norm penalty used in both the inverse covariance

and the linear SVMs does not take into account underlying structure in

the features. In other words, in the presence of two correlated features

the L1-norm will select only one of these features. To mitigate this

issue, one can replace the L1-norm by a more general penalty function.

Examples include the Elastic-Net penalty (Ryali et al., 2012), which is a

linear combination of L1 and L2-norms, and a group-LASSO penalty

function (Friedman et al., 2010), which selects not only features individ-

ually but also groups of correlated features.

Here we applied our modeling approach to task-based fMRI from

MDD patients and healthy participants. However, our approach is en-

tirely general and can be easily applied to other types of fMRI data

Fig. 5. A. Set of most discriminative nodes for the block-related fMRI dataset. The size of the node is proportional to the number of connections that link the corresponding node to others

(visualizedwith BrainNetViewer); B. Set ofmost discriminative connections (weight vector) for theblock-relateddataset. Thewidth of the connection is proportional to the absolute value

of the corresponding weight.

Fig. 6. Stability of the final patterns (obtained by retraining the classificationmodels, with

significant accuracy, using the entire dataset as described in the Methods section).
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(task-based as well as resting state), other data modalities (e.g. Arterial

Spin Labeling) and other classification problems (both clinic and neuro-

science oriented).

To conclude, we showed that it is possible to discriminate patients

with major depression from healthy controls, using sparse network-

based predictive models and fMRI data acquired during a task involving

emotional facial processing. When compared to whole-brain voxel-

based analyses on the same data (using all emotional stimuli and a non-

sparse classifier) (Fu et al., 2008; Hahn et al., 2011) and correlation-

based metrics, our approach provided higher accuracy, while revealing a

stable distributed network of cortical and striatal/cingulate regions un-

derlying discriminative differences in brain connectivity between MDD

and healthy participants.
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