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Abstract. Several estimation problems in vision involve the minimiza-
tion of cumulative geometric error using non-linear least-squares fit-
ting. Typically, this error is characterized by the lack of interdependence
among certain subgroups of the parameters to be estimated, which leads
to minimization problems possessing a sparse structure. Taking advan-
tage of this sparseness during minimization is known to achieve enormous
computational savings. Nevertheless, since the underlying sparsity pat-
tern is problem-dependent, its exploitation for a particular estimation
problem requires non-trivial implementation effort, which often discour-
ages its pursuance in practice. Based on recent developments in sparse
linear solvers, this paper provides an overview of sparseLM, a general-
purpose software package for sparse non-linear least squares that can
exhibit arbitrary sparseness and presents results from its application to
important sparse estimation problems in geometric vision.

1 Introduction

A plethora of estimation problems in multiple view geometry employ model fit-
ting to infer mathematical objects from image data. Fitting is accomplished by
minimizing the total geometric error pertaining to overdetermined sets of im-
age measurements, which is an approach that has proven to constitute a major
contributor to the success of contemporary algorithms in multiple view geome-
try [1]. The total geometric error is expressed by a sum-of-squares cost function
(i.e., a L2 norm), whose minimizer represents the statistically optimal estimate
of the sought objects under Gaussian noise. Owing to their non-convexity, L2

cost functions are minimized with iterative non-linear least squares techniques,
of which the Levenberg-Marquardt (LM) algorithm has become the de facto
standard. LM operates by repeatedly linearizing the function to be minimized
in the neighborhood of the current minimizer estimate and computing an im-
provement to it through the solution of a linear system defined with the aid of
the Jacobian and known as the normal equations. Considering that each com-
putation of the solution to a dense linear system has complexity O(N3) in the
number of unknown parameters, it is clear that general purpose LM implementa-
tions are computationally very demanding when employed to minimize functions
involving a large number of parameters N .
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Fortunately, when dealing with large estimation problems arising in multiple
view geometry, the corresponding geometric error exhibits lack of interdependence
among certain subgroups of the parameters to be estimated.This observation trans-
lates to Jacobians for the least squaresminimization that are sparse, that is, consist
of mostly zero elements. In turn, sparse Jacobians yield normal equation systems
with sparse block structure. Examples of such sparse problems include single view
reconstruction [2], homography, fundamental matrix and trifocal tensor estima-
tion with the “Gold Standard” algorithms [1] (pp.114, 285 & 397 resp.), mosaick-
ing [3] and bundle adjustment [4,5]. It is well-known that by avoiding storing and
operating on zero elements of the normal matrix during the course of LM, substan-
tial memory and execution time benefits can be gained. For instance, Appendix 6
of [1] describes a scheme for effectively dealing with the commonly encountered
“arrowhead” type of sparseness (see also Fig. (1)(a)). This scheme performs a par-
titioning of the set of parameters in two functionally distinct groups and solves the
normal equations by employing the corresponding Schur complement of the nor-
malmatrix. Its adoptionhas facilitated the implementation ofLMvariants tailored
to the problem of bundle adjustment that divide the normal matrix into camera
and structure blocks and are capable of successfully dealing with large reconstruc-
tion problems [5]. Despite its usefulness, the aforementioned scheme is not suited to
all sparse problems that might be encountered in multiple view geometry, while its
implementation is problem-specific and rather complicated. Therefore, consider-
able effort is required for developing LM variants customized to a particular sparse
problem, making the latter task to be perceived as a daunting endeavor by both
vision researchers and practitioners.

The reason behind the lack of universal applicability of the partitioning scheme
of [1] is that its assumption of only two functional groups of parameters is not
valid for all estimation problems. In other words, there exist problems whose
Jacobian (and, therefore, normal equations) sparsity pattern has a more com-
plex structure (e.g. Fig. 1(b)). Nonetheless, if an effective mechanism of dealing
with arbitrary sparseness is available, then all sparse geometric vision estimation
problems can be cast as special cases of the general sparse non-linear least squares
minimization problem. During the last few years, such mechanisms have emerged
in the form of a number of algorithms and corresponding implementations for
the direct solution of large sparse linear systems of equations [6]. Compared to
iterative methods [7], sparse direct methods do not employ preconditioners, do
not suffer from slow convergence, produce exact rather than approximate solu-
tions and their technology is well developed. Thus, they are more general and
robust, therefore better suited as general-purpose linear solvers.

This work builds upon existing direct sparse solvers and employs them for de-
veloping sparseLM, a package fulfilling the need for a quality software designed for
general-purpose, arbitrarily sparsenon-linear least squares fitting. sparseLM is im-
plemented in C and its source code is publicly available under the GNU GPL. To
the best of the author’s knowledge, no other comparable software is currently freely
available with an open source license. Brief introductions to the LM algorithm and
sparse direct solvers are supplied in sections 2and3, respectively. Section 4presents
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themajor design guidelines and implementation issues related to sparseLM. Exper-
imental results from the application of sparseLM to practical vision problems are
provided in section 5 and the paper concludes in section 6.

2 The Levenberg-Marquardt Algorithm

The LM algorithm is an iterative technique that locates a local minimum of a
multivariate function that is expressed as the sum of squares of non-linear real-
valued functions. For the sake of completeness, a short description of the LM
algorithm is provided next. However, a detailed analysis of the LM algorithm is
beyond the scope of this paper and the interested reader is referred elsewhere [8].

Let f be an assumed functional relation which maps a parameter vector p ∈
Rm to an estimated measurement vector x̂ = f(p), x̂ ∈ Rn. An initial parameter
estimate p0 and a measured vector x are provided and it is desired to find the
vector p+ that best satisfies the functional relation f locally, i.e. minimizes the
squared distance εT ε with ε = x − x̂ for all p within a m-sphere having a small
radius. The basis of the LM algorithm is a linear approximation to f in the
neighborhood of p. Denoting by J the Jacobian matrix ∂f(p)

∂p , a Taylor series
expansion for a small ||δp|| leads to the following approximation:

f(p + δp) ≈ f(p) + Jδp. (1)

Like all non-linear optimization methods, LM is iterative: Initiated at the start-
ing point p0, it produces a series of vectors that converge towards a local mini-
mizer p+ for f . Hence, at each iteration, it is required to find the step δp that
minimizes the quantity

||x− f(p + δp)|| ≈ ||x − f(p) − Jδp|| = ||ε − Jδp||. (2)

Thus, the sought δp is obtained from a linear least-squares problem which is
solved using the normal equations:

JT Jδp = JT ε. (3)

An alternative to minimizing (2) employs the QR decomposition, which is nev-
ertheless up to a factor of two slower than the normal equations (cf. [4], p.315).
Matrix JT J in Eq. (3) is the first order approximation to the Hessian of 1

2εT ε
[8], whereas δp is the Gauss-Newton step. The LM algorithm actually solves a
slight variation of Eq. (3), known as the augmented normal equations

Nδp = JT ε, with N ≡ JTJ + μI and μ > 0, (4)

where I is the identity matrix. The strategy of altering the diagonal elements of
JT J is called damping and μ is a regularization parameter referred to as the damp-
ing term. If the updated parameter vector p + δp with δp computed from Eq. (4)
leads to a reduction in the error εT ε, the update is accepted and the process re-
peats with a decreased damping term. Otherwise, the damping term is increased,
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the augmented normal equations are solved again and the process iterates until
a value of δp that decreases the error is found. The process of repeatedly solving
Eq. (4) for different values of the damping term until an acceptable update to the
parameter vector is found corresponds to one iteration of the LM algorithm.

The damping term is adaptively adjusted at each iteration of LM to assure
a reduction in εT ε. By doing so, LM is capable of alternating between a slow
descent approach when being far from the minimum and a fast convergence
when being in the minimum’s neighborhood: If the damping is set to a large
value, matrix N in Eq. (4) is nearly diagonal and the LM update step δp is near
the steepest descent direction JT ε. Moreover, the magnitude of δp is reduced,
ensuring that excessively large Gauss-Newton steps are not taken. A large damp-
ing term also handles situations where the Jacobian is rank deficient and JTJ
is therefore singular. The damping term can be chosen so that the symmetric
matrix N in Eq. (4) is non-singular and, therefore, positive definite (SPD), en-
suring that the δp computed from it is a descent direction. In this way, LM
can defensively navigate a region of the parameter space in which the model
is highly non-linear. If, on the other hand, the damping is small, the LM step
approximates the exact Gauss-Newton step, lending LM rapid convergence.

3 Direct Sparse Linear Solvers

The solution of systems of sparse linear equations lies at the crux of numerous
computational problems. Direct methods for solving the linear system Ax = b,
where the coefficient matrix A is sparse, involve the explicit factorization of
a suitable permutation of A into the product of lower and upper triangular
matrices L and U. If A is symmetric and, further, positive definite, U = LT

(i.e., Cholesky factorization); in the indefinite case U = DLT , where D is block
diagonal. Forward elimination followed by backward substitution completes the
solution procedure for the right-hand side b. The main complication when devel-
oping direct solvers for sparse matrices stems from the requirement to efficiently
handle fill-in, i.e. limit the number of elements which change from an initial zero
in the permuted A to a non-zero value in the factors L and U.

Several algorithms and corresponding software codes implementing direct
methods have appeared in recent years. Despite their individual peculiarities,
sparse direct solvers operate in distinct phases, outlined as follows [9,6]:

1. An ordering phase that permutes rows and columns to ensure either that
the factors will suffer little fill-in or to yield a matrix with special structure
(e.g. block triangular). The choice of an ordering algorithm is crucial to
the efficiency of any direct solver. Since computing an optimal ordering is
NP-complete, various heuristics are used in practice [10,11].

2. An analysis or symbolic factorization phase concerned with analyzing the
matrix’s structure to determine a pivot sequence (optional) and the non-
zero structures of the factors. A good pivot sequence should significantly
reduce the memory requirements as well as the floating point operations
count. Occasionally, this phase is combined with the ordering one.
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3. A numerical factorization phase that uses the pivot sequence to factorize the
matrix.

4. A solve phase that performs forward elimination followed by back substitu-
tion using the computed factors.

The first two phases are independent of the matrix’s numerical values and de-
pend only on its non-zero structure. For SPD matrices, the pivot sequence may
be chosen based solely on the sparsity pattern, therefore the analysis phase in-
volves no computation on real numbers. When implemented serially, the factor-
ization is typically the most time-consuming of the different phases whereas the
solve phase is generally significantly faster. Performance can be accelerated with
parallel processing, employing the MPI-based implementations for distributed
memory architectures that are available for some of the solvers. Another poten-
tially useful feature of some implementations is their ability to work out-of-core,
i.e. to hold the coefficient matrix and/or its factor in disk files, thereby substan-
tially reducing the amount of main memory required by the solver and enabling
it to tackle larger problems.

4 Implementation Issues

This section discusses several choices made during the design of sparseLM with
the twofold objective of maximizing its performance while shielding the user from
the algorithmic details associated with direct solvers. Since the optimization
aspects of sparseLM are more or less standard, the emphasis is on sparseness
and means of better taking advantage of it.

4.1 Sparse Matrix Formats

We start with a short description of general storage formats for sparse matrices.
These formats make no assumptions regarding the sparsity structure and store
non-zero elements by allocating contiguous memory storage for them along with
some additional index information for keeping track where they fit into the full
matrix. The Compressed Row Storage (CRS) format stores non-zero elements in
row-major order, whereas Compressed Column Storage (CCS) adopts column-
major ordering. More details can be found in [12].

4.2 Jacobian Representation and Computation

From a user’s perspective, the provision of derivatives is one of the most bewilder-
ing practical aspects of non-linear least squares solvers. In the case of sparseLM,
the Jacobian has been further assigned the role of specifying the sparsity pat-
tern of the problem at hand: Its element at position (i, j) is non-zero if and
only if measurement i depends upon variable j. In other words, the Jacobian
can be thought of as a parameter - observation connection graph prescribing
which (parameter, observation) pairs have direct interaction. sparseLM accepts
Jacobians in either CRS or CCS format, allowing user applications to choose
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the representation that is most natural to them. Jacobians can be hand-coded
by the user or, more conveniently, generated through the use of automatic dif-
ferentiation tools that work by systematically applying the chain rule to a given
code segment. Additionally, sparseLM offers the possibility of numerically ap-
proximating the Jacobian using forward finite differences on data provided by
successive invocations of f (cf. Eq (1)). In that case, only the sparsity pattern
of the Jacobian should be specified by the user, whereas its numerical values
are approximated by sparseLM. To reduce the total number of invocations, the
Jacobian is approximated using a scheme that computes several of its columns
with a single evaluation of f , exploiting its sparse structure as explained in [8],
ch. 7. For a m-dimensional parameter vector, this scheme requires much fewer
evaluations than the m + 1 ones that would be required by the naive approach
of computing a single column of the Jacobian per evaluation of f . However,
considering that they lead to faster convergence, analytic Jacobians should be
preferred over approximated ones whenever possible.

4.3 Approximate Hessian Computation

A key aspect of sparseLM’s implementation concerns the efficient computation
of the first order approximation to the Hessian, i.e. of matrix JTJ in Eq (4).
JT J is stored internally in the CCS format since this is the one most frequently
employed among the implementations of direct sparse solvers. Multiplication of
sparse matrices is considerably more challenging than that of dense ones, since
the sparsity pattern of the product should first be discovered and then the oper-
ations for calculating the product’s non-zeros should be carried out in a manner
efficient with respect to the matrices memory storage format. An important
observation concerning the sparsity pattern of JT J is that it does not change
among LM iterations. Therefore, sparseLM makes its computation more efficient
by computing its non-zero structure only once ignoring numerical cancellation
and then reusing it when evaluating an actual product. Another performance
improvement stems from exploiting symmetry. Thus, sparseLM computes only
the lower triangular part of JT J and then copies it to the upper half, effectively
reducing the number of computations roughly in half. In fact, even the copying
operation can be skipped for some of the solvers since those that are designed
for symmetric systems access only the triangular part of the coefficient matrix.
Depending on whether the Jacobian J is supplied in CRS or CCS format, the
product JT J is formed by an efficient technique that traverses J in a row-wise
or column-wise fashion, respectively, ensuring that the pattern of accesses to its
elements matches their physical layout in memory.

4.4 Choice of Linear Solver

As in the case of dense linear systems, it is generally advantageous in terms of
performance to employ a direct sparse solver whose prerequisites closely match
the intrinsic properties of the problem at hand. In the context of sparse non-linear
least squares, the augmented normal equations matrix of Eq. (4) is SPD, thus
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the direct solvers of choice are those designed to perform sparse Cholesky factor-
ization. Still, more general solvers targeted to indefinite or even non-symmetric
systems are clearly also usable. Advanced features such as provision for paral-
lel or out-of-core processing should also be taken into consideration. Compar-
ative evaluations of direct solvers in the literature indicate that no single one
is universally the best [9]. For this reason, sparseLM includes interfaces to a
wide variety of codes, the list of which currently consists of LDL [13], HSL’s
MA57/MA47/MA27 [14], PARDISO [15], SuperLU [16], TAUCS [17], UMFPACK [18],
CSparse [6], CHOLMOD [19] SPOOLES [20], and MUMPS [21]. Moreover, sparseLM
has been designed so that expanding this list with more solvers in the future
is straightforward. CHOLMOD [19], a set of routines for factorizing sparse SPD
matrices, is used as sparseLM’s default solver. Regarding ordering, CHOLMOD
automatically chooses between approximate minimum degree (AMD) [10] and
graph-based nested dissection (METIS) [11]. Its overall performance was found
to be quite competitive by the recent survey of Gould et al. [9].

Independently of the choice of a direct solver, its application in the context
of the LM algorithm can be made more efficient by the following observation:
During the course of the LM algorithm, several linear systems with identical
sparsity patterns are repeatedly solved. Thus, as explained in section 3, the
corresponding symbolic factorization is computed only once and then reused for
numerically solving all subsequent linear systems.

5 Experimental Results

This section provides an experimental evaluation of sparseLM, applying it to
three important problems in multiple view geometry and comparing its perfor-
mance against alternative established approaches. The problems in question are
bundle adjustment, trifocal tensor and homography estimation.

5.1 Euclidean Bundle Adjustment

In this section two sets of experiments are conducted, aiming at comparing the
performance of sba [5] against that of sparseLM applied to Euclidean sparse
Bundle Adjustment (BA). sba is our freely available package for BA that imple-
ments the partitioning scheme of [1] to solve the sparse augmented equations. It
is heavily optimized and provides increased flexibility by allowing user-defined
parameterizations for cameras and points as well as projection functions, thus
being able to support a wide range of manifestations of the multiple view recon-
struction problem. Being custom-written to match the sparsity structure of the
BA problem, sba is expected to generally excel in performance. Nevertheless,
it is instructive to examine when this conjecture holds and how close are the
performances of the two approaches.

The first set of experiments relies on the eight test sequences also employed
in [5]. Each experiment involves a set of 3D points whose image projections have
been identified in a number of real images acquired by an intrinsically calibrated
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Table 1. Statistics for Euclidean BA using the sparseLM and sba packages: Total num-
ber of images, total number of variables, total number of objective function/Jacobian
evaluations, total number of iterations and linear systems solved, elapsed execution
time in seconds. Identical values for the user-defined minimization parameters have
been used throughout all experiments.

func/jac evals iter./sys. solved exec. time
Sequence # imgs # vars sparseLM sba sparseLM sba sparseLM sba

“movi” 59 5688 20/18 20/20 18/20 20/20 4.26 3.69

“sagalassos” 26 5283 41/33 40/30 33/41 30/40 6.55 3.95

“arenberg” 22 4137 22/15 25/17 15/22 17/25 3.89 2.68

“basement” 11 981 33/22 32/23 22/33 23/32 0.57 0.28

“house” 10 1605 24/17 27/20 17/24 20/27 0.73 0.38

“maquette” 54 15945 29/21 30/23 21/29 23/30 13.20 7.98

“desk” 46 10542 28/20 32/22 20/28 22/32 8.51 6.06

“calgrid” 27 2328 25/19 21/20 19/25 20/21 15.61 8.58

moving camera. Estimates of the Euclidean 3D structure and camera motions
have been computed using a sequential structure and motion estimation tech-
nique. Those estimates serve as starting points for bootstrapping refinements that
are based on BA using sba and sparseLM. Camera motions corresponding to all
but the first frame are defined relative to the initial camera location. The former
is taken to coincide with the employed world coordinate frame. Camera rotations
are parameterized by quaternions while translations and 3D points by 3D vectors.

Table 1 illustrates several statistics gathered from the application of sba and
sparseLM-based Euclidean BA to the eight test sequences. Each row corresponds
to a single sequence and columns are as follows: The first column corresponds
to the total number of images that were employed in BA. The second column is
the total number of motion and structure variables pertaining to the minimiza-
tion. The third column shows the total number of objective function/Jacobian
evaluations during BA for both approaches. The number of iterations needed
for convergence and the total number of linear systems that were solved are
shown in the fourth column. The last column shows the time in seconds elapsed
during execution of BA. All experiments were conducted on an Intel P4@1.8
GHz running Linux and unoptimized BLAS. Both approaches converged to the
same solutions for each sequence, therefore the corresponding final reprojection
errors are not reported. As it is evident from the last column, BA with the aid
of sparseLM is roughly at most two times slower than that employing sba. This
is a remarkable result showing that the increased generality of sparseLM does
not come at the price of performance.

At this point, it is enlightening to point out a few limitations of sba that are re-
moved by the sparseLM-based approach to BA. sba assumes no coupling among
the parameters for different cameras or different points. While this assumption
is valid in many cases, there exist some situations where it imposes insurmount-
able restrictions. One such situation is illustrated in Fig. (1)(b) and concerns a
sequence acquired with a camera having constant intrinsics that are to be refined
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(a) (b)

Fig. 1. Visualization of the approximate Hessian’s structure for two BA problems in-
volving the “basement” sequence. (a) is 366× 366 and arises in BA for camera motion
and structure parameters (arranged in that order), (b) is 371 × 371 and corresponds
to BA for camera motion, structure and constant across frames intrinsic parameters.
Colored dots correspond to non-zero elements with red arising from motion-motion pa-
rameter pairs, green from point-point pairs, blue from motion-point pairs and magenta
from motion-intrinsic, point-intrinsic and intrinsic-intrinsic pairs. sba cannot handle
(b) due to the horizontal and vertical non-zero bands (in magenta) induced at its bot-
tommost and rightmost parts by the sharing of intrinsic parameters. To improve the
readability of graphs, only the first 100 points have been included in the BA.

via BA. In this case, the intrinsic calibration parameters must be shared by all im-
ages, violating sba’s assumption of independent camera parameters. Other exam-
ples involve the cases of employing inter-feature measurements such as distances
or angles between points, coplanarity constraints on subgroups of points, articu-
lated motion, etc. Another limitation stems from sba’s current implementation,
which when forming the reduced bundle system assumes a dense structure for the
Schur complement of the points submatrix in the approximate Hessian (i.e. the
block matrix S in p.2:13 of [5]). This matrix, whose ij block is zero if images i and
j have no points in common, is factored with a dense Cholesky decomposition
to update the camera parameters. While it is reasonable to expect that for small
problems such as the ones employed here most features are seen in all images and,
therefore, matrix S is dense1, for larger, more loosely connected image sets where
each image only sees a small fraction of the features, S can become quite sparse.
BA using sparseLM does not suffer from any of the aforementioned shortcomings
since it treats the Jacobian (and therefore the Hessian) as a matrix with arbitrary
sparseness, not needing to compute and factor S.

To study the effect on performance of the density of matrix S, a second set of
experiments was designed. First, a fairly large, densely connected initial recon-
struction consisting of 404 images, 77864 3D points and involving 236016 vari-
ables was obtained. The longest trajectory of image projections included in this

1 The densities of the eight test sequences are at least 84% and in most cases 100% [5].
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Fig. 2. Performance comparison of Euclidean BA for large reconstructions using
sparseLM and sba: execution time (top) and S matrix density (bottom) vs. the maxi-
mum trajectory length l

reconstruction has a length of 40. Then, for a length limit l assuming values in
{2, . . .40}, several other reconstructions were generated from the initial one by
truncating projection trajectories that were more than l images long, taking care
to avoid disconnecting the camera network. In this manner, the generated recon-
structions differ only in the densities of their point submatrices, thus providing a
basis for comparing the performance of sparseLM-basedBA against that of sba for
varying densities of the matrix S. The top part of Fig. 2 summarizes the execution
times of the two alternatives to BA applied to the 39 generated reconstructions,
whereas the bottom part shows their corresponding S matrix densities. Clearly,
the performance difference between sparseLM and sba is reversed in favor of the
former and is more pronounced for less connected image sets. As has been also ob-
served in [5], this difference stems from the fact that the computation of the dense
Cholesky decomposition of S has time complexity O(N3) and thus becomes ap-
preciable for large N (N = 2424 in this particular case). Furthermore, the time
spent by sparseLM for carrying out the the symbolic factorization once in the be-
ginning pays off by enabling it to numerically compute the sparse Cholesky in
less time at each subsequent iteration. The downside of using sparseLM is that
it requires about two to three times more memory than sba. This is because di-
rect sparse solvers require additional memory to store the symbolic factorization,
whose size depends on the matrix’s sparsity structure.

5.2 Trifocal Tensor Estimation

The trifocal tensor T encapsulates all geometric relations among three images
that are independent of scene structure. According to the “Gold Standard”



Sparse Non-linear Least Squares Optimization for Geometric Vision 53

(a) (b)

Fig. 3. (a) Hessian structure for trifocal tensor estimation involving the 114 3D points
visible in the first 3 frames of the “basement” sequence. Color coding is as in Fig. 1.
(b) Hessian structure for homography refinement involving 88 image point pairs. Red
dots correspond to homography-homography variable pairs, green to point-point pairs
and blue to homography-point pairs.

algorithm for obtaining the Maximum Likelihood Estimate of T [1], p.397 from
triplets of corresponding points xi, x

′
i and x

′′
i , the procedure proceeds as follows.

First, a geometrically valid estimate of T is computed with a linear algorithm
that minimizes the algebraic error and a canonical triplet of camera matrices is
recovered from this estimate. Subsidiary variables corresponding to 3D points
Xi are then introduced and initialized via triangulation. T is parametrized by
the elements of the camera matrices P

′
and P

′′
. Subsequently, the cost function

∑

i

d(xi, x̂i)2 + d(x
′
i, x̂

′
i)

2 + d(x
′′
i , x̂

′′
i )2 (5)

is minimized over the 3D points Xi and the elements of the two camera matrices
P

′
, P

′′
with x̂i = [I | 0]Xi, x̂

′
i = P

′
Xi and x̂

′′
i = P

′′
Xi. For n 3D points, the

minimization involves 3n + 24 variables and amounts to a sparse problem (cf.
Fig. 3(a)) solvable by sparseLM. Finally, the three correlation slices of T are set
to Ti = aibT

4 − a4bT
i , i = 1 . . . 3, where ai, bi are respectively the i-th columns

of the refined camera matrices P
′
= [A |a4], P

′′
= [B |b4]. The tensor estimated

in this manner satisfies by construction the trilinear constraints for a triplet of
refined corresponding points.

The reprojection error of (5) is quite complex and minimizing it involves a
large number of parameters. An approximate solution to overcome this is to
substitute (5) with the so-called Sampson error [1], p.98, which is the distance
to the first order approximation of the algebraic variety defined by the trilinear
constraints. Minimization of the sum of Sampson errors for all points relates to
only 24 variables, appendix B of [22] provides more details. While it might seem
reasonable to expect that the fewer variables of the Sampson approximation
will result in faster performance, it is demonstrated next that an application of
sparseLM performs faster and is more accurate.
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Table 2. Statistics for tensor estimation using sparseLM (sLM), the Sampson approx-
imation (SA) and dense LM (dLM) approaches. The columns are as follows: Total
number of variables for sLM & dLM, average initial transfer error in pixels, average
final transfer error in pixels, total number of objective function/Jacobian evaluations,
total number of iterations and linear systems solved, elapsed execution time in seconds.
Again, identical values for the user-defined minimization parameters have been used
throughout all experiments.

# vars initial final error func/jac evals iter./sys. solved exec. time
Sequence sLM & dLM error sLM & dLM SA sLM SA dLM sLM SA dLM sLM SA dLM

“movi” 729 0.330 0.286 0.320 32/30 59/2 38/30 30/32 10/11 30/38 0.42 1.92 43.38
“sagalassos” 681 0.745 0.335 0.737 38/31 80/2 39/34 31/38 31/32 34/39 0.41 2.34 43.52
“arenberg” 960 0.428 0.357 0.428 35/29 41/1 35/31 29/35 16/17 31/35 0.60 1.73 99.83
“basement” 366 0.472 0.397 0.459 35/28 159/4 32/29 28/35 62/63 29/32 0.18 2.53 5.01
“house” 636 0.393 0.367 0.389 60/49 39/1 65/52 49/60 14/15 52/65 0.58 1.07 43.03
“maquette” 1041 0.771 0.429 0.739 37/33 83/2 37/31 33/37 34/35 31/37 0.75 3.81 133.61
“desk” 594 0.545 0.511 0.545 37/30 32/1 34/31 30/37 7/8 31/34 0.32 0.83 23.99
“calgrid” 2097 0.420 0.155 0.320 39/35 62/2 41/34 35/39 13/14 34/41 1.83 5.75 1151.75

The cost function (5) was minimized with sparseLM and levmar [23], which
includes a dense version of the LM algorithm implemented by sparseLM. These
two approaches are labeled sLM and dLM, respectively. Furthermore, the total
error of the Sampson approximation was minimized with levmar using a secant
variant of the dense LM; this approach is labeled SA. dLM serves as a reference
for the time savings achieved by SA and sLM. The three alternative approaches
were applied to the estimation of the trifocal tensor corresponding to the first
three frames of each sequence used in section 5.1 and the related statistics are
presented in Table 2.

The performance of the three approaches is evaluated for accuracy and effi-
ciency, using the average tensorial transfer error for all points in all three frames
and the total execution time, respectively. sLM and dLM employ the same ob-
jective function and, therefore, perform identically with respect to accuracy.
However, dLM is at least two orders of magnitude slower. On the other hand,
SA is less accurate than sLM and, being between 2 to 14 times slower, is also
considerably less efficient. The reasons for the worse performance of SA can be
partly attributed to the fact that the computation of the Sampson error for each
point triplet calls for a costly SVD operation to estimate the pseudoinverse of a
9× 9 rank 3 matrix [22]. Furthermore, the Jacobian of the Sampson error is too
complicated to express analytically, which necessitates its approximation using
finite differences that raise the total number of performed SVDs even further.
As a matter of fact, the motivation for using a secant variant of dense LM with
Broyden’s rank one update for minimizing the Sampson error was to ease down
the overhead of finite differentiation. The overall superior performance of sLM
combined with the restrictive assumption made by the Sampson approximation
according to which the variety of trilinear constraints has to be well approxi-
mated by a first order expansion in the vicinity of the current estimate, clearly
suggests sLM as the preferred alternative for tensor estimation.
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5.3 Homography Estimation

A homography is a general plane to plane projective transformation that is
represented by a non-singular homogeneous 3 × 3 matrix H. Assuming that a
set of corresponding coplanar image point pairs xi, x

′
i is available, the “Gold

Standard” algorithm for estimating H is as follows (cf. [1], p.114): First, an
initial estimate is computed using a linear normalized DLT algorithm embedded
in a robust regression framework to safeguard against outliers. Then, considering
only the inliers, the initial estimate is used as a starting point for minimizing
the following geometric cost over H and the subsidiary points x̂i:

∑

i

d(xi, x̂i)2 + d(x
′
i,Hx̂i)2. (6)

The minimization corresponds to a sparse problem which involves 9 + 2n vari-
ables, n being the number of inlying point pairs (cf. Fig. 3(b)). In a manner
similar to the estimation of the trifocal tensor, the geometric error of (6) can be
approximated with the Sampson error involving 9 variables.

The performance of sparseLM minimizing (6) was compared against those of
a dense LM algorithm utilized to minimize (6) and the Sampson approximation.
Five experiments were carried out using around 900 SIFT keypoints extracted
and matched between successive pairs from the six images of the “graffiti” se-
quence. Although lack of space prevents the inclusion of detailed statistics, it is
noted that the performance of sparseLM was between 455 to 886 times better
than that of the dense LM algorithm minimizing (6) and between only 1.1 to
1.6 times worse than that of the dense LM applied to the Sampson approxima-
tion. As expected, minimizing (6) was slightly more accurate than employing
the corresponding Sampson approximation.

6 Conclusions

A general-purpose, computationally efficient implementation of sparse non-linear
least squares optimization is beneficial to a wide range of vision tasks. This paper
has presented an overview of sparseLM, a such open source implementation and
has demonstrated its versatility and effectiveness in different practical situations.
Considering that its applicability extends beyond geometric vision, sparseLM can
potentially prove invaluable to a variety of research fields and disciplines.
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