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ABSTRACT

Many practical pattern recognition problems require non-negativity constraints.

For example, pixels in digital images and chemical concentrations in bioinformat-

ics are non-negative. Non-negative matrix factorization (NMF) is a useful tech-

nique in approximating these high dimensional data. SparseNMFs are also useful

when we need to control the degree of sparseness in non-negative basis vectors

or non-negative lower-dimensional representations. In this paper, we introduce

novel sparse NMFs via alternating non-negativity-constrained least squares. We

applied one of the proposed sparse NMFs to cancer class discovery and gene ex-

pression data analysis. Our experimental results illustrate that our proposed method

achieves better clustering performance than NMF based on multiplicative update

rules and sparse NMFs based on the gradient descent method.



1 Introduction

Given a non-negative matrixA of sizem×n, where each column ofA corresponds

to a data point in them-dimensional space, and a positive integerk < min{m,n},
non-negative matrix factorization (NMF) finds two non-negative matricesW ∈
R

m×k andH ∈ R
k×n so thatA ≈ WH. A solution to the NMF problem can be

obtained by solving the following optimization problem:

min
W,H

f(W,H) ≡ 1

2
‖A−WH‖2F , s.t. W,H ≥ 0, (1)

whereW ∈ R
m×k is a basis matrix,H ∈ R

k×n is a coefficient matrix,‖ · ‖F
is the Frobenius norm, andW,H ≥ 0 means that all elements ofW andH are

non-negative. Due tok < m, dimension reduction is achieved and the lower-

dimensional representation is given byH. Since NMF may give us direct inter-

pretation due to non-subtractive combinations of non-negative basis vectors, it has

recently received much attention and it has been applied to many interesting prob-

lems including text data mining [7, 14] and gene expression data analysis [6, 2, 3].

One of the most interesting properties of NMF is that it usually generates sparse

basis vectors that allow us to discover parts-based basis vectors. However, the

NMF formulation shown in Eq. (1) does not guarantee sparsityin the factorsW or

H, and the sparsity depends on specific NMF algorithms. For example, NMF gen-

erated holistic basis images instead of parts-based basis images for a facial image

dataset in the results presented in [9, 5]. Since it would be useful to control the de-

gree of sparseness explicitly for this situation, there have been several approaches

[5, 14, 3, 13] to control the degree to which basis vectors aresparse.

In this paper, we introduce alternative sparse NMFs that canexplicitly control

sparseness in either of the basis matrixW or the reduced dimensional representa-

tion H by using alternating non-negativity-constrained least squares. The rest of



this paper is organized as follows. We give brief overviews on sparse NMFs based

on the gradient descent method and their mathematical difficulties in Section 2, and

NMF based on alternating non-negativity-constrained least squares in Section 3.

In Section 4, we introduce sparse NMFs via alternating non-negativity-constrained

least squares involvingL1-norm based constraints. Section 5 presents experimen-

tal results illustrating properties of the proposed sparseNMFs. Summary is given

in Section 6.

2 Sparse NMFs based on the Gradient Descent Method

Lee and Seung [7, 8] suggested NMF algorithms based on multiplicative update

rules ofW andH. The distance‖A −WH‖F is nonincreasing under the update

rules:

Hqj ← Hqj

(W T A)qj

((W T W )H)qj

,

for 1 ≤ q ≤ k and1 ≤ j ≤ n,

Wiq ←Wiq

(AHT )iq
(W (HHT ))iq

,

for 1 ≤ i ≤ m and1 ≤ q ≤ k. The divergence is nonincreasing under the different

updating rules [8]. Gonzales and Zhang [4] pointed out that these nonincreasing

properties of multiplicative update rules may not imply theconvergence to a sta-

tionary point within realistic amount of run time for problems of meaningful sizes.

Hoyer [5] devised a sparse NMF based on the projected gradient descent method

(SNMF/PGD) in order to constrain NMF to find solution with desired sparseness

of W andH. To impose sparseness constraints on only one matrixW or H, this al-

gorithm uses a multiplicative update rule for the counter matrix, which suffers from

slow convergence. More practical difficulties of this algorithm will be discussed in

Section 5.2.



Paucaet al. [13] proposed a constrained NMF (CNMF) optimization problem,

min
W,H
{‖A −WH‖2F + α‖W‖2F + β‖H‖2F }, s.t. W,H ≥ 0, (2)

and suggested the following multiplicative updating rules:

Hqj ← Hqj

(W T A)qj − βHqj

((W T W )H)qj

,

for 1 ≤ q ≤ k and1 ≤ j ≤ n,

Wiq ← Wiq

(AHT )iq − αWiq

(W (HHT ))iq
,

for 1 ≤ i ≤ m and1 ≤ q ≤ k, whereα andβ are regularization parameters (zero

or positive real values) that are used to balance the trade-off between the accuracy

of approximation and the sparseness ofW andH, respectively. However, note that

H or W may have negative elements during iterations when we are using a large

positiveα or a large positiveβ. Whenα = 0, Eq. (2) can be rewritten as

min
W,H
{‖A−WH‖2F + β‖H‖2F }, s.t. W,H ≥ 0. (3)

This formulation contains the minimization ofL2-norm of each column ofH in

order to increase the sparseness ofH. The following least squares formulation

without non-negativity-constraints onH,

min
H
{‖A −WH‖2F + β‖H‖2F }, (4)

has appeared in [14, 3]. Any negative values inH obtained from Eq. (4) during

iterations were set to zero in [14, 3]. However, setting negative values to zero for

imposing non-negativity cannot be recommended for severalreasons: first of all,

one does not obtain least squares estimates, which means that there is no guarantee

for the quality of the model. Another problem with this approximate approach is



that when included in a multiway algorithm, it can cause the algorithm to diverge,

i.e. successive iterations yield models that describe the data progressively more

poorly. This can happen because the approximate estimates are not truly least

squares [1]. Moreover,L1-norm based formulations would be more appropriate

than L2-norm based formulations so as to control sparsity [15]. These are our

motivations for proposing alternative sparse NMFs based onminimizing L1-norm

of columns ofW T or H via alternating non-negativity-constrained least squares.

3 NMF based on Alternating Non-negativity-constrained

Least Squares (NMF/ANLS)

Given A ∈ R
m×n, NMF based on alternating non-negativity-constrained least

squares (NMF/ANLS) starts with an initialization ofH ∈ R
k×n with non-negative

values. Then, it iterates the following two non-negativity-constrained least squares

until convergence:

min
W
‖HT W T −AT ‖2F , s.t. W ≥ 0, (5)

which fixesH and solves the optimization with respect toW , and

min
H
‖WH −A‖2F , s.t. H ≥ 0, (6)

which fixesW and solves the optimization with respect toH. Similarly, one may

initialize W ∈ R
m×k and alternate the above in the order of solving Eq. (6) and Eq.

(5). Paatero and Tapper [12] originally proposed using the constrained alternating

least squares method to solve Eq. (1). We used a fast algorithm for large scale

non-negativity-constrained least squares problems [16] to solve Eqs. (5)-(6). Lin

[10] discussed the convergence property of alternating non-negativity-constrained

least squares and showed that any limit point of the sequence(W ,H) generated by

alternating non-negativity-constrained least squares isa stationary point of Eq. (1).



4 Sparse NMFs based on Alternating Non-negativity-constrained

Least Squares

In order to enforce sparseness constraints onW orH in A ≈WH, we propose two

sparse NMFs,i.e. SNMF/L for sparseW (where ‘L’ denotes that we control the

sparseness of the left side factor) and SNMF/R for sparseH (where ‘R’ denotes

that we control the sparseness of the right side factor). These sparse NMFs are

based on alternating non-negativity constrained least squares.

4.1 SNMF/L

To impose sparseness constraints onW , we deal with the following optimization

problem:

min
W,H
{‖A−WH‖2F + α

m
∑

i=1

‖W (i, :)‖21}, s.t. W,H ≥ 0, (7)

whereW (i, :) is thei-th row vector ofW . The regularization parameterα is a real

non-negative value to balance the trade-off between accuracy of the approximation

and sparseness ofW . SNMF/L begins with an initialization of non-negative matrix

W . Then, it iterates the following ANLS until convergence:

min
H
‖WH −A‖2F , s.t. H ≥ 0, (8)

min
W

∥

∥

∥

∥

∥

∥


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HT
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2

F

, s.t. W ≥ 0, (9)

wheree1×k ∈ R
1×k is a row vector whose elements are all ones and01×m ∈ R

1×m

is a zero vector whose elements are all zeros. The rows of the coefficient matrixH

are normalized to unitL2-norm,i.e. ‖H(q, :)‖2 = 1 for 1 ≤ q ≤ k, after Eq. (8)

at each iteration so that rows ofH have constant energy. Eq. (9) can be simplified



as

minW

{

‖HT W T (:, 1) −AT (:, 1)‖2
2

+α
(

∑k
q=1

W T (q, 1)
)2

+ · · ·

+‖HT W T (:,m)−AT (:,m)‖2
2

+α
(

∑k
q=1

W T (q,m)
)

2
}

s.t. W ≥ 0.

Since all elements inW are non-negative, we obtain the following formulation by

the definition ofL1-norm of a vector:

minW

{

‖HT W T (:, 1) −AT (:, 1)‖2
2

+α‖W T (:, 1)‖2
1

+ · · ·
+‖HT W T (:,m) −AT (:,m)‖2

2

+α‖W T (:,m)‖2
1

}

, s.t. W ≥ 0,

which involves the minimization ofL1-norm of each column ofW T .

4.2 SNMF/R

To apply sparseness constraints onH, we deal with the following optimization

problem:

min
W,H
{‖A −WH‖2F + β

n
∑

j=1

‖H(:, j)‖2
1
}, s.t. W,H ≥ 0, (10)

whereH(:, j) is thej-th column vector ofH. The regularization parameterβ is

a real non-negative value to balance the trade-off between accuracy of the approx-

imation and sparseness ofH. SNMF/R begins with the initialization ofH with

non-negative values. Then, it iterates the following ANLS until convergence:

min
W
‖HT W T −AT ‖2F , s.t. W ≥ 0, (11)

min
H

∥

∥

∥

∥

∥

∥





W
√

βe1×k



H −





A

01×n




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∥
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2

F

, s.t. H ≥ 0, (12)



wheree1×k ∈ R
1×k is a row vector with all components equal to one and01×n ∈

R
1×n is a null vector whose elements are all zeros. The columns of the basis matrix

W are normalized to unitL2-norm, i.e. ‖W (:, q)‖2 = 1 for 1 ≤ q ≤ k, after

Eq. (11) at each iteration so that columns ofW have constant energy. Eq. (12)

minimizesL1-norm of columns ofH ∈ R
k×n.

4.3 Stopping Criterion

Once we have a non-negative decomposition (A ≈ WH s.t. W,H ≥ 0), we

can use the basis matrixW to divide them genes intok gene-clusters and the

coefficient matrixH to divide then samples intok sample-clusters. Typically,

genei is assigned to gene-clusterq if the W (i, q) is the largest element inW (i, :)

and samplej is assigned to sample-clusterq if the H(q, j) is the largest element

in H(:, j). We tested convergence at every five iterations by using these posi-

tions of the largest elements in rows ofW and columns ofH. We assumed that

NMFs are converged if both the positions of the largest elements in rows ofW ,

i.e. w̃ = (w̃1, . . . , w̃m), and the positions of the largest elements in columns ofH,

i.e. h̃ = (h̃1, . . . , h̃n), have not changed during 11 convergence tests, wherew̃i is

the position of the largest element in thei-th row of W andh̃j is the positions of

the largest element in thej-th column ofH. Brunetet. al. [2] used a connectivity

matrix Ĉ = [ĉij ] of sizen × n for convergence tests, whose entry isĉij = 1 if

samplesi andj belong to the same sample-cluster, andĉij = 0 if they belong to

different sample-clusters. However, this convergence criterion does not include the

change ofW . ConsideringW is also important sincẽw can change even if̃h has

not changed for many iterations. Thus, we took account of theconvergence of̃w

as well as the convergence ofh̃. Our stopping criterion is suitable for biclustering

obtained from NMF.



5 Experiments and Discussion

5.1 Datasets Description

We used the leukemia gene expression dataset (ALLAML) and the central ner-

vous system tumors dataset (CNS) [2]. The ALLAML dataset contains acute lym-

phoblastic leukemia (ALL) that has B and T cell subtypes, andacute myelogenous

leukemia (AML) that occurs more commonly in adults than in children. This gene

expression dataset consists of 38 bone marrow samples (19 ALL-B, 8 ALL-T, and

11 AML) with 5,000 genes. The central nervous system datasetis composed of

four categories of CNS tumors with 5,597 genes. It consists of 34 samples rep-

resenting four distinct morphologies: 10 classic medulloblastomas, 10 malignant

gliomas, 10 rhabdoids, and 4 normals. All datasets we used contain only non-

negative entries. We implemented algorithms in Matlab 6.5 [11]. All our experi-

ments were performed on a P3 600MHz machine with 512MB memory.

5.2 Properties of Sparse NMFs

To measure the clustering performance, we used purity and entropy. Suppose we

are givenl categories (true class labels), while NMF generatesk clusters. Purity is

given by

Purity =

k
∑

q=1

nq

n
P (Ω̃q), P (Ω̃q) =

1

nq

max
j

(nj
q),

where Ω̃q is a particular cluster of sizenq, n
j
q is the number of samples iñΩq

that belong to original classΩj (1 ≤ Ωj ≤ l), k is the number of clusters, andn

is the total number of samples. The larger values of purity, the better clustering

performance. Entropy is defined as follows:

Entropy=

k
∑

q=1

nq

n
E(Ω̃q),



Figure 1: CNS tumors clustering by NMF based on divergence-based update rules.

(Left) The reordered consensus matrices on the CNS tumors dataset. (Right) The

corresponding Cophenetic correlation coefficients.
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E(Ω̃q) = − 1

log2 l

l
∑

j=1

n
j
q

nq

log2

n
j
q

nq

,

wherel denotes the number of original class labels. The smaller values of entropy,

the better clustering quality.

Tables 1 and 2 show the results of SNMF/L and SNMF/R under various pa-

rameters ofα ∈ {0.001, 0.01, 0.1, 1.0} and β ∈ {0.001, 0.01, 0.1, 1.0} on the

ALLAML dataset withk = 3 and on the CNS tumors dataset withk = 4, respec-

tively. We compared sparse NMFs with a NMF algorithm based ondivergence-

based multiplicative update rules [8, 2]. The averages of sparseness, purity and

entropy were computed by repeating NMFs five times with different random ini-

tializations. By increasingα, we could enhance the sparsity ofW , while reducing

sparsity ofH. By increasingβ, we could achieve a sparserH, while diminishing

the sparsity ofW . SNMF/R produced better clustering performance (higher purity,

lower entropy) than NMF based on multiplicative update rules. On the other hand,



Figure 2: CNS tumors clustering by SNMF/R. (Left) The reordered consensus

matrices on the CNS tumors dataset. (Right) The corresponding Cophenetic corre-

lation coefficients. The correlation coefficient drops whenk increases from 4 to 5,

indicating a four-cluster split of the data is more stable than a five-cluster split.
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SNMF/L can be applied to obtain parts-based basis vectors. NMF based on mul-

tiplicative updating rules generated holistic basis images for a facial image dataset

[9, 5], while SNMF/L could yield parts-based basis images since it could control

the degree to which basis vectors are sparse (Result parts-based basis images are

not shown here due to space limitation).

In our experiments, CNMF multiplicative updating rules [13] could not con-

trol the sparsity ofW andH well. Some difficulties associated with this method

were already discussed in Section 2. We also tested Hoyer’s sparse NMF based

on the projected gradient descent method by his Matlab implementation. Although

it worked when we applied sparseness constraints only onW , it failed when we

tried to impose sparse constraints only onH. We could overcome this problem by

dividing the dataset by a large value or applying normalization in order to avoid



values that are too large in the dataset. Table 3 shows performance comparison

between SNMF/PGD [5] having sparseness constraints only onH with a desired

sparseness parametersH = 0.4 and SNMF/R withβ = 0.01 on the same scaled

dataset (As = 0.01 ∗ A). After five runs with different random initializations, we

observed the average percentages of zero elements inW andH, mean approxima-

tion error, mean purity, mean entropy, mean iteration, and total computing time.

In general, sparse NMFs generate larger errors when we applystronger sparsity

constraints. Although SNMF/R achieved greater sparsenessboth inW andH, its

approximation error was less than that of SNMF/PGD. More importantly, SNMF/R

showed significantly better clustering performance than SNMF/PGD. Although we

tested varioussH values, SNMF/PGD did not show better clustering performance

than SNMF/R. Specifically, the maximal purity was only 0.895and the minimal

entropy was 0.280. Since many practical applications applyNMFs to clustering

problems, the superior clustering power of SNMF/R is one of the major advan-

tages. Moreover, SNMF/R required an order of magnitude shorter computing time

and smaller number of iterations than SNMF/PGD.

For the CNS tumors dataset, we repeated non-negative matrixfactorizations

50 times to obtain the average connectivity matrix (i.e. consensus matrix) whose

entries reflect the probability that samplesi andj belong to the same cluster. We

can measure the dispersion of the consensus matrix by the Cophenetic correlation

coefficient (ρ) [2]. The value of coefficient isρ = 1 for a perfect consensus matrix

(all entries = 0 or 1) and0 ≤ ρ < 1 for a scattered consensus matrix. After

obtainingρk values for variousk, we can determine the number of clusters from

the maximalρk. Figures 1 and 2 illustrate that NMFs find the number of clusters

in the CNS tumors dataset with the maximalρk at k = 4. Figure 2 shows that

SNMF/R with β = 0.01 finds perfect consensus matrices fork = 2, 3, 4. In

other words, SNMF/R generatedH matrices that have the same cluster structure



with different random initializations ofH. By using SNMF/R, we could obtain

finer consensus matrices (higherρk) for variousk values as well as the number of

clusters in the CNS tumors dataset.

6 Summary

We present novel sparse NMFs via alternating non-negativity-constrained least

squares involvingL1-norm minimization. These sparse NMFs can also be con-

sidered as unsupervised dimension reduction methods that can control the degree

of sparseness of basis matrix or coefficient matrix under non-negativity constraints.

SNMF/L is helpful in obtaining parts-based basis vectors. SNMF/R can be used

for cancer class discovery and gene expression data analysis due to its good clus-

tering performance. These algorithms can be applied to manypractical problems

in bioinformatics and computational biology, for instance, biomedical text mining,

gene/protein microarray data analysis,etc.
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Table 1: Performance dependency of SNMF/L and SNMF/R against variousα and

β values on the leukemia data matrix of size5, 000 × 38. We present the average

percentages of zero elements inW andH over five runs with different random

initializations. Average purity and average entropy are also presented.∗For NMF

based on divergence-based update rules (NMF/DUR), the average percentages of

the number of very small non-negative elements that are smaller than10−8 in W

andH are presented. We also present total computing time (in seconds) for five

runs and the average number of iterations.

Leukemia (k = 3) NMF/DUR SNMF/L

α - 0.001 0.01 0.1 1.0

#(W = 0) (%) 0.17%∗ 2.75% 3.26% 12.85% 45.52%

#(H = 0) (%) 0.00%∗ 18.42% 15.79% 6.14% 0.00%

Purity 0.953 0.947 0.947 0.947 0.842

Entropy 0.141 0.169 0.169 0.158 0.350

# of iterations 602.0 102.0 105.0 105.0 92.0

Total computing time 331.8 51.8 49.8 54.4 61.7

Leukemia (k = 3) - SNMF/R

β - 0.001 0.01 0.1 1.0

#(W = 0) (%) - 2.68% 2.50% 1.70% 0.39%

#(H = 0) (%) - 18.42% 23.68% 38.60% 59.82%

Purity - 0.974 0.974 0.947 0.926

Entropy - 0.095 0.095 0.158 0.173

# of iterations - 99.0 96.0 80.0 79.0

Total computing time - 49.6 48.9 42.2 39.5



Table 2: Performance dependency of SNMF/L and SNMF/R against variousα and

β values on the CNS tumors data matrix of size5, 597×34. We present the average

percentages of zero elements inW andH over five runs with different random

initializations. Average purity and average entropy are also presented.∗For NMF

based on divergence-based update rules (NMF/DUR), the average percentages of

the number of very small non-negative elements that are smaller than10−8 in W

andH are presented. We also present total computing time (in seconds) for five

runs and the average number of iterations.

CNS tumors (k = 4) NMF/DUR SNMF/L

α - 0.001 0.01 0.1 1.0

#(W = 0) (%) 1.98%∗ 9.27% 11.48% 29.24% 59.95%

#(H = 0) (%) 5.29%∗ 25.0% 19.12% 11.03% 0.00%

Purity 0.947 0.971 0.971 0.882 0.882

Entropy 0.112 0.071 0.071 0.230 0.230

# of iterations 1001.0 114.0 114.0 240.0 147.0

Total computing time 617.8 74.0 76.0 209.2 179.6

CNS tumors (k = 4) - SNMF/R

β - 0.001 0.01 0.1 1.0

#(W = 0) (%) - 8.94% 8.19% 3.45% 0.31%

#(H = 0) (%) - 25.0% 26.47% 48.53% 71.32%

Purity - 0.971 0.971 0.971 0.865

Entropy - 0.071 0.071 0.071 0.232

# of iterations - 107.0 104.0 83.0 93.0

Total computing time - 72.1 69.1 50.2 49.6



Table 3: Performance comparison between SNMF/R and Hoyer’ssparse NMF

based on the projected gradient descent method (SNMF/PGD) [5] on the scaled

leukemia data matrixAs = 0.01∗A with k = 3. After five runs with different ran-

dom initializations, we present total computing time for five runs and the average

values of percentage of zero elements inW andH, approximation error, purity,

entropy and the number of iterations.

Algorithms SNMF/PGD SNMF/R

Parameter sH = 0.4 β = 0.01

#(W = 0) (%) 0.22% 2.50%

#(H = 0) (%) 21.75% 23.68%

f = ‖As −WH‖F 2.385 × 103 2.368 × 103

Purity 0.895 0.974

Entropy 0.280 0.095

# of iterations 662.0 91.0

Total computing time 671.9 sec. 45.3 sec.


