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ABSTRACT

Many practical pattern recognition problems require negativity constraints.

For example, pixels in digital images and chemical conediotns in bioinformat-

ics are non-negative. Non-negative matrix factorizatiNiVMf) is a useful tech-

nique in approximating these high dimensional data. SpdkEs are also useful
when we need to control the degree of sparseness in nonneegasis vectors

or non-negative lower-dimensional representations. is paper, we introduce
novel sparse NMFs via alternating non-negativity-comséa least squares. We
applied one of the proposed sparse NMFs to cancer classvdigcand gene ex-
pression data analysis. Our experimental results illtestheat our proposed method
achieves better clustering performance than NMF based diipfiuative update

rules and sparse NMFs based on the gradient descent method.



1 Introduction

Given a non-negative matriA of sizem x n, where each column of corresponds
to a data point in then-dimensional space, and a positive integet min{m, n},
non-negative matrix factorization (NMF) finds two non-niga matricesiW e
R™*k andH € R**™ so thatA ~ W H. A solution to the NMF problem can be

obtained by solving the following optimization problem:
1
i H)=—||A-WH|%, st. W,H > 1
%}gf(W, )=5lA-WH|E, st. W,H 20, @

whereW € R™** is a basis matrix i € R*¥*" is a coefficient matrix| - ||
is the Frobenius norm, and’, H > 0 means that all elements & and H are
non-negative. Due t& < m, dimension reduction is achieved and the lower-
dimensional representation is given By Since NMF may give us direct inter-
pretation due to non-subtractive combinations of non-tieg@asis vectors, it has
recently received much attention and it has been appliedatyyrimteresting prob-
lems including text data mining [7, 14] and gene expressata dnalysis [6, 2, 3].
One of the most interesting properties of NMF is that it usugénerates sparse
basis vectors that allow us to discover parts-based basisrge However, the
NMF formulation shown in EQ. (1) does not guarantee spamsitije factorsi? or
H, and the sparsity depends on specific NMF algorithms. Fanpiea NMF gen-
erated holistic basis images instead of parts-based Imaaggess for a facial image
dataset in the results presented in [9, 5]. Since it woulddedulito control the de-
gree of sparseness explicitly for this situation, thereehiasen several approaches
[5, 14, 3, 13] to control the degree to which basis vectorspegse.

In this paper, we introduce alternative sparse NMFs thaesalicitly control
sparseness in either of the basis maliixor the reduced dimensional representa-

tion H by using alternating non-negativity-constrained leasiases. The rest of



this paper is organized as follows. We give brief overviewsparse NMFs based

on the gradient descent method and their mathematicaludiféis in Section 2, and
NMF based on alternating non-negativity-constrainedtlegaares in Section 3.

In Section 4, we introduce sparse NMFs via alternating negativity-constrained
least squares involving;-norm based constraints. Section 5 presents experimen-
tal results illustrating properties of the proposed spalsd-s. Summary is given

in Section 6.

2 Sparse NMFsbased on the Gradient Descent M ethod

Lee and Seung [7, 8] suggested NMF algorithms based on ricdtipe update

rules of W and H. The distancé|A — W H || ¢ is nonincreasing under the update

rules:
(WTA)qj
H.—H ,— 79
W (WTW) )y
forl <g<kandl <j<n,
(AHT)iq
W; Wigrrro o
¢ W HHT)),

for1 <i <mandl < ¢ < k. The divergence is nonincreasing under the different
updating rules [8]. Gonzales and Zhang [4] pointed out thas& nonincreasing
properties of multiplicative update rules may not imply twvergence to a sta-
tionary point within realistic amount of run time for probie of meaningful sizes.
Hoyer [5] devised a sparse NMF based on the projected gradiisnent method
(SNMF/PGD) in order to constrain NMF to find solution with ded sparseness
of W andH. To impose sparseness constraints on only one midtror H, this al-
gorithm uses a multiplicative update rule for the countetrimavhich suffers from
slow convergence. More practical difficulties of this algun will be discussed in

Section 5.2.



Pauceet al. [13] proposed a constrained NMF (CNMF) optimization protle

min{||A — WH|% +al|W[E + B H|E}, st W.H >0, )
and suggested the following multiplicative updating rules

(WTA)qj — ﬁqu
(WIW)H)g;

Hy; — Hyg;

forl<g<kandl <j<n,

(AHT)Z‘q — OAWZ‘
(W(HHT))ig

Wig <= Wig

forl <i<mandl < g < k, wherea andg are regularization parameters (zero
or positive real values) that are used to balance the trideettveen the accuracy
of approximation and the sparsenes$iofind H, respectively. However, note that
H or W may have negative elements during iterations when we ang aslarge

positivea or a large positives. Whena = 0, Eq. (2) can be rewritten as
min A~ WH|} + B|H|F}, st. W H > 0. @3)

This formulation contains the minimization d@f-norm of each column off in
order to increase the sparsenesstof The following least squares formulation

without non-negativity-constraints o,
min{[|[A — WH|% + || H||:}, 4)

has appeared in [14, 3]. Any negative valueddrobtained from Eqg. (4) during
iterations were set to zero in [14, 3]. However, setting tiegavalues to zero for
imposing non-negativity cannot be recommended for seveeslons: first of all,
one does not obtain least squares estimates, which mearisdieis no guarantee

for the quality of the model. Another problem with this apgrate approach is



that when included in a multiway algorithm, it can cause tigerithm to diverge,

i.e. successive iterations yield models that describe the daigrgssively more
poorly. This can happen because the approximate estimegesoa truly least
squares [1]. Moreoveltl-norm based formulations would be more appropriate
than Ly-norm based formulations so as to control sparsity [15]. sEhare our
motivations for proposing alternative sparse NMFs baseohioimizing L;-norm

of columns ofi¥'” or H via alternating non-negativity-constrained least sggiare

3 NMF based on Alternating Non-negativity-constr ained
L east Squares (NMF/ANLYS)

Given A € R™*" NMF based on alternating non-negativity-constrainedtlea
squares (NMF/ANLS) starts with an initialization &f € R¥*™ with non-negative
values. Then, it iterates the following two non-negatihdtynstrained least squares

until convergence:
min |HTWT — AT||%, st. W >0, (5)
which fixesH and solves the optimization with respectii6, and
min [[WW H — Al%, st. H>0, (6)

which fixesWW and solves the optimization with respectho Similarly, one may
initialize W € R™** and alternate the above in the order of solving Eq. (6) and Eq.
(5). Paatero and Tapper [12] originally proposed using thestrained alternating
least squares method to solve Eq. (1). We used a fast algofah large scale
non-negativity-constrained least squares problems [i6ptve Egs. (5)-(6). Lin
[10] discussed the convergence property of alternatingnegativity-constrained
least squares and showed that any limit point of the sequétice) generated by

alternating non-negativity-constrained least squarasstationary point of Eq. (1).



4 SparseNMFsbased on Alternating Non-negativity-constrained
L east Squares

In order to enforce sparseness constraintdloor H in A ~ W H, we propose two
sparse NMFsi.e. SNMF/L for sparsdV (where ‘L’ denotes that we control the
sparseness of the left side factor) and SNMF/R for spéfdevhere ‘R’ denotes
that we control the sparseness of the right side factor).s@lsparse NMFs are

based on alternating non-negativity constrained leastregu

41 SNMF/L

To impose sparseness constraintsidnwe deal with the following optimization

problem:

i — 2 Bk .t. >
ip(l4 = WHIE + a3 WG}, st WH 20 (7)

whereW (i, :) is thei-th row vector ofi¥’. The regularization parameteris a real
non-negative value to balance the trade-off between acgafadhe approximation
and sparseness df . SNMF/L begins with an initialization of non-negative matr

W. Then, it iterates the following ANLS until convergence:

min | W H — Al%, st. H >0, (8)
2
HT . AT
min W+ — , s.t. W >0, 9)
w Vaex O1xm r

wheree; ., € R'** is a row vector whose elements are all ones@ng,, € R} *™
is a zero vector whose elements are all zeros. The rows ob#fé@ent matrixd
are normalized to unife-norm,i.e. ||[H(q,:)|le =1 for 1 < ¢ < k, after Eq. (8)

at each iteration so that rows af have constant energy. Eq. (9) can be simplified



as
miny,  {[|[HTWT(:,1) — AT(:, 13
2
ta (z’;zl wT(g1)) + -
HHTWT (:;m) — AT(:,m)|3
k T 2

+a (Zqzl W (q,m)) s.t. W > 0.

Since all elements ifl” are non-negative, we obtain the following formulation by

the definition ofL;-norm of a vector:

miny  {||HTWT(:,1) — AT(:,1)|3
+al[WT G D +
HHTWT (;;m) — AT (:;,m) |3
+a|WT(m)|R}, st. W >0,

which involves the minimization of.;-norm of each column of’ .

4.2 SNMF/R

To apply sparseness constraints Hn we deal with the following optimization
problem:
n
min{||A — WH| + ﬁ_zl IH ()2}, st W.H >0, (10)
j=
where H(:, j) is the j-th column vector ofd. The regularization parametgris
a real non-negative value to balance the trade-off betweeuracy of the approx-
imation and sparseness &f. SNMF/R begins with the initialization off with

non-negative values. Then, it iterates the following ANLfillconvergence:

min |HTWT — AT|%, st. W >0, (11)
2
w A
min H — , s.it. H>0, (12)
" ViBerxk 01xn

F



wheree; ., € R'** is a row vector with all components equal to one 8ad,, €
R™™ is a null vector whose elements are all zeros. The columrisediasis matrix
W are normalized to uniLy-norm,i.e. |[W(:,q)|l2 = 1 for 1 < ¢q < k, after
Eqg. (11) at each iteration so that columnsl&fhave constant energy. Eq. (12)

minimizesL;-norm of columns ofd € RF*™,

4.3 Stopping Criterion

Once we have a non-negative decompositidn WH s.t. W, H > 0), we
can use the basis matri¥’ to divide them genes intok gene-clusters and the
coefficient matrixH to divide then samples intdk sample-clusters. Typically,
genei is assigned to gene-clusteif the W (i, q) is the largest element i/ (i, :)
and samplg is assigned to sample-clusteif the H(q, j) is the largest element
in H(:,7). We tested convergence at every five iterations by usingetpesi-
tions of the largest elements in rows @f and columns off. We assumed that
NMFs are converged if both the positions of the largest etemin rows of i,
i.e. w = (wy,...,W,), and the positions of the largest elements in columng of
i.e. h = (hy,...,hy,), have not changed during 11 convergence tests, whgie
the position of the largest element in théh row of W andﬁj is the positions of
the largest element in theth column of H. Brunetet. al. [2] used a connectivity
matrix C' = [¢;;] of sizen x n for convergence tests, whose entnéjs = 1 if
samplesi andj belong to the same sample-cluster, @nd= 0 if they belong to
different sample-clusters. However, this convergenderon does not include the
change ofi’. Considering/¥’ is also important sincé’ can change even I has
not changed for many iterations. Thus, we took account ottinwergence ofv
as well as the convergence lof Our stopping criterion is suitable for biclustering

obtained from NMF.



5 Experimentsand Discussion

5.1 Datasets Description

We used the leukemia gene expression dataset (ALLAML) aedcéntral ner-
vous system tumors dataset (CNS) [2]. The ALLAML datasetaios acute lym-
phoblastic leukemia (ALL) that has B and T cell subtypes, anate myelogenous
leukemia (AML) that occurs more commonly in adults than ifidrien. This gene
expression dataset consists of 38 bone marrow samples (LBAB ALL-T, and

11 AML) with 5,000 genes. The central nervous system daiassimposed of
four categories of CNS tumors with 5,597 genes. It consiE&4mamples rep-
resenting four distinct morphologies: 10 classic medl#lstomas, 10 malignant
gliomas, 10 rhabdoids, and 4 normals. All datasets we usathicoonly non-

negative entries. We implemented algorithms in Matlab &8.[ All our experi-

ments were performed on a P3 600MHz machine with 512MB memory

5.2 Propertiesof Sparse NMFs

To measure the clustering performance, we used purity aimdmn Suppose we
are given categories (true class labels), while NMF generatekisters. Purity is

given by

k
Purity = Z %P(Qq), P(Q,) = ni mjax(né),
q=1 a

whereQ, is a particular cluster of size,, n is the number of samples i,
that belong to original clas@; (1 < €; < 1), k is the number of clusters, and
is the total number of samples. The larger values of purity, detter clustering

performance. Entropy is defined as follows:

k
Entropy=» _ " pQ,),
n
q=1



Figure 1: CNS tumors clustering by NMF based on divergeraset update rules.
(Left) The reordered consensus matrices on the CNS tumtaiseta (Right) The

corresponding Cophenetic correlation coefficients.
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wherel denotes the number of original class labels. The smallelegabf entropy,

Cophenetic

E(Q)— 1 Zl:n?] nfl
1 log, [ = g 2 ng’

the better clustering quality.

Tables 1 and 2 show the results of SNMF/L and SNMF/R undepouarpa-
rameters ofe € {0.001,0.01,0.1,1.0} and € {0.001,0.01,0.1,1.0} on the
ALLAML dataset withk = 3 and on the CNS tumors dataset with= 4, respec-
tively. We compared sparse NMFs with a NMF algorithm basedligargence-
based multiplicative update rules [8, 2]. The averages afsgmess, purity and
entropy were computed by repeating NMFs five times with ckffé random ini-
tializations. By increasing:, we could enhance the sparsity1df, while reducing
sparsity ofH. By increasings, we could achieve a sparsélr, while diminishing
the sparsity of/. SNMF/R produced better clustering performance (highetyu

lower entropy) than NMF based on multiplicative update sul@n the other hand,



Figure 2. CNS tumors clustering by SNMF/R. (Left) The reoedeconsensus
matrices on the CNS tumors dataset. (Right) The correspgrdophenetic corre-
lation coefficients. The correlation coefficient drops wlkdncreases from 4 to 5,

indicating a four-cluster split of the data is more stablmnth five-cluster split.
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SNMF/L can be applied to obtain parts-based basis vectok$k- blased on mul-

tiplicative updating rules generated holistic basis insafge a facial image dataset
[9, 5], while SNMF/L could yield parts-based basis imagegsiit could control
the degree to which basis vectors are sparse (Result ststbasis images are
not shown here due to space limitation).

In our experiments, CNMF multiplicative updating rules J®uld not con-
trol the sparsity ot and H well. Some difficulties associated with this method
were already discussed in Section 2. We also tested Hoymaises NMF based
on the projected gradient descent method by his Matlab imgieation. Although
it worked when we applied sparseness constraints onli#/ornt failed when we
tried to impose sparse constraints onlyf@nWe could overcome this problem by

dividing the dataset by a large value or applying normatrain order to avoid



values that are too large in the dataset. Table 3 shows pwafare comparison
between SNMF/PGD [5] having sparseness constraints onlif evith a desired
sparseness parametgy = 0.4 and SNMF/R withg = 0.01 on the same scaled
dataset 4, = 0.01 = A). After five runs with different random initializations, we
observed the average percentages of zero elemelitsand H, mean approxima-
tion error, mean purity, mean entropy, mean iteration, atal tomputing time.
In general, sparse NMFs generate larger errors when we applgger sparsity
constraints. Although SNMF/R achieved greater sparsdmgbsin I and H, its
approximation error was less than that of SNMF/PGD. Moredrtgntly, SNMF/R
showed significantly better clustering performance thaMENPGD. Although we
tested various values, SNMF/PGD did not show better clustering performrsanc
than SNMF/R. Specifically, the maximal purity was only 0.88% the minimal
entropy was 0.280. Since many practical applications apiFs to clustering
problems, the superior clustering power of SNMF/R is onehef ihajor advan-
tages. Moreover, SNMF/R required an order of magnitudetshoomputing time
and smaller number of iterations than SNMF/PGD.

For the CNS tumors dataset, we repeated non-negative niattorizations
50 times to obtain the average connectivity matrig. (consensus matrix) whose
entries reflect the probability that sampleandj belong to the same cluster. We
can measure the dispersion of the consensus matrix by thee@efic correlation
coefficient p) [2]. The value of coefficient is = 1 for a perfect consensus matrix
(all entries =0 or 1) and < p < 1 for a scattered consensus matrix. After
obtaining p;. values for various:, we can determine the number of clusters from
the maximalp,. Figures 1 and 2 illustrate that NMFs find the number of chsste
in the CNS tumors dataset with the maximglat k = 4. Figure 2 shows that
SNMF/R with 5 = 0.01 finds perfect consensus matrices for= 2,3,4. In

other words, SNMF/R generatdd matrices that have the same cluster structure



with different random initializations off. By using SNMF/R, we could obtain
finer consensus matrices (highey) for variousk values as well as the number of

clusters in the CNS tumors dataset.

6 Summary

We present novel sparse NMFs via alternating non-negatiginstrained least
squares involvingL;-norm minimization. These sparse NMFs can also be con-
sidered as unsupervised dimension reduction methods dhatantrol the degree
of sparseness of basis matrix or coefficient matrix undefmaagativity constraints.
SNMF/L is helpful in obtaining parts-based basis vectorsIME/R can be used
for cancer class discovery and gene expression data andlysito its good clus-
tering performance. These algorithms can be applied to rpeamtical problems
in bioinformatics and computational biology, for instanb®mmedical text mining,

gene/protein microarray data analy s,
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Table 1: Performance dependency of SNMF/L and SNMF/R apeam®usa and
[ values on the leukemia data matrix of siz€00 x 38. We present the average
percentages of zero elementslin and H over five runs with different random
initializations. Average purity and average entropy ae® gresented:For NMF
based on divergence-based update rules (NMF/DUR), thegegrercentages of
the number of very small non-negative elements that arelentbbhn10—28 in W
and H are presented. We also present total computing time (innskisddor five

runs and the average number of iterations.

Leukemia ¢ = 3) NMF/DUR SNMF/L

«o - 0.001 0.01 0.1 1.0
#W = 0) (%) 0.17% | 2.75% 3.26% 12.85% 45.52%
#(H = 0) (%) 0.00% | 18.42% 15.79% 6.14%  0.00%
Purity 0.953 0.947 0.947 0.947 0.842
Entropy 0.141 0.169 0.169 0.158 0.350
# of iterations 602.0 102.0 105.0 105.0 92.0

Total computing timg]  331.8 51.8 49.8 54.4 61.7

Leukemia ¢ = 3) - SNMF/R

8 - 0.001 0.01 0.1 1.0
#W = 0) (%) - 2.68% 2.50% 1.70%  0.39%
#(H = 0) (%) - 18.42% 23.68% 38.60% 59.82%
Purity - 0.974 0.974 0.947 0.926
Entropy - 0.095 0.095 0.158 0.173
# of iterations - 99.0 96.0 80.0 79.0

Total computing time| - 49.6 48.9 42.2 39.5




Table 2: Performance dependency of SNMF/L and SNMF/R apeam®usa and
[ values on the CNS tumors data matrix of Siz897 x 34. We present the average
percentages of zero elementslin and H over five runs with different random
initializations. Average purity and average entropy ae® gresented:For NMF
based on divergence-based update rules (NMF/DUR), thegegrercentages of
the number of very small non-negative elements that arelentbbhn10—28 in W
and H are presented. We also present total computing time (innskisddor five

runs and the average number of iterations.

CNS tumorsk = 4) | NMF/DUR SNMF/L

«o - 0.001 0.01 0.1 1.0
#W = 0) (%) 1.98% | 9.27% 11.48% 29.24% 59.95%
#(H = 0) (%) 5.29% 25.0% 19.12% 11.03% 0.00%
Purity 0.947 0.971 0.971 0.882 0.882
Entropy 0.112 0.071 0.071 0.230 0.230
# of iterations 1001.0 114.0 114.0 240.0 147.0
Total computing time, ~ 617.8 74.0 76.0 209.2 179.6
CNS tumorsk = 4) - SNMF/R

I} - 0.001 0.01 0.1 1.0
#W = 0) (%) - 8.94% 8.19% 3.45% 0.31%
#(H = 0) (%) - 25.0% 26.47% 48.53% 71.32%
Purity - 0.971 0.971 0.971 0.865
Entropy - 0.071 0071 0071 0.232
# of iterations - 107.0 104.0 83.0 93.0
Total computing time| - 72.1 69.1 50.2 49.6




Table 3. Performance comparison between SNMF/R and Hogpdsse NMF
based on the projected gradient descent method (SNMF/P&E)n[the scaled
leukemia data matrixd; = 0.01 x A with k£ = 3. After five runs with different ran-
dom initializations, we present total computing time foefiuns and the average
values of percentage of zero elementdiinand H, approximation error, purity,

entropy and the number of iterations.

Algorithms SNMF/PGD SNMF/R
Parameter sg =04 6 =0.01
#W = 0) (%) 0.22% 2.50%
#(H = 0) (%) 21.75% 23.68%
f=1As —WH|p 2.385 x 103 2.368 x 103
Purity 0.895 0.974
Entropy 0.280 0.095

# of iterations 662.0 91.0
Total computing time 671.9 sec. 45.3 sec.




