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Abstract
This article focuses on optimization of polynomials in noncommuting variables, while
taking into account sparsity in the input data. A converging hierarchy of semidefinite
relaxations for eigenvalue and trace optimization is provided. This hierarchy is a non-
commutative analogue of results due toLasserre (SIAMJOptim17(3):822–843, 2006)
and Waki et al. (SIAM J Optim 17(1):218–242, 2006). The Gelfand–Naimark–Segal
construction is applied to extract optimizers if flatness and irreducibility conditions
are satisfied. Among the main techniques used are amalgamation results from opera-
tor algebra. The theoretical results are utilized to compute lower bounds on minimal
eigenvalue of noncommutative polynomials from the literature.
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1 Introduction

The goal of this article is to handle a specific class of sparse polynomial optimization
problems with noncommuting variables (e.g., polynomials in matrices). Applications
of interest include control theory and linear systems in engineering [54], quantum
theory and quantum information science [47]. For example, in the latter context,
noncommutative polynomial optimization provides upper bounds on the maximum
violation level of Bell inequalities [51]. Further motivations relate to the generalized
Lax conjecture [33], with computational proof attempts relying on noncommutative
sums of squares (in Clifford algebras) [48]. The problem of verifying noncommutative
polynomial inequalities has also occurred in a conjecture formulatedbyBessis,Moussa
and Villani (BMV) in 1975 [7], and restated by Lieb and Seiringer [35]. The initial
conjecture boils down to verifying that the (univariate) polynomial t �→ tr(A+ t B)m

has only nonnegative coefficients, for all positive semidefinite matrices A and B, and
allm ∈ N. Even though the BMV conjecture has been established by Stahl [55] for all
m, one can rely on computational proofs for a fixed value of m. Schweighofer and the
first author derived a computational proof [27] of the conjecture form ≤ 13. Recently,
noncommutative polynomial optimization has been used in [16] to study optimization
problems related to bipartite quantum correlations, and in [17] to derive hierarchies
of lower bounds for several matrix factorization ranks, including nonnegative rank,
positive semidefinite rank as well as their symmetric analogues.

In the commutative setting, polynomial optimization focuses on minimizing or
maximizing a polynomial over a semialgebraic set, that is, a set defined by a finite
conjunction/disjunction of polynomial inequalities. In general, computing the exact
solution of a polynomial optimization problem is anNP-hard problem [32]. In practice,
one can at least compute an approximation of the solution by considering a relaxation
of the problem. In the seminal 2001paper [29], Lasserre introduced a nowadays famous
hierarchy of relaxations, called the moment-sums of squares hierarchy allowing us to
obtain a converging sequence of lower bounds for the minimum of a polynomial over
a compact semialgebraic set. Each lower bound is computed by solving a semidef-
inite program (SDP). In SDP, one optimizes a linear function under a linear matrix
inequality constraint. SDP itself appears in awide range of applications (combinatorial
optimization [34], control theory [4], matrix completion [31], etc.) and can be solved
efficiently (up to a few thousand optimization variables) by freely available software,
e.g. SeDuMi [56], SDPT3 [58], SDPA [70] or Mosek [42]. For optimization problems
involving n-variate polynomials of degree less than d, the size of the matrices involved
at step k ≥ d of Lasserre’s hierarchy of SDP relaxations is proportional to

(n+k
n

)
.

Therefore, the size of the SDP problems arising from the hierarchy grows rapidly.
For unconstrained problems involving a large number of variables n, a remedy con-

sists of reducing the size of the SDPmatrices by discarding themonomialswhich never
appear in the support of the SOS decompositions. This technique, based on a result
by Reznick [52], consists of computing the Newton polytope of the input polynomial
(that is, the convex hull of the support of this polynomial) and selecting only monomi-
als with support lying in half of this polytope. For constrained optimization, another
workaround is based on exploiting a potential sparsity/symmetry pattern arising in the
input polynomials. In [30] (see also [64] and the related SparsePOP solver [63]), the
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author derives a sparse version of Putinar’s representation [50] for polynomials posi-
tive on compact semialgebraic sets. See also [18] for a simpler proof. This variant can
be used for cases where the objective function can be written as a sum of polynomials,
each of them involving a small number of variables. Sparse polynomial optimiza-
tion techniques enable us to successfully handle various concrete applications. The
frameworks [37,39], coming with the Real2Float software library, rely on these
techniques to produce a hierarchy of upper bounds converging to the absolute roundoff
error of a numerical program involving polynomial operations. In energy networks,
it is now possible to compute the solution of large-scale power flow problems with
up to thousand variables [25]. In [59], the authors derive the sparse analogue of [22]
to obtain a hierarchy of upper bounds for the volume of large-scale semialgebraic
sets. Recently, sparse polynomial optimization has been used to bound the Lipschitz
constants of ReLU networks [14] and to handle sparse positive definite forms [41].
In the same spirit, the symmetry pattern of the polynomial optimization problem can
be exploited [53]. More recent progress focused on the use of alternative hierarchies,
including the so-called bounded degree SOS hierarchy (BSOS) [36]. Here, one repre-
sents a positive polynomial as the sum of two terms: an SOS polynomial of a priori
fixed degree, and a term lying in the set of Krivine-Stengle representations [26], that
is, a combination of positive linear cross-products of the polynomials involved in the
set of constraints. The BSOS hierarchy can handle bigger instances than the standard
moment-SOS hierarchy. In addition, sparsity can be exploited in the same way as for
the sparse SOS hierarchy, which allows us to tackle even larger problems [65].

In the noncommutative context, a given noncommutative polynomial in n vari-
ables and degree d is positive semidefinite if and only if it decomposes as a sum
of hermitian squares (SOHS) [19,38]. In practice, an SOHS decomposition can be
computed by solving an SDP of size O(nd), which is even larger than the size of the
matrices involved in the commutative case. SOHS decompositions are also used for
constrained optimization, either to minimize eigenvalues or traces of noncommuta-
tive polynomial objective functions, under noncommutative polynomial (in)equality
constraints. The optimal value of such constrained problems can be approximated, as
closely as desired, while relying on the noncommutative analogue of Lasserre’s hierar-
chy [3,13,49]. The NCSOStools [5,12] library can compute such approximations for
optimization problems involving polynomials in noncommuting variables. By com-
parison with the commutative case, the size O(nk) of the SDP matrices at a given
step k of the noncommutative hierarchy becomes intractable even faster, typically for
k, n � 6 on a standard laptop.

A remedy for unconstrained problems is to rely on the adequate noncommutative
analogue of the standard Newton polytope method, which is called the Newton chip
method (see, e.g. [5, §2.3]) and can be further improved with the augmented Newton
chip method (see, e.g., [5, §2.4]), by removing certain terms which can never appear
in an SOHS decomposition of a given input. As in the commutative case, the Newton
polytope method cannot be applied for constrained problems. When one cannot go
from step k to step k + 1 in the hierarchy because of the computational burden, one
can always consider matrices indexed by all terms of degree k plus a fixed percentage
of terms of degree k+1. This is used for instance to compute tighter upper bounds for
maximum violation levels of Bell inequalities [51]. Another trick, implemented in the
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Ncpol2sdpa library [62], consists of exploiting simple equality constraints, such as
“X2 = Y ”, to derive substitution rules for variables involved in the SDP relaxations.
Similar substitutions are performed in the commutative case by Gloptipoly 3 [21].

Apart from such heuristic procedures, there is, to the best of our knowledge, no
general method to exploit additional structure, such as sparsity, of (un)constrained
noncommutative polynomial optimization problems.

Contributions We state and prove in Sect. 3 a sparse variant of the noncommutative
version of Putinar’s Positivstellensatz, under the same sparsity pattern assumptions
as the ones used in the commutative case [30,64]; these conditions are known as
the running intersection property (RIP) in graph theory [15,45]. Our proof relies on
amalgamation results for operator algebras. Then, we present in Sect. 4 the sparse
Gelfand–Naimark–Segal (GNS) construction yielding representations for linear func-
tionals positive w.r.t. sparsity. This allows us to extract minimizers, providing that
flatness and irreducibility conditions hold. We rely on this sparse representation to
design algorithms performing eigenvalue optimization (Sect. 5) and trace optimiza-
tion of noncommutative sparse polynomials (Sect. 6), both in the unconstrained and
constrained case. Along the way we exhibit an example showing that the Helton-
McCullough [19,38] Sum of Squares theorem (every positive nc polynomial is a sum
of hermitian squares) fails in the sparse setting, see Lemma 5.2. Finally, we provide in
Sect. 7 experimental comparisons between the bounds given by the dense relaxations
and the ones produced by our algorithms, currently implemented in theNCSOStools
software library.

We also point out to the interested reader that the second author has also recently
developed in [66] a noncommutative analog of the procedures exploiting monomial
term sparsity [67–69]. In particular, correlative and term sparsity can be combined to
address eigenvalue and trace optimization problems with up to thousands of variables.

2 Notation and definitions

This section gives the basic definitions and introduces notation used in the rest of the
article.

2.1 Noncommutative polynomials

Let us denote by Mn(R) (resp. Sn) the space of all real (resp. symmetric) matrices
of order n, and by S

k
n the set of k-tuples A = (A1, . . . , Ak) of symmetric matrices

Ai of order n. The normalized trace of an n × n matrix A = (ai, j )i, j is given by
tr A = 1

n

∑n
i=1 ai,i . Given A ∈ Sn , we write A � 0 (resp. A 	 0) when A is

positive semidefinite (resp. positive definite), i.e., has only nonnegative (resp. positive)
eigenvalues. Let In stands for the identity matrix of order n. For a fixed n ∈ N, we
consider a finite alphabet X1, . . . , Xn of symmetric letters and generate all possible
words of finite length in these letters. The empty word is denoted by 1. The resulting
set of words is 〈X〉, with X = (X1, . . . , Xn). We denote by R〈X〉 the set of real
polynomials in noncommutative variables, abbreviated asnc polynomials. Amonomial
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is an element of the form aww, with aw ∈ R\{0} and w ∈ 〈X〉. The degree of an nc
polynomial f ∈ R〈X〉 is the length of the longest word involved in f . For d ∈ N,
〈X〉d is the set of all words of degree at most d. Let us denote byWd the vector of all
words of 〈X〉d w.r.t. to the lexicographic order. Note that the dimension of R〈X〉d is

the length of Wd , which is σ (n, d) :=∑d
i=0 ni = nd+1−1

n−1 . The set R〈X〉 is equipped
with the involution � that fixes R ∪ {X1, . . . , Xn} point-wise and reverses words, so
that R〈X〉 is the �-algebra freely generated by n symmetric letters X1, . . . , Xn . The
set of all symmetric elements is defined as SymR〈X〉 := { f ∈ R〈X〉 : f = f �}.
Sums of hermitian squares An nc polynomial of the form g�g is called a hermitian
square. A given f ∈ R〈X〉 is a sum of hermitian squares (SOHS) if there exist nc
polynomials h1, . . . , hr ∈ R〈X〉, with r ∈ N, such that f = h�

1h1 + · · · + h�
r hr .

Let �〈X〉 stands for the set of SOHS. We denote by �〈X〉d ⊆ �〈X〉 the set of
SOHS polynomials of degree at most 2d. We now recall how to check whether a
given f ∈ SymR〈X〉 is an SOHS. The existing procedure, known as theGram matrix
method, relies on the following proposition (see, e.g., [19, §2.2]):

Proposition 2.1 Assume that f ∈ SymR〈X〉2d . Then f ∈ �〈X〉 if and only if there
exists G f � 0 satisfying

f =W�
d G f Wd . (2.1)

Conversely, given such G f � 0 with rank r , one can construct g1, . . . , gr ∈ R〈X〉d
such that f =∑r

i=1 g�
i gi .

Any symmetric matrix G f (not necessarily positive semidefinite) satisfying (2.1) is
called a Gram matrix of f .

Semialgebraic sets and quadratic modules Given a positive integer m and S =
{s1, . . . , sm} ⊆ SymR〈X〉, the semialgebraic set DS associated to S is defined as
follows:

DS :=
⋃

k∈N
{A = (A1, . . . , An) ∈ S

n
k : s j (A) � 0, j = 1 . . . ,m}. (2.2)

When considering only tuples of N × N symmetric matrices, we use the notation
DN

S := DS ∩ S
n
N . The operator semialgebraic set D

∞
S is the set of all bounded self-

adjoint operators A on a Hilbert spaceH endowed with a scalar product 〈· | ·〉, making
g(A) a positive semidefinite operator for all g ∈ S, i.e., 〈g(A)v | v〉 ≥ 0, for all v ∈ H.
We say that a noncommutative polynomial f is positive (denoted by f 	 0) on D∞S
if for all A ∈ D∞S the operator f (A) is positive definite, i.e., 〈 f (A)v | v〉 > 0, for all
nonzero v ∈ H. The quadratic module M(S), generated by S, is defined by

M(S) :=
{

K∑

i=1
a�
i s
′
i ai : K ∈ N, ai ∈ R〈X〉, s′i ∈ S ∪ {1}

}

. (2.3)
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Given d ∈ N, the truncated quadratic module M(S)d of order d, generated by S, is

M(S)d :=
{

K∑

i=1
a�
i s
′
i ai : K ∈ N, ai ∈ R〈X〉, s′i ∈ S ∪ {1}, deg(a�

i s
′
i ai ) ≤ 2d

}

.

(2.4)

Let 1 stands for the unit polynomial. A quadratic moduleM is called archimedean if
for each a ∈ R〈X〉, there exists N ∈ R

≥0 such that N · 1− a�a ∈M. One can show
that this is equivalent to the existence of an N ∈ R

≥0 such that N ·1−∑n
i=1 X2

i ∈M.
The noncommutative analog of Putinar’s Positivstellensatz [50] describing non-

commutative polynomials positive on D∞S with archimedean M(S) is due to Helton
and McCullough:

Theorem 2.2 ([23, Theorem 1.2]) Let S ∪ { f } ⊆ SymR〈X〉 and assume that M(S)

is archimedean. If f (A) 	 0 for all A ∈ D∞S , then f ∈M(S).

2.2 Sparsity patterns

Let I0 := {1, . . . , n}. For p ∈ N consider I1, . . . , Ip ⊆ I0 satisfying
⋃p

k=1 Ik = I0.
Let nk be the size of Ik , for each k = 1, . . . , p.

We denote by 〈X(Ik)〉 (resp. R〈X(Ik)〉) the set of words (resp. nc polynomials) in
the nk variables X(Ik) = {Xi : i ∈ Ik}. The dimension of R〈X(Ik)〉d is σ (nk, d) =
nd+1k −1
nk−1 . Note that R〈X(I0)〉 = R〈X〉. We also define SymR〈X(Ik)〉 := SymR〈X〉 ∩

R〈X(Ik)〉, let �〈X(Ik)〉 stands for the set of SOHS in R〈X(Ik)〉 and we denote by
�〈X(Ik)〉d the restriction of �〈X(Ik)〉 to nc polynomials of degree at most 2d. In the
sequel, we will rely on two specific assumptions. The first one is as follows:

Assumption 2.3 (Boundedness) Let DS be as in (2.2). There is N ∈ R
>0 such that∑n

i=1 X2
i � N · 1, for all X = (X1, . . . , Xn) ∈ D∞S .

Then, Assumption 2.3 implies that
∑

j∈Ik X
2
j � N · 1, for all k = 1, . . . , p. Thus we

define

sm+k := N · 1−
∑

j∈Ik
X2

j , k = 1, . . . , p, (2.5)

and set m′ = m + p in order to describe the same set DS again as:

DS :=
⋃

k∈N
{A ∈ S

n
k : s j (A) � 0, j = 1, . . . ,m′}, (2.6)

as well as the operator semialgebraic set D∞S .
The second assumption is as follows:

Assumption 2.4 (RIP) Let DS be as in (2.6) and let f ∈ R〈X〉. The index set
J := {1, . . . ,m′} is partitioned into p disjoint sets J1, . . . , Jp and the two collec-
tions {I1, . . . , Ip} and {J1, . . . , Jp} satisfy:
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(i) For all j ∈ Jk , g j ∈ SymR〈X(Ik)〉.
(ii) The objective function can be decomposed as f = f1 + · · · + f p, with fk ∈

R〈X(Ik)〉, for all k = 1, . . . , p.
(iii) The running intersection property (RIP) holds, i.e., for all k = 1, . . . , p−1, one

has

Ik+1 ∩
⋃

j≤k
I j ⊆ I� for some � ≤ k. (2.7)

Even though we assume that I1, . . . , Ip are explicitly given, one can compute such
subsets using the procedure in [64]. Roughly speaking, this procedure consists of two
steps. The first step provides the correlation sparsity pattern (csp) graph of the variables
involved in the input polynomial data. The second step computes the maximal cliques
of a chordal extension of this csp graph. Even if the computation of all maximal cliques
of a graph is an NP hard problem in general, it turns out that this procedure is efficient
in practice, due to the properties of chordal graphs (see, e.g., [9] for more details on
the properties of chordal graphs).

2.3 Hankel and localizingmatrices

To g ∈ SymR〈X〉 and a linear functional L : R〈X〉2d → R, one associates the
following two matrices:

(1) the noncommutative Hankel matrixMd(L) is the matrix indexed by words u, v ∈
〈X〉d , with (Md(L))u,v = L(u�v);

(2) the localizing matrix Md−�deg g/2�(gL) is the matrix indexed by words u, v ∈
〈X〉d−�deg g/2�, with (Md−�deg g/2�(gL))u,v = L(u�gv).

The functional L is called unital if L(1) = 1 and is called symmetric if L( f �) = L( f ),
for all f belonging to the domain of L .We also recall the following useful facts together
with their proofs for the sake of completeness.

Lemma 2.5 ( [5, Lemma 1.44]) Let g ∈ SymR〈X〉 and let L : R〈X〉2d → R be a
symmetric linear functional. Then, one has:

(1) L(h�h) ≥ 0 for all h ∈ R〈X〉d , if and only if,Md(L) � 0;
(2) L(h�gh) ≥ 0 for all h ∈ R〈X〉d−�deg g/2�, if and only if,Md−�deg g/2�(gL) � 0.

Proof For h =∑w hww ∈ R〈X〉d , let us denote by h ∈ R
σ (n,d) the vector consisting

of all coefficients hw of h. The first statement now follows from

L(h�h) =
∑

u,v

huhvL(u�v) =
∑

u,v

huhv(Md(L))u,v = hTMd(L)h.

The second statement follows after checking that L(h�gh) = hTMd−�deg g/2�(gL)h.
��
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Definition 2.6 Suppose L : R〈X〉2d+2δ → R is a linear functional with restriction
L̃ : R〈X〉2d → R. We associate to L and L̃ the Hankel matricesMd+δ(L) andMd(L̃)

respectively, and get the block form

Md+δ(L) =
[
Md(L̃) B
BT C

]
.

We say that L is δ-flat or that L is a flat extension of L̃ , ifMd+δ(L) is flat overMd(L̃),
i.e., if rankMd+δ(L) = rankMd(L̃).

For a subset I ⊆ {1, . . . , p}, let us define Md(L, I ) to be the Hankel subma-
trix obtained from Md(L) after retaining only those rows and columns indexed by
w ∈ 〈X(I )〉d . When I ⊆ Ik and g ∈ R〈X(Ik)〉, for k ∈ {1, . . . , p} , we define the
localizing submatrixMd−�deg g/2�(gL, I ) in a similar fashion. In particular,Md(L, Ik)
andMd−�deg g/2�(gL, Ik) can be seen as Hankel and localizing matrices with rows and
columns indexed by a basis of R〈X(Ik)〉d and R〈X(Ik)〉d−�deg g/2�, respectively.

3 Sparse representations of noncommutative positive polynomials

In this section, we prove our main theoretical result, which is a sparse version of the
Helton-McCullough archimedean Positivstellensatz (Theorem 2.2). For this, we rely
on amalgamation theory for C�-algebras, see e.g. [6,61].

Given a Hilbert space H, we denote by B(H) the set of bounded operators on H.
A C�-algebra is a complex Banach algebra A (thus also a Banach space), endowed
with a norm ‖ · ‖, and with an involution � satisfying ‖xx�‖ = ‖x‖2 for all x ∈ A.
Equivalently, it is a norm closed subalgebra with involution of B(H) for some Hilbert
spaceH. Given a C�-algebraA, a state ϕ is defined to be a positive linear functional
of unit norm on A, and we write often (A, ϕ) when A comes together with the state
ϕ. Given two C�-algebras (A1, ϕ1) and (A2, ϕ2), a homomorphism ι : A1 → A2 is
called state-preserving if ϕ2 ◦ ι = ϕ1. Given a C�-algebraA, a unitary representation
of A in H is a ∗-homomorphism π : A → B(H) which is strongly continuous, i.e.,
the mapping A→ H, g �→ π(g)ξ is continuous for every ξ ∈ H.

Theorem 3.1 ( [6] or [61, Section 5]) Let (A, ϕ0) and {(Bk, ϕk) : k ∈ I } be C�-
algebras with states, and let ιk be a state-preserving embedding ofA into Bk , for each
k ∈ I . Then there exists a C�-algebra D amalgamating the (Bk, ϕk) over (A, ϕ0).
That is, there is a state ϕ on D, and state-preserving homomorphisms jk : Bk → D,
such that jk ◦ ιk = ji ◦ ιi , for all k, i ∈ I , and such that

⋃
k∈I jk(Bk) generates D.

Theorem 3.1 is illustrated in Fig. 1 in the case I = {1, 2}.
We also recall the construction by Gelfand–Naimark–Segal (GNS) establishing a

correspondence between �-representations of a C�-algebra and positive linear func-
tionals on it. In our context, the next result [5, Theorem 1.27] restricts to linear
functionals on R〈X〉 which are positive on an archimedean quadratic module.

Theorem 3.2 Let S ⊆ SymR〈X〉 be given such that its quadratic module M(S) is
archimedean. Let L : R〈X〉 → R be a nontrivial linear functional with L(M(S)) ⊆
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Fig. 1 Illustration of
Theorem 3.1 in the case
I = {1, 2}

R
≥0. Then there exists a tuple A = (A1, . . . , An) ∈ D∞S and a vector v such that

L( f ) = 〈 f (A)v, v〉, for all f ∈ R〈X〉.
For k = 1, . . . , p, let us define

M(S)k :=
{

K∑

i=1
a�
i si ai : K ∈ N, ai ∈ R〈X(Ik)〉, si ∈ (S ∩ SymR〈X(Ik)〉) ∪ {1}

}

,

and

M(S)sparse :=M(S)1 + · · · +M(S)p. (3.1)

Next, we state the main foundational result of this paper.

Theorem 3.3 Let S ∪ { f } ⊆ SymR〈X〉 and let DS be as in (2.6) with the additional
quadratic constraints (2.5). Suppose Assumption 2.4 holds. If f (A) 	 0 for all A ∈
D∞S , then f ∈M(S)sparse.

Proof The proof is by contradiction: suppose that f (A) 	 0 for all A ∈ D∞S , and
that f /∈ M(S)sparse. By the Hahn-Banach separation theorem, also known as the
Eidelheit-Kakutani Theorem in this context (see [2, Corollary III.1.7] or [24, §0.2.4]),
there exists a linear functional L : R〈X〉 → R with L( f ) ≤ 0 and L(M(S)sparse) ⊆
R
≥0. Since 1 belongs to the algebraic interior of M(S)sparse by archimedeanity and

L is nonzero, one has L(1) > 0.
Here, we cannot directly apply Theorem 3.2 since M(S)sparse is not the quadratic

module of R〈X〉 generated by the polynomials involved in S. Nevertheless, we will
prove that there exists a tuple A = (A1, . . . , An) ∈ D∞S and a nonzero vector w
such that L( f ) = 〈 f (A)w,w〉. Since f 	 0 implies that 〈 f (A)w,w〉 > 0, this will
contradict the fact that L( f ) ≤ 0.

For k = 1, . . . , p, let us denote by Lk : R〈X(Ik)〉 → R the restriction of L to
R〈X(Ik)〉. Observe that Lk(M(S)k) ⊆ R

≥0. Each linear functional Lk induces a
sesquilinear form

(g, h) �→ 〈g, h〉k := Lk(g�h)
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on R〈X(Ik)〉, which is positive semidefinite since Lk is positive on sums of her-
mitian squares, allowing us to apply the Cauchy-Schwarz inequality. Let N k :=
{h ∈ R〈X(Ik)〉 : 〈h, h〉k = 0} be the nullvectors corresponding to Lk . By using
again the Cauchy-Schwarz inequality, one can show that N k is a vector subspace of
R〈X(Ik)〉, and the sesquilinear form Lk induces an inner product on the quotient space
R〈X(Ik)〉/N k . Let us denote byH(Ik) the Hilbert space completion ofR〈X(Ik)〉/N k

and denote by 〈·, ·〉k its inner product. Since L(1) > 0, one has 1 /∈ N k , andH(Ik) is
nontrivial and separable. By using the fact that Lk is nonnegative on the archimedean
quadratic module M(S)k , there exists N ∈ N such that Lk(g�(N − X2

i )g) ≥ 0, for
all g ∈ R〈X(Ik)〉 and i ∈ Ik . Therefore, one has

0 ≤ 〈Xi g, Xi g〉k = Lk(g�X2
i g) ≤ NLk(g�g), (3.2)

implying that N k is a left ideal. Therefore, the left multiplication operator X̂ k
i : g �→

Xi g is well-defined on R〈X(Ik)〉/N k , for all i ∈ Ik . By (3.2), this operator is also
bounded and can be extended uniquely to a bounded operator on H(Ik). We fix an
orthonormal basis of H(Ik) and denote by Âk

i the corresponding representative of
the left multiplication by Xi in B(H(Ik)) with respect to this basis. Let us denote
Âk := ( Âk

i )i∈Ik . Then, one has for all g ∈ R〈X(Ik)〉

Lk(g) = 〈g( Âk)vk, vk〉k, (3.3)

where vk ∈ H(Ik) is the image of the identity polynomial. We denote by ϕk the state
induced by vk on B(H(Ik)), that is, ϕk(B) = 〈Bvk, vk〉 for B ∈ B(H(Ik)). In particu-
lar, ϕk(g( Âk)) = Lk(g), for all g ∈ R〈X(Ik)〉. We refer to Figure 2 for an illustration
for the case p = 2. Note also that given a polynomial u ∈ R〈X(Ik)〉 with associated
vector u ∈ H(Ik), there exists a polynomial g ∈ R〈X(Ik)〉 (by construction), such
that u = g( Âk)vk .

Now, the proof proceeds by induction on p. With p = 1, this corresponds to the
dense representation result stated in Theorem 2.2.

Case p = 2

First, note that the running intersection property (2.7) always holds in this case. Let
us define the sesquilinear form (g, h) �→ 〈g, h〉12 := L1(g�h) on R〈X(I1 ∩ I2)〉. As
above, we obtain N 12 := {h ∈ R〈X(I1 ∩ I2)〉 : 〈h, h〉12 = 0} and the Hilbert space
completionH(I1 ∩ I2) ofR〈X(I1 ∩ I2)〉/N 12. We denote by L12 the restriction of L1

(or, equivalently, L2) toR〈X(I1∩ I2)〉, and by ϕ12 the induced state on B(H(I1∩ I2)).
Let us denote by Â12

i the corresponding representative of the left multiplication by
Xi in B(H(I1 ∩ I2)) with respect to this basis, for i ∈ I1 ∩ I2. For k ∈ {1, 2}, let us
denote by ik : R〈X(I1 ∩ I2)〉 → R〈X(Ik)〉 the canonical embedding. Next we apply
Theorem 3.1 with I = {1, 2},A = B(H(I1 ∩ I2)) endowed with ϕ12, Bk = B(H(Ik))
endowedwithϕk , and ιk : B(H(I1∩ I2))→ B(H(Ik)) being the canonical embedding,
satisfying ιk( Â12

i ) = Âk
i for all i ∈ I1 ∩ I2 (observe that B(H(I1 ∩ I2)) contains the

algebra generated by Â12
i as a dense subset). If I1∩ I2 = ∅, then we amalgamate them
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Fig. 2 Amalgamation for the
case p = 2

over R, and otherwise over (B(H(I1 ∩ I2), ϕ12). Note that ιk is state-preserving by
construction. As displayed in Fig. 2, we obtain an amalgamation D with state ϕ and
homomorphisms jk : B(H(Ik))→ D such that j1 ◦ ι1 = j2 ◦ ι2.

Next perform the GNS construction with (D, ϕ). There is a Hilbert space K, rep-
resentation π : D→ B(K) and vector ξ ∈ K so that ϕ(a) = 〈π(a)ξ, ξ 〉. Then, let us
define A := (A1, . . . , An), with

Ai :=
{

π( j1( Â1
i )) if i ∈ I1,

π( j2( Â2
i )) if i ∈ I2.

By the amalgamation property, this is well-defined since j1( Â1
i ) = j1 ◦ ι1( Â12

i ) =
j2 ◦ ι2( Â12

i ) = j2( Â2
i ) if i ∈ I1 ∩ I2.

For all g ∈ R〈X〉, we now set L̃(g) := 〈g(A)ξ, ξ 〉. We claim that L̃ extends Lk .
Indeed, for g ∈ R〈X(Ik)〉 we have

L̃(g) = 〈g(A)ξ, ξ 〉 = 〈g(π( jk( Â
k)))ξ, ξ 〉 = 〈π(g( jk( Â

k)))ξ, ξ 〉
= ϕ(g( jk( Â

k))) = ϕ( jk(g( Â
k))) = ϕk(g( Â

k)) = Lk(g).

The above equalities come from the fact that nc polynomials commute with homo-
morphisms (here π, ιk), since they are linear combination of products of letters and
homomorphisms are addition, multiplication as well as unit (multiplicative identity)
preserving.

Therefore,

〈 f (A)ξ, ξ 〉 = L̃( f ) = L̃( f1)+ L̃( f2) = L1( f1)+ L2( f2) = L( f ) ≤ 0.

It only remains to prove that A ∈ D∞S , i.e., that s(A) � 0, for all s ∈ S. By
assumption, s ∈ SymR〈X(Ik)〉 for some k ∈ {1, 2}, so
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s(A) = s((π ◦ jk)( Â
k)) = (π ◦ jk)(s( Â

k)). (3.4)

Since R〈X(Ik)〉/N k is dense in H(Ik), one can approximate as closely as desired
u ∈ H(Ik) by elements of R〈X(Ik)〉/N k . We prove that 〈s( Âk)u,u〉k ≥ 0, where u
stands for a vector representative of u ∈ R〈X(Ik)〉/N k . Given such a vector u, there
exists a polynomial g ∈ R〈X(Ik)〉, such that u = g( Âk)vk . Next, the following holds:

〈s( Âk)u,u〉k = 〈s( Âk)g( Âk)vk, g( Âk)vk〉k = 〈(sg)( Âk)vk, g( Âk)vk〉k = Lk(g�sg),

where the last equality comes from (3.3). Since g�sg ∈ M(S)k and Lk(M(S)k) ⊆
R
≥0, one has 〈s( Âk)u,u〉k ≥ 0, which implies that c := s( Âk) � 0. Since c is a

nonnegative element of the C�-algebra B(H(Ik)), there exists b ∈ B(H(Ik)) such
that c = b�b. Eventually by (3.4), one has s(A) = (π ◦ jk)(s( Âk)) = π( jk(c)) =
π( jk(b�b)) = π( jk(b))�π( jk(b)) � 0, yielding A ∈ D∞S , the desired result.

General case

Now assume p > 2. For each m ≤ p we will construct a Hilbert space H(∪ j≤m I j )
with state ϕ̃m acting on B(H(∪ j≤m I j ), a tuple Am ∈ D∞S as well as a unit vector ξm

such that the linear functional L̃m : R〈X〉 → R, defined by

L̃m(g) := 〈g(Am)ξm, ξm〉, (3.5)

extends L j for each j ≤ m, implying that L̃m(g) = L(g) for all g ∈∑ j≤m R〈X(I j )〉.
The basis for the induction, p ≤ 2, has been established above.

Let p > m ≥ 2 and assume by induction that we have H(∪ j≤m I j ), ϕ̃m , Am ∈ D∞S
and L̃m as above. By the running intersection property (2.7), there is k ≤ m with( ∪ j≤m I j

) ∩ Im+1 ⊆ Ik . Recall that Lm+1 is defined as the restriction of L to
R〈X(Im+1)〉. Let L0 be the restriction of L (or, equivalently, of L̃m) to R〈X(Ik)〉. As
before, Theorem 3.2 produces Hilbert spacesH(Im+1),H0 := H(

(∪ j≤m I j
)∩ Im+1),

operators Âm+1, Â0 and states ϕm+1, ϕ0 acting on B(H(Im+1)),B(H0).
The operator Âm+1 and state ϕm+1 satisfy ϕm+1(g( Âm+1)) = Lm+1(g), for all g ∈

R〈X(Im+1)〉. In addition, the canonical embeddings ι : B(H0) → B(H(∪ j≤m I j )),
ιm+1 : B(H0) → B(H(Im+1)), and the operator Â0 satisfy ι( Â0

i ) = Am
i and

ιm+1( Â0
i ) = Âm+1

i , for all i ∈ (∪ j≤m I j
) ∩ Im+1.

The remaining part of the proof is very similar to the case p = 2. We amalgamate
B(H(∪ j≤m I j )) andB(H(Im+1)); if

(∪ j≤m I j
)∩ Im+1 = ∅, then we amalgamate them

overR, and otherwise over (B(H0), ϕ0). Doing so, we obtain an amalgamationDm+1
and two homomorphisms j : B(H(∪ j≤m I j )) → Dm+1 and jm+1 : B(H(Im+1)) →
Dm+1. Applying the GNS construction to the amalgamated C�-algebra then yields
a Hilbert space Km+1, a representation πm+1 : Dm+1 → B(Km+1), a unit vector
ξm+1 ∈ Km+1 and we can define Am+1 with
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Am+1
i :=

{
πm+1( j(Am

i )) if i ∈ ∪ j≤m I j ,
πm+1( jm+1( Âm+1

i )) if i ∈ Im+1,

as well as L̃m+1(g) := 〈g(Am+1)ξm+1, ξm+1〉.
As in the case p = 2, by the amalgamation property, Am+1 is well-defined since

j(Am
i ) = j ◦ ι( Â0

i ) = jm+1 ◦ ιm+1( Â0
i ) = jm+1( Âm+1

i ) if i ∈ (∪ j≤m I j
)∩ Im+1. One

proves as before that Am+1 ∈ D∞S . In addition, L̃m+1(g) = L̃m(g) = L(g) for all
g ∈∑ j≤m R〈X(I j )〉, where the first equality comes from the definition of Am+1 and
the second one comes from the induction hypothesis. One has L̃m+1 = Lm+1 = L(g)
for all g ∈ R〈X(Im+1)〉, which implies that L(g) = 〈g(Am+1)ξm+1, ξm+1〉 for all
g ∈∑ j≤m+1R〈X(I j )〉.

For m = p, we obtain Ap ∈ D∞S and a unit vector ξ p such that 〈 f (Ap)ξ p, ξ p〉 =
L( f ) ≤ 0, yielding the desired conclusion. ��

The reader will notice that the RIP property is used subtly in the proof of Theo-
rem 3.3. Next, we provide an example demonstrating that sparsity without a RIP-type
condition is not sufficient to deduce sparsity in SOHS decompositions.

Example 3.4 Consider the case of three variables X = (X1, X2, X3) and the polyno-
mial

f = (X1 + X2 + X3)
2

= X2
1 + X2

2 + X2
3 + X1X2 + X2X1 + X1X3 + X3X1 + X2X3 + X3X2 ∈ �〈X〉.

Then f = f1 + f2 + f3, with

f1 = 1

2
X2
1 +

1

2
X2
2 + X1X2 + X2X1 ∈ R〈X1, X2〉,

f2 = 1

2
X2
2 +

1

2
X2
3 + X2X3 + X3X2 ∈ R〈X2, X3〉,

f3 = 1

2
X2
1 +

1

2
X2
3 + X1X3 + X3X1 ∈ R〈X1, X3〉.

However, the sets I1 = {1, 2}, I2 = {2, 3} and I3 = {1, 3} do not satisfy the RIP
condition (2.7) and f /∈ �〈X〉sparse := �〈X1, X2〉 +�〈X2, X3〉 +�〈X1, X3〉 since
it has a unique Gram matrix by homogeneity.

Now consider S = {1− X2
1, 1− X2

2, 1− X2
3}. Then DS is as in (2.6),M(S)sparse

is as in (3.1) and f |D∞S � 0. However, we claim that f − λ ∈M(S)sparse iff λ ≤ −3.
Clearly,

f + 3 = (X1 + X2)
2 + (X1 + X3)

2 + (X2 + X3)
2 + (1− X2

1)

+(1− X2
2)+ (1− X2

3) ∈M(S)sparse.
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So one has −3 ≤ sup{λ : f − λ ∈M(S)sparse}, and the dual of this latter problem is
given by

inf
Lk

3∑

k=1
Lk( fk)

s.t. Lk(1) = 1, k = 1, . . . , 3,

Lk(h
�h) � 0 ∀h ∈ R〈X(Ik)〉, k = 1, . . . , 3,

Lk(h
�(1− X2

k )h) � 0 ∀h ∈ R〈X(Ik)〉, k = 1, . . . , 3,

L j |R〈X(I j∩Ik )〉 = Lk |R〈X(I j∩Ik )〉, j, k = 1, . . . , 3.

(3.6)

Hence, by weak duality, it suffices to show that there exist linear functionals Lk :
R〈X(Ik)〉 → R satisfying the constraints of problem (3.6) and such that

∑
k Lk( fk) =

−3. Define

A =
[
0 1
1 0

]
, B = −A

and let

Lk(g) = tr g(A, B) for g ∈ R〈X(Ik)〉.

Since Lk( fk) = −1, the three first constraints of problem (3.6) are easily verified and∑
k Lk( fk) = −3. For the last one, given, say h ∈ R〈X(I1)〉 ∩ R〈X(I2)〉 = R〈X2〉,

we have

L1(h) = tr h(B),

L2(h) = tr h(A),

since L1 (resp. L2) is defined on R〈X1, X2〉 (resp. R〈X2, X3〉) and h depends only on
the second (resp. first) variable X2 corresponding to B (resp. A).

But matrices A and B are orthogonally equivalent as U AUT = B for

U =
[

0 1
−1 0

]
,

whence h(B) = h(U AUT ) = Uh(A)UT and h(A) have the same trace.

4 Sparse GNS construction and optimizer extraction

The aim of this section is to provide a general algorithm to extract solutions of sparse
noncommutative optimization problems. We will apply this algorithm below to eigen-
value optimization (Sect. 5) and trace optimization (Sect. 6). For this purpose, we
first present sparse noncommutative versions of theorems by Curto and Fialkow. In
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the commutative case, Curto and Fialkow provided sufficient conditions for linear
functionals on the set of degree 2d polynomials to be represented by integration with
respect to a nonnegative measure. The main sufficient condition to guarantee such a
representation is flatness (see Definition 2.6) of the corresponding Hankel matrix. This
notion was exploited in a noncommutative setting for the first time by McCullough
[38] in his proof of the Helton-McCullough Sums of Squares theorem, cf. [38, Lemma
2.2].

In the dense case [49] (see also [1, Chapter 21] and [5, Theorem 1.69]) provides a
first noncommutative variant for the eigenvalue problem. See [3] for a similar construc-
tion for the trace problem. As this will be needed in the sequel, we recall this theorem
and a sketch of its proof, which relies on a finite-dimensional GNS construction.

Theorem 4.1 Let S ⊆ SymR〈X〉and set δ := max{�deg(g)/2� : g ∈ S∪{1}}. For d ∈
N, let L : R〈X〉2d+2δ → R be a unital linear functional satisfying L(M(S)d+δ) ⊆
R
≥0. If L is δ-flat, then there exist Â ∈ Dr

S for some r ≤ σ (n, d) and a unit vector v
such that

L(g) = 〈g( Â)v, v〉, (4.1)

for all g ∈ SymR〈X〉2d .

Proof Let r := rankMd+δ(L). Since Md+δ(L) is a positive semidefinite matrix, we
obtain the Gram matrix decomposition Md+δ(L) = [〈u,w〉]u,w with vectors u,w ∈
R
r , where the labels are words of degree at most d+ δ. Then, we define the following

finite-dimensional Hilbert space

H := span {w | degw ≤ d + δ} = span {w | degw ≤ d},

where the equality comes from the flatness assumption. Afterwards, one can directly
consider the operators Âi representing the left multiplication by Xi onH, i.e., Âiw =
Xiw. Thanks to the flatness assumption, the operators Âi are well-defined and one can
show that they are symmetric. Let Â := ( Â1, . . . , Ân). As in the GNS construction
of Theorem 3.3, one has L(g) = 〈g( Â)v, v〉, with v being the vector representing 1 in
H. Given s ∈ S, let us prove that 〈s( Â)w,w〉 ≥ 0, for allw ∈ H. By construction, any
vector w ∈ H can be written as g( Â)v, for some polynomial g ∈ SymR〈X〉2d . Thus,
one has 〈s( Â)w,w〉 = 〈s( Â)g( Â)v, g( Â)v〉 = L(g�sg) ≥ 0 since g�sg ∈M(S)d+δ .
Thus, one has Â ∈ Dr

S , the desired result. ��

We now give the sparse version of Theorem 4.1.

Theorem 4.2 Let S ⊆ SymR〈X〉2d , and assume DS is as in (2.6) with the addi-
tional quadratic constraints (2.5). Suppose Assumption 2.4(i) holds. Set δ :=
max{�deg(g)/2� : g ∈ S∪{1}}. Let L : R〈X〉2d+2δ → R be a unital linear functional
satisfying L(M(S)

sparse
d ) ⊆ R

≥0. Assume that the following holds:

(H1) Md+δ(L, Ik) and Md+δ(L, Ik ∩ I j ) are δ-flat, for all j, k ∈ {1, . . . , p}.
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Then, there exist finite-dimensional Hilbert spaces H(Ik) with dimension rk , for all
k ∈ {1, . . . , p}, Hilbert spaces H(I j ∩ Ik) ⊆ H(I j ),H(Ik) for all pairs ( j, k) with
I j ∩ Ik �= 0, and operators Âk , Â jk , acting on them, respectively. Further, there are
unit vectors v j ∈ H(I j ) and v jk ∈ H(I j ∩ Ik) such that

L( f ) = 〈 f ( Â j )v j , v j 〉 for all f ∈ R〈X(I j )〉2d ,
L(g) = 〈g( ˆA jk)v jk, v jk〉 for all g ∈ R〈X(I j ∩ Ik)〉2d .

(4.2)

Assuming that for all pairs ( j, k) with I j ∩ Ik �= ∅, one has
(H2) the matrices ( Â jk

i )i∈I j∩Ik have no common complex invariant subspaces,

then there exist A ∈ Dr
S, with r := r1 · · · rp, and a unit vector v such that

L( f ) = 〈 f (A)v, v〉, (4.3)

for all f ∈∑ j R〈X(I j )〉2d .
In the proof of Theorem 4.2 we will make use of the following simple linear algebra

observation.

Lemma 4.3 Let Z ∈ Mn(R). If tr(Z A) = 0 for all A ∈ Mn(R), then Z = 0.

Proof We have tr(Z ZT ) = 0 whence Z ZT = 0 and thus Z = 0. ��
Proof of Theorem 4.2 Start by applying Theorem 4.1 to L|R〈X(I j )〉 and L|R〈X(I j∩Ik )〉
to obtain the desired (real) Hilbert spaces H(I j ), H(I j ∩ Ik), unit vectors v j , v jk

and operators Â j , Â jk satisfying (4.2). Note that we may assume H(I j ∩ Ik) ⊆
H(I j ),H(Ik) as the map f ( Â jk)v jk �→ f ( Â j )v j is an isometry by construction.
Then

Â jk = Â j |H(I j∩Ik ) = Âk |H(I j∩Ik ). (4.4)

Let us denote by A(I j ) and A(I j ∩ Ik) the algebras generated by Â j , and Â jk ,

respectively. By (4.4), themap Â jk
� �→ Â j

� is a �-homomorphismA(I j )→ A(I j∩ Ik).
With rk = dimH(Ik) and r jk = dimH(I j ∩ Ik), one has A(Ik) ⊆ Mrk (R) and
A(I j ∩ Ik) ⊆Mr jk (R).

We nextwant to find a finite-dimensionalC�-algebraA, i.e., a subalgebra ofMm(R)

for some m ∈ N, making the diagram in Fig. 3 commute.
In the sequel, the proof proceeds by induction on p and we focus specifically on

the case p = 2, as the general case then follows by a simple inductive argument. By
the amalgamation property of C�-algebras stated in Theorem 3.1, we can always find
such an infinite-dimensional A. However, as shown in Example 4.4, there may not be
a suitable finite-dimensional A.

To ensure this, we assume that (H2) holds, namely that the matrices ( Â12
i )i∈I1∩I2

have no common complex invariant subspaces, which implies by Burnside’s theorem
(see, e.g., [10, Corollary 5.23]) that A(I1 ∩ I2) =Mr12(R). Then, for all A ∈ A(I1 ∩
I2) =Mr12(R), ιk(A) is just a direct sum of copies of A, up to orthogonal equivalence
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Fig. 3 Amalgamation of
finite-dimensional C�-algebras

(by the Skolem-Noether theorem [8, Section III.3]), i.e., there are orthogonal matrices
Uk such that

ιk(A) = UT
k (Irk/r12 ⊗ A)Uk,

for all k ∈ {1, 2}. By replacing Âk with their conjugates UT
k ÂkUk , and vk by UT

k v
k ,

we may without loss of generality assume ιk(A) = Irk/r12 ⊗ A.
The linear functional L induces linear functionals Ľk , Ľ12 on A(Ik), A(I1 ∩ I2)

given by B �→ tr(Bvk(vk)T ) and C �→ tr(Cv12(v12)T ), respectively. Write vk =∑rk/r12
j=1 ekj⊗ukj for the standard basis vectors e

k
j ∈ R

rk/r12 and some vectors ukj ∈ R
r12 .

Then for C ∈ A(I1 ∩ I2) = Mr12(R) we have

Ľ12(C) = tr(Cv12(v12)T )

= Ľk(Irk/r12 ⊗ C) = tr((I⊗ C)vk(vk)T )

= tr
(
(I⊗ C)(

rk/r12∑

j=1
ekj ⊗ ukj )(

rk/r12∑

j=1
ekj ⊗ ukj )

T
)

= tr
(
(I⊗ C)

rk/r12∑

i, j=1
(ekj (e

k
i )

T )⊗ (ukj (u
k
i )

T )
)

=
rk/r12∑

i, j=1
tr
(
(ekj (e

k
i )

T )⊗ Cukj (u
k
i )

T )

=
rk/r12∑

i, j=1
tr
(
ekj (e

k
i )

T ) tr
(
Cukj (u

k
i )

T )

= tr
(
C

rk/r12∑

j=1
ukj (u

k
j )
T )
)
.

From the equality tr(Cv12(v12)T ) = tr
(
C
∑rk/r12

j=1 ukj (u
k
j )
T )
)
for all C ∈ Mr12(R)

we deduce using Lemma 4.3 that v12(v12)T = ∑rk/r12
j=1 ukj (u

k
j )
T . Since the left-hand
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side outer product is rank one, each of the ukj must be a scalar multiple of v12, say

ukj = λ jkv12. Thus vk =∑rk/r12
j=1 λ jkekj ⊗ v12 and

∑
j λ

2
jk = 1 since ‖vk‖ = 1.

Now set A :=Mr1r2(R) and define j1(A) := Ir2 ⊗ A, for all A ∈ A(I1), and

j2(B) := (UT ⊗ Ir12)(Ir1 ⊗ B)(U ⊗ Ir12), (4.5)

for all B ∈ A(I2). Here U is an r1r2/r12 orthogonal matrix to be determined later.
This amalgamates the diagram in Fig. 3 (independently of the choice of U ).

Each extension of the linear functional Ľk to a linear functional onA is of the form

C �→ tr
(
C

r3−k∑

�=1
μ�ke

3−k
� ⊗ vk

) = tr
(
C
∑

�

rk/r12∑

j=1
μ�ke

3−k
� ⊗ λ jke

k
j

︸ ︷︷ ︸
wk

⊗v12
)
, (4.6)

where
∑

� μ2
�k = 1. Since the vectors wk are norm one, there is a unitary U with

Uw1 = w2. Using this U in the definition (4.5), the extension (4.6) of Ľ1 to a linear
functional Ľ : A→ R also extends Ľ2 (via j2).

Now define the operators A := (A1, . . . , An), with

Ai :=
{
j1( Â1

i ) if i ∈ I1,

j2( Â2
i ) if i ∈ I2.

Then L( f ) = 〈 f (A)(w1 ⊗ v12),w1 ⊗ v12〉 for all f ∈ R〈X(I1)〉2d + R〈X(I2)〉2d .
To conclude the proof note that each Ai is symmetric and that A ∈ Dr1r2

S . For the
latter we use the fact that each constraint g is either inR〈X(I1)〉 orR〈X(I2)〉, and that
�-subalgebras of matrix algebras admit square roots of positive semidefinite operators.

��
Example 4.4 (Non-amalgamation in the category of finite-dimensional algebras) For
given I1, I2, suppose A(I1 ∩ I2) is generated by the 2× 2 diagonal matrix

A12 =
(
1
2

)
,

and assume A(I1) = A(I2) = M3(R). (Observe that A(I1 ∩ I2) is the algebra of all
diagonalmatrices.) For each k ∈ {1, 2}, let us define ιk(A) := A⊕k, for all A ∈ A(I1∩
I2).We claim that there is no finite-dimensionalC�-algebraA amalgamating the above
Fig. 3. Indeed, by the Skolem-Noether theorem, every homomorphism Mn(R) →
Mm(R) is of the form x �→ P−1(x ⊗ Im/n)P for some invertible P; in particular, n
divides m. If a desiredA existed, then the matrices (A12⊕ 1)⊗ Ik and (A12⊕ 2)⊗ Ik
would be similar. But they are not as is easily seen from eigenvalue multiplicities.

Remark 4.5 Theorem 4.2 can be seen as a noncommutative variant of the result by
Lasserre stated in [30, Theorem 3.7], related to theminimizers extraction in the context
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of sparse polynomial optimization. In the sparse commutative case, Lasserre assumes
flatness of each moment matrix indexed in the canonical basis of R[X(Ik)]d , for each
k ∈ {1, . . . , p}, which is similar to our flatness condition (H1). The difference is
that this technical flatness condition on each Ik adapts to the degree of the constraints
polynomials on variables in Ik , resulting in an adapted parameter δk instead of global
δ. We could assume the same in Theorem 4.2 but for the sake of simplicity, we assume
that these parameters are all equal. In addition, Lasserre assumes that each moment
matrix indexed in the canonical basis ofR[X(I j ∩ Ik)]d is rank one, for all pairs ( j, k)
with I j∩ Ik �= ∅, which is the commutative analog of our irreducibility condition (H2).

4.1 Implementing the sparse GNS construction

As in the dense case, we can summarize the sparse GNS construction procedure
described in the proof of Theorem 4.2 into an algorithm, called SparseGNS, stated
below in Algorithm 4.6, for the case p = 2 (the general case is similar).

This algorithm describes how to compute the tuple A = (A1, . . . , An) of amalga-
mated matrices acting on H = R

r1r2 ∼= H(I1)⊗ R
r2 ∼= R

r1 ⊗H(I2), and a vector v
satisfying (4.3). To check the irreducibility (H2) condition, in Line 3 of the algorithm,
one relies on the Burnside theorem frommatrix theory (see, e.g., [10, Corollary 5.23]):
the algebra generated by e× e (real) symmetric matrices is irreducible if and only if it
is isomorphic toMe(R). So one only needs to check the dimension of the algebra.

Algorithm 4.6 SparseGNS
Require: Md(L), Hankel matrix of L.
1: Apply the GNS construction to obtain H(I1), H(I2) and H(I1 ∩ I2) of respective

dimensions r1, r2 and r12, associated toMd(L, I1),Md(L, I2) andMd(L, I1 ∩ I2),
as well as Â1, Â2 and Â12 acting onH(I1),H(I2) andH(I1 ∩ I2), respectively. "
the dense GNS algorithm is implemented in e.g. NCSOStools [12]

2: Find the corresponding unit vectors v1 ∈ H(I1), v2 ∈ H(I2) and v12 ∈ H(I1∩ I2)
so that (4.2) holds.

3: if The flatness (H1) and irreducibility (H2) conditions from Theorem 4.2 do not
hold then

4: Stop
5: end if
6: for k ∈ {1, 2}, i ∈ I1 ∩ I2 do
7: Compute (χk

i,�)� such that the block diagonalization Âk
i = diag(χk

i,�)� holds. "
e.g., by [40, Algorithm 4.1]

8: Compute invertible matrices (P�)�>1 such that P−1� χk
i,�P� = χk

i,1
9: Normalize each P� to make it orthogonal. Use them to change the basis in the

blocks (χk
i,�)�>1 " Thus, one has Âk

i = I⊗ χk
i

10: Compute an orthogonal P such that P−1χk
i P = Â12

i " Hence, without loss of
generality, Â12

i = χk
i

11: Decompose vk =∑ j λ jkekj ⊗ v12

12: end for
13: Find an orthogonal matrix U sending e11 ⊗

∑
j λ j1e1j �→ e21 ⊗

∑
j λ j2e2j
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14: for i ∈ {1, . . . , n} do
15: Ai :=

{
Ir2 ⊗ Â1

i if i ∈ I1,

(UT ⊗ Ir12)(Ir1 ⊗ Â2
i )(U ⊗ Ir12) if i ∈ I2

16: end for
17: Compute v = e11 ⊗ v1

Output: A = (A1, . . . , An) and v.

Corollary 4.6 The procedure SparseGNS described in Algorithm 4.6 is sound and
returns the tuple A and the vector v from Theorem 4.2.

Proof Correctness of the algorithm has been essentially established in the proof of
Theorem 4.2. Both computation in Line 8 and Line 10 can be performed since the
only homomorphisms out of full matrix algebras are ampliations composed with a
conjugation (by the Skolem-Noether theorem). One can perform an orthogonal change
of basis in Line 9, and Âk

i = I⊗ χk
i , for all k ∈ {1, 2} and i ∈ I1 ∩ I2. Indeed, let us

assume that a matrix P is invertible, and the map φ : A �→ P−1AP from Mn(R) to
Mn(R) preserves transposes. Then, the following equalities

φ(AT ) = P−1AT P = (P−1AP)T = PT AT P−T

imply that PPT commutes with all n×n matrices. Therefore, PPT is a scalar matrix,
and P is a scalar multiple of an orthogonal matrix, the desired result. Eventually, each
component of the tuple A, given in Line 15, is well defined by construction and gives
rise to the desired amalgamation. Line 17 constructs the vector v needed for (4.2) to
hold. ��

5 Eigenvalue optimization of noncommutative sparse polynomials

The aim of this section is to provide SDP relaxations allowing one to under-
approximate the smallest eigenvalue that a given nc polynomial can attain on a tuple of
symmetric matrices from a given semialgebraic set. The unconstrained case is handled
in Sect. 5.1, where we show how to compute a lower bound on the smallest eigenvalue
via solving an SDP. The constrained case is handled in Sect. 5.2, where we derive a
hierarchy of lower bounds converging to the minimal eigenvalue, assuming that the
quadratic module is archimedean and that RIP holds (Assumption 2.4).

We first recall the celebrated Helton-McCullough Sums of Squares theorem [19,
38] stating the equivalence between sums of hermitian squares (SOHS) and positive
semidefinite nc polynomials.

Theorem 5.1 Given f ∈ R〈X〉, we have f (A) � 0, for all A ∈ S
n, if and only if

f ∈ �〈X〉.
In contrast with the constrained case where we obtain the analog of Putinar’s Posi-
tivstellensatz in Theorem 3.3, there is no sparse analog of Theorem 5.1, as shown in
the following example.
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Lemma 5.2 There exist polynomials which are sparse sums of hermitian squares but
are not sums of sparse hermitian squares.

Proof Let v = [X1 X1X2 X2 X3 X3X2
]
,

G =

⎡

⎢⎢
⎢⎢
⎣

1 −1 −1 0 α

−1 2 0 −α 0
−1 0 3 −1 9
0 −α −1 6 −27
α 0 9 −27 142

⎤

⎥⎥
⎥⎥
⎦

, α ∈ R, (5.1)

and consider

f = vGv�

= X2
1 − X1X2 − X2X1 + 3X2

2 − 2X1X2X1 + 2X1X
2
2X1

− X2X3 − X3X2 + 6X2
3 + 9X2

2X3 + 9X3X
2
2 − 54X3X2X3 + 142X3X

2
2X3.

(5.2)
The polynomial f is clearly sparse w.r.t. I1 = {x1, x2} and I2 = {x2, x3}. Note that
the matrix G is positive semidefinite if and only if 0.270615 � α � 1.1075, whence
f is a sparse polynomial that is an SOHS.
We claim that f /∈ �〈X(I1)〉 +�〈X(I2)〉, i.e., f is not a sum of sparse hermitian

squares. By the Newton chip method [5, Section 2.3] only monomials in v can appear
in a sum of squares decomposition of f . Further, every Grammatrix of f (with border
vector v) is of the form (5.1). However, the matrix G with α = 0 is not positive
semidefinite, hence f /∈ �〈X(I1)〉 +�〈X(I2)〉. ��

5.1 Unconstrained eigenvalue optimization with sparsity

Let I stands for the identity matrix. Given f ∈ SymR〈X〉 of degree 2d, the smallest
eigenvalue of f is obtained by solving the following optimization problem

λmin( f ) := inf{〈 f (A)v, v〉 : A ∈ S
n, ‖v‖ = 1}. (5.3)

The optimal value λmin( f ) of Problem (5.3) is the greatest lower bound on the eigen-
values of f (A) over all n-tuples A of real symmetric matrices. Problem (5.3) can be
rewritten as follows:

λmin( f ) = sup
λ

λ

s.t. f (A)− λI � 0, ∀A ∈ S
n,

(5.4)

which is in turn equivalent to

λmin,d( f ) = sup
λ

λ

s.t. f (X)− λ ∈ �〈X〉d ,
(5.5)
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as a consequence of Theorem 5.1.
The dual of SDP (5.5) is

Lsohs,d( f ) = inf
L
〈Md(L),G f 〉

s.t. L(1) = 1, Md(L) � 0,

L : R〈X〉2d → R linear,

(5.6)

where G f is a Gram matrix for f (see Proposition 2.1).
One can compute λmin( f ) by solving a single SDP, either SDP (5.6) or SDP (5.5),
since there is no duality gap between these two programs (see, e.g., [5, Theorem 4.1]),
that is, one has Lsohs,d( f ) = λmin,d( f ) = λmin( f ).

Now, we address eigenvalue optimization for a given sparse nc polynomial f =
f1 + · · · + f p of degree 2d, with fk ∈ SymR〈X(Ik)〉2d , for all k = 1, . . . , p. For
all k = 1, . . . , p, let G fk be a Gram matrix associated to fk . The sparse variant of
SDP (5.6) is

Lsparse
sohs,d( f ) = inf

L

p∑

k=1
〈Md(L, Ik),G fk 〉

s.t. L(1) = 1, Md(L, Ik) � 0, k = 1, . . . , p,

L : R〈X(I1)〉2d + · · · + R〈X(Ip)〉2d → R linear,

(5.7)

whose dual is the sparse variant of SDP (5.5):

λ
sparse
min,d ( f ) = sup

λ

λ

s.t. f − λ ∈ �〈X(I1)〉2d + · · · +�〈X(Ip)〉2d ,
(5.8)

To prove that there is no duality gap between SDP (5.7) and SDP (5.8), we need a
sparse variant of [43, Proposition 3.4], which says that �〈X〉d is closed in R〈X〉2d :
Proposition 5.3 The set �〈X〉sparsed is a closed convex subset of R〈X(I1)〉2d + · · · +
R〈X(Ip)〉2d .
Proof For each k ∈ {1, . . . , p}, we endow each R〈X(Ik)〉2d with a norm ‖ · ‖k . For
each f ∈ R〈X(I1)〉2d + · · · + R〈X(Ip)〉2d , we set

‖ f ‖ := inf
{‖ f1‖1 + · · · + ‖ f p‖2 : f = f1 + · · · + f p, fk ∈ R〈X(Ik)〉2d

}

Let us consider an element h = h1 + · · · + h p ∈ �〈X〉sparsed , with hk ∈ �〈X(Ik)〉d .
For each k ∈ {1, . . . , p}, hk can be written as a sum of at most σ (nk, d) hermitian
squares of degree at most 2d by Proposition 2.1. Define the mapping

φk : (R〈X(Ik)〉d)σ (nk ,d) → R〈X(Ik)〉2d
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(hkj )
σ (nk ,d)
j=1 �→

σ (nk ,d)∑

j=1
h�
k j hk j ,

and let us denote hk = (hkj )
σ (nk ,d)
j=1 . Then, the image of the map φ, defined by

φ :
p∏

k=1
(R〈X(Ik)〉d)σ (nk ,d) → R〈X(I1)〉2d + · · · + R〈X(Ip)〉2d

(h1, . . . ,hp) �→ φ1(h1)+ · · · + φp(hp),

is equal to �〈X〉sparsed .
Let us define the subset V ⊂∏p

k=1(R〈X(Ik)〉d)σ (nk ,d) by

V :=
⎧
⎨

⎩
h = h1 + · · · + hp :

p∑

k=1

∥∥
∥∥∥∥

σ (nk ,d)∑

j=1
h�
k j hk j

∥∥
∥∥∥∥
k

= 1

⎫
⎬

⎭
.

Since V is compact, then φ(V) is also compact. Note that 0 /∈ V , implying that 0 /∈
φ(V). Next, let us consider a sequence ( f �)�≥1 of elements of �〈X〉sparsed , converging
to f ∈ R〈X(I1)〉2d + · · · + R〈X(Ip)〉2d . One can write f � = λ�v� for λ� ∈ R

≥0
and v� ∈ φ(V). By compactness of φ(V), there exists a subsequence of (v�)�, (also
denoted (v�)�), which converges to v ∈ φ(V) ⊂ �〈X〉sparsed . By definition of ‖ · ‖ and
V , one has ‖v�‖ ≤ 1, for all � ≥ 1. Since 0 /∈ φ(V) and φ(V) is compact, there exists

an ε > 0 such that ‖v�‖ > ε, for all � ≥ 1. Therefore, λ� = ‖ f �‖
‖v�‖ converges to ‖ f ‖‖v‖ , as

� goes to infinity. From this, we deduce that f � converges to f = ‖ f ‖
‖v‖ v ∈ �〈X〉sparsed ,

yielding the desired result. ��
From Proposition 5.3, we obtain the following theorem which does not require
Assumption 2.4.

Theorem 5.4 Let f ∈ SymR〈X〉 of degree 2d, with f = f1 + · · · + f p, fk ∈
SymR〈X(Ik)〉2d , for all k = 1, . . . , p. Then, one has λ

sparse
min,d ( f ) = Lsparse

sohs,d( f ), i.e.,
there is no duality gap between SDP (5.7) and SDP (5.8).

Proof The strong duality is obtained exactly as for the dense case [5, Theorem 4.1],
and relies on the closedness of �〈X〉sparsed , stated in Proposition 5.3. ��
Remark 5.5 By contrast with the dense case, it is not enough to compute the solution
of SDP (5.7) to obtain the optimal value λmin( f ) of the unconstrained optimization
problem (5.3). However, one can still compute a certified lower bound λ

sparse,d
min ( f ) by

solving a single SDP, either in the primal form (5.7) or in the dual form (5.8). Note that
the related computational cost is potentially much less expensive. Indeed, SDP (5.8)
involves

∑p
k=1 σ (nk, 2d) equality constraints and

∑p
k=1 σ (nk, d)+ 1 variables. This

is in contrast with the dense version (5.5), which involves σ (n, 2d) equality constraints
and 1+ σ (n, d) variables.
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5.2 Constrained eigenvalue optimization with sparsity

Here, we focus on providing lower bounds for the constrained eigenvalue optimization
of nc polynomials. Given f ∈ SymR〈X〉 and S := {g1, . . . , gm} ⊂ SymR〈X〉 as
in (2.2), let us define λmin( f , S) as follows:

λmin( f , S) := inf{〈 f (A)v, v〉 : A ∈ D∞S , ‖v‖ = 1}, (5.9)

which is, as for the unconstrained case, equivalent to

λmin( f , S) = sup
λ

λ

s.t. f (A)− λI � 0, ∀A ∈ D∞S .
(5.10)

Let d j := �deg g j/2�, for each j = 1, . . . ,m and d := max{�deg f /2�, d1, . . . , dm}.
As shown in [13,49] (see also [23]), one can approximate λmin( f , S) from below via
the following hierarchy of SDP programs, indexed by s ≥ d:

λs( f , S) := sup
λ

λ

s.t. f − λ ∈M(S)s .
(5.11)

The dual of SDP (5.11) is

Ls( f , S) := inf
L
〈Ms(L),G f 〉

s.t. L(1) = 1,

Ms(L) � 0, Ms−d j (g j L) � 0, j = 1, . . . ,m,

L : R〈X〉2d → R linear,

(5.12)

Under additional assumptions, this hierarchy of primal-dual SDP (5.11)–(5.12) con-
verges to the value of the constrained eigenvalue problem.

Corollary 5.6 Assume that DS is as in (2.6) with the additional quadratic con-
straints (2.5) and that the quadratic module MS is archimedean. Then the following
holds for each f ∈ SymR〈X〉:

lim
s→∞ Ls( f , S) = lim

s→∞ λs( f , S) = λmin( f , S). (5.13)

The main ingredient of the proof (see, e.g., [5, Corollary 4.11]) is the nc analog of
Putinar’s Positivstellensatz, stated in Theorem 2.2.
Let S ∪ { f } ⊆ SymR〈X〉 and let DS be as in (2.6) with the additional quadratic
constraints (2.5). LetM(S)sparse be as in (3.1) and let us defineM(S)

sparse
s in the same

way as the truncated quadratic module M(S)s in (2.4). Now, let us state the sparse
variant of the primal-dual hierarchy (5.11)–(5.12) of lower bounds for λmin( f , S).
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For all s ≥ d, the sparse variant of SDP (5.12) is

Lsparse
s ( f , S) := inf

L

p∑

k=1
〈Ms(L, Ik),G fk 〉

s.t. L(1) = 1,

Ms(L, Ik) � 0, k = 1, . . . , p,

Ms−d j (g j L, Ik) � 0, j = 1, . . . ,m, k = 1, . . . , p,

L : R〈X(I1)〉2d + · · · + R〈X(Ip)〉2d → R linear,
(5.14)

whose dual is the sparse variant of SDP (5.11):

λ
sparse
s ( f , S) := sup

λ

λ

s.t. f − λ ∈M(S)s .

(5.15)

Recall that an ε-neighborhood of 0 is the set Nε defined for a given ε > 0 by:

Nε :=
⋃

k∈N

{

A := (A1, . . . , An) ∈ S
n
k : ε2 −

n∑

i=1
A2
i � 0

}

.

Lemma 5.7 If h ∈ R〈X〉 vanishes on an ε-neighborhood of 0, then h = 0.

Proof See [5, Lemma 1.35]. ��
Proposition 5.8 Let S ∪ { f } ⊆ SymR〈X〉, assume that DS contains an ε-
neighborhood of 0 and that DS is as in (2.6) with the additional quadratic
constraints (2.5). Then SDP (5.14) admits strictly feasible solutions.

Proof This proof being almost the same as the one of [5, Proposition 4.9] is presented
for the sake of completeness. By Lemma 2.5, it is enough to build a linear map
L : SymR〈X〉2s → R such that for all k = 1, . . . , p one has:

• L(h�h) > 0, for all nonzero h ∈ R〈X(Ik)〉s ;
• for all j ∈ Jk , one has L(h�g j h) > 0, for all nonzero h ∈ R〈X(Ik)〉s−�deg g j /2�.
Let us pick N > s and let U stands for the set of all N × N matrices from DS with

rational entries:

U := {A(r) := (A(r)
1 , . . . , A(r)

n ) : r ∈ N, A(r) ∈ DN
S }

Note that this set U contains a dense subset ofNε. Let us associate to A ∈ U the linear
map L A : SymR〈X〉2d → R defined by L A(h) := tr(h(A)). From this, we define L
as follows:

L :=
∞∑

r=1
2−r

L A(r)

‖L A(r)‖ .
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Now let us fix k ∈ {1, . . . , p}. Obviously, one has L(h�h) ≥ 0, for all nonzero
h ∈ R〈X(Ik)〉d . Let us suppose that L(h�h) = 0 for some h ∈ R〈X(Ik)〉d . Then,
one has LA(r) (h�h) = 0 = tr(h�(A(r))h(A(r))), for all r ∈ N. This implies that for

all r ∈ N, one has h�(A(r))h(A(r)) = 0, which in turn yields h(A(r)) = 0. Since U
contains a dense subset of Nε, this implies that h vanishes on a ε-neighborhood of 0.
As a consequence of Lemma 5.7, one has h = 0.

In a similar way, we prove that if L(h�g j h) = 0 for some h ∈ R〈X(Ik)〉s−�deg g j /2�,
then one necessarily has h = 0. ��
Corollary 5.9 Let S ∪ { f } ⊆ SymR〈X〉, assume that DS is as in (2.6) with the addi-
tional quadratic constraints (2.5). Let Assumption 2.4 hold. Then, one has

lim
s→∞ Lsparse

s ( f , S) = lim
s→∞ λ

sparse
s ( f , S) = λmin( f , S). (5.16)

Proof The proof is similar to the one in the dense case. Let us take λ := λmin( f , S)−ε,
where ε > 0. Then, one has f − λ 	 0 on D∞S , so Theorem 3.3 implies that f − λ ∈
M(S)sparse. Hence, there exists s such that f − λ ∈ M(S)

sparse
s , yielding a feasible

solution for SDP (5.15), so λmin( f , S)− ε ≤ λ
sparse
s ( f , S). By weak duality between

SDP (5.14) and SDP (5.15), one has λ
sparse
s ( f , S) ≤ Lsparse

s ( f , S). Therefore, one
obtains λmin( f , S) − ε ≤ λ

sparse
s ( f , S) ≤ Lsparse

s ( f , S) ≤ λmin( f , S), yielding the
desired result, after taking limits as ε → 0. ��
As for the unconstrained case, there is no sparse variant of the “perfect” Positivstellen-
satz stated in [5, §4.4] or [20], for constrained eigenvalue optimization over convex
nc semialgebraic sets, such as those associated either to the sparse nc ball Bsparse :=
{1 −∑i∈I1 X

2
i , . . . , 1 −

∑
i∈Ip X

2
i } or the nc polydisc D := {1 − X2

1, . . . , 1 − X2
n}.

Namely, for an nc polynomial f of degree 2d+1, computing only SDP (5.7) with opti-
mal value λ

sparse
min,d+1( f , S) when S = B

sparse or S = D
sparse does not suffice to obtain

the value of λmin( f , S). This is explained in Example 5.10 below, which implies that
there is no sparse variant of [5, Corollary 4.18] when S = B

sparse.

Example 5.10 Let us consider a randomly generated cubic polynomial f = f1 + f2
with

f1 =4− X1 + 3X2 − 3X3 − 3X2
1 − 7X1X2 + 6X1X3 − X2X1 − 5X3X1 + 5X3X2

− 5X3
1 − 3X2

1X3 + 4X1X2X1 − 6X1X2X3 + 7X1X3X1 + 2X1X3X2 − X1X
2
3

− X2X
2
1 + 3X2X1X2 − X2X1X3 − 2X3

2 − 5X2
2X3 − 4X2X

2
3 − 5X3X

2
1

+ 7X3X1X2 + 6X3X2X1 − 4X3X2X2 − X2
3X1 − 2X2

3X2 + 7X3
3,

f2 =− 1+ 6X2 + 5X3 + 3X4 − 5X2
2 + 2X2X3 + 4X2X4 − 4X3X2 + X2

3 − X3X4

+ X4X2 − X4X3 + 2X2
4 − 7X3

2 + 4X2X
2
3 + 5X2X3X4 − 7X2X4X3 − 7X2X

2
4

+ X3X
2
2 + 6X3X2X3 − 6X3X2X4 − 3X2

3X2 − 7X2
3X4 + 6X3X4X2

− 3X3X4X3 − 7X3X
2
4 + 3X4X

2
2 − 7X4X2X3 − X4X2X4 − 5X4X

2
3

+ 7X4X3X4 + 6X2
4X2 − 4X3

4,
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and the nc polyball S = B
sparse = {1−X2

1−X2
2−X2

3, 1−X2
2−X2

3−X2
4} corresponding

to I1 = {1, 2, 3} and I2 = {2, 3, 4}. Then, one has λ
sparse
2 ( f , S) � −27.536 <

λ
sparse
3 ( f , S) � −27.467 � λmin,2( f , S) = λmin( f , S).

5.3 Extracting optimizers

Here, we explain how to extract a pair of optimizers (A, v) for the eigenvalue optimiza-
tion problems when the flatness and irreducibility conditions of Theorem 4.2 hold. We
apply the SparseGNS procedure described in Algorithm 4.6 on the optimal solution
of SDP (5.7) in the unconstrained case or SDP (5.14) in the constrained case. In the
unconstrained case, we have the following sparse variant of [5, Proposition 4.4].

Proposition 5.11 Given f as in Theorem 5.4, let us assume that SDP (5.7) yields
an optimal solution Md+1(L) associated to Lsparse

sohs,d+1( f ). If the linear functional
L underlying Md+1(L) satisfies the flatness (H1) and irreducibility (H2) conditions
stated in Theorem 4.2, then one has

λmin( f ) = Lsparse
sohs,d+1( f ) =

p∑

k=1
〈Md+1(L, Ik),G fk 〉.

Proof The first equality comes from Theorem 5.4. Let us assume that each moment
matrix satisfies the assumptions of Theorem 4.2. Then, we obtain a tuple A of sym-
metric matrices and a unit vector v such that L( f ) = 〈 f (A)v | v〉. Since one has
L( f ) =∑p

k=1〈Md+1(L, Ik),G fk 〉 = λmin( f ), the desired result holds. ��
We can extract optimizers for the unconstrained minimal eigenvalue problem (5.3)
thanks to the following algorithm.

Algorithm 5.12 SparseEigGNS
Require: f ∈ SymR〈X〉2d satisfying Assumption 2.4.
1: Compute Lsparse

sohs,d+1( f ) by solving SDP (5.7)
2: if SDP (5.7) is unbounded or its optimum is not attained then
3: Stop
4: end if
5: Let Md+1(L) be an optimizer of SDP (5.7). Compute A,

v := SparseGNS (Md+1(L)).
Output: A and v.

In the constrained case, the next result is the sparse variant of [5, Theorem 4.12] and
is a direct corollary of Theorem 4.2.

Corollary 5.12 Let S ∪ { f } ⊆ SymR〈X〉, assume that DS is as in (2.6) with the addi-
tional quadratic constraints (2.5). Suppose Assumptions 2.4(i)–(ii) hold. Let Ms(L)

be an optimal solution of SDP (5.14) with value Ls( f , S), for s ≥ d + δ, such that L
satisfies the assumptions of Theorem 4.2. Then, there exist r ∈ N, A ∈ Dr

S and a unit
vector v such that

λmin( f , S) = 〈 f (A)v, v〉 = Ls( f , S).
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Remark 5.13 As in the dense case [5, Algorithm 4.2], one can provide a randomized
algorithm to look for flat optimal solutions for the constrained eigenvalue prob-
lem (5.9). The underlying reason which motivates this randomized approach is work
by Nie, who derives in [46] a hierarchy of SDP programs, with a random objective
function, that converges to a flat solution (under mild assumptions).

Example 5.14 Consider the sparse polynomial f = f1 + f2 from Example 5.10. The
Hankel matrix M3(L) obtained when computing λ

sparse
3 by solving (5.14) for s = 3

satisfies the flatness (H1) and irreducibility (H2) conditions of Theorem 4.2. We can
thus apply the SparseGNS algorithm yielding

A1 =

⎡

⎢⎢
⎣

0.0059 0.0481 0.1638 0.4570
0.0481 −0.2583 0.5629 −0.2624
0.1638 0.5629 0.3265 −0.3734
0.4570 −0.2624 −0.3734 −0.2337

⎤

⎥⎥
⎦

A2 =

⎡

⎢⎢
⎣

−0.3502 0.0080 0.1411 0.0865
0.0080 −0.4053 0.2404 −0.1649
0.1411 0.2404 −0.0959 0.3652
0.0865 −0.1649 0.3652 0.4117

⎤

⎥⎥
⎦

A3 =

⎡

⎢⎢
⎣

−0.7669 −0.0074 −0.1313 −0.0805
−0.0074 −0.4715 −0.2238 0.1535
−0.1313 −0.2238 0.0848 −0.3400
−0.0805 0.1535 −0.3400 −0.2126

⎤

⎥⎥
⎦

A4 =

⎡

⎢⎢
⎣

0.3302 −0.1839 0.1811 −0.0404
−0.1839 −0.1069 0.5114 −0.0570
0.1811 0.5114 0.1311 −0.3664
−0.0404 −0.0570 −0.3664 0.4440

⎤

⎥⎥
⎦

where

f (A) =

⎡

⎢⎢
⎣

−10.3144 3.9233 −5.0836 −7.7828
3.9233 1.8363 4.5078 −7.5905
−5.0836 4.5078 −19.5827 13.9157
−7.7828 −7.5905 13.9157 8.3381

⎤

⎥⎥
⎦

has minimal eigenvalue −27.4665 with unit eigenvector

v = [0.1546 −0.2507 0.8840 −0.3631]T .

In this case all the ranks involved were equal to four. So A2 and A3 were computed
already from M3(L, I1 ∩ I2), after an appropriate basis change A1 (and the same
A2, A3) was obtained fromM3(L, I1), and finally A4 was computed fromM3(L, I2).
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6 Trace optimization of noncommutative sparse polynomials

The aim of this section is to provide SDP relaxations allowing one to under-
approximate the smallest trace of an nc polynomial on a semialgebraic set. In Sect. 6.1,
we provide a sparse tracial representation for tracial linear functionals. In Sect. 6.2, we
address the unconstrained trace minimization problem. As in Sect. 5.1, we compute a
lower bound on the smallest trace via SDP. The constrained case is handled in Sect. 6.3,
where we derive a hierarchy of lower bounds converging to the minimal trace, assum-
ing that the quadratic module is archimedean and that RIP holds (Assumption 2.4).
Most proofs are similar to the ones of eigenvalue problems addressed in Sect. 5, so
our treatment here is more concise.

We start this section by introducing useful notations about commutators and trace
zero polynomials. Given g, h ∈ R〈X〉, the nc polynomial [g, h] := gh − hg
is called a commutator. Two nc polynomials g, h ∈ R〈X〉 are called cyclically

equivalent (g
cyc∼ h) if g − h is a sum of commutators. Given S ⊆ SymR〈X〉

with corresponding quadratic module MS and truncated variant M(S)d , one defines

�S,d := {g ∈ SymR〈X〉2d : g cyc∼ h for some h ∈M(S)d} and �S := ⋃d∈N �S,d .
In this case,�S stands for the cyclic quadratic module generated by S and�S,d stands
for the truncated cyclic quadratic module generated by S.
For S ⊆ SymR〈X〉 and DS as in (2.6) with the additional quadratic constraints (2.5),

let us define �k
S,d := {g ∈ SymR〈X〉2d : g cyc∼ h for some h ∈ Mk

S,d}, �k
S :=⋃

d∈N �k
S,d , for all k = 1, . . . , p and the sum

�
sparse
S,d := �1

S,d + · · · +�
p
S,d , (6.1)

as well as�
sparse
S :=⋃d∈N �

sparse
S,d . If S is empty, we drop the S in the above notations.

An nc polynomial g ∈ SymR〈X〉 is called a trace zero nc polynomial if tr(g(A)) = 0,

for all A ∈ S
n . This is equivalent to g

cyc∼ 0 (see e.g. [27, Proposition 2.3]).
For a given nc polynomial g, the cyclic degree of g, denoted by cdeg g, is the smallest
degree of a polynomial cyclically equivalent to g.

6.1 Sparse tracial representations

The next theorem allows one to obtain a sparse tracial representation of a tracial linear
functional, under the same flatness and irreducibility conditions stated in Theorem 4.2.
This is a sparse variant of [5, Theorem 1.71].

Theorem 6.1 Let S ⊆ SymR〈X〉2d , and assume that the semialgebraic set DS is as
in (2.6) with the additional quadratic constraints (2.5). Let Assumption 2.4(i) hold.
Set δ := max{�deg(g)/2� : g ∈ S ∪ {1}}. Let L : R〈X〉2d+2δ → R be a unital
tracial linear functional satisfying L(�

sparse
S,d ) ⊆ R

≥0. Assume that the flatness (H1)
and irreducibility (H2) conditions of Theorem 4.2 hold. Then there are finitely many
n-tuples A( j) of symmetric matrices in Dr

S for some r ∈ N, and positive scalars λ j

with
∑

j λ j = 1, such that for all f ∈ R〈X(I1)〉2d + · · · + R〈X(Ip)〉2d , one has:
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L( f ) =
∑

j

λ j tr f (A( j)). (6.2)

Proof As in Theorem 4.2, we perform the finite-dimensional GNS construction to
obtain a tuple A ∈ Dr

S , for some r ∈ N, and unit vector v such that (6.2) holds. To
obtain the tracial representation, the proof is essentially the same as the one of [5,
Theorem 1.71] and relies on the Wedderburn theorem, see e.g. [28, Chapter 1] for
more details. ��

6.2 Unconstrained trace optimization with sparsity

Given f ∈ SymR〈X〉, the trace-minimum of f is obtained by solving the following
optimization problem

trmin( f ) := inf{tr f (A) : A ∈ S
n}, (6.3)

which is equivalent to

trmin( f ) = sup{a : tr( f − a)(A) ≥ 0,∀A ∈ S
n}, (6.4)

If the cyclic degree of f is odd, then trmin( f ) = −∞, thus let us assume that 2d =
cdeg f . To approximate trmin( f ) from below, one considers the following relaxation:

tr�( f ) = sup{a : f − a ∈ �d}, (6.5)

whose dual is

L�( f ) := inf
L
〈Md(L),G f 〉

s.t. (Md(L))u,v = (Md(L))w,z, for all u�v
cyc∼ w�z,

L(1) = 1, Md(L) � 0,

L : R〈X〉2d → R linear,

(6.6)

One has tr�( f ) = L�( f ) ≤ trmin( f ), where the inequality comes from [5,
Lemma 5.2] and the equality results from the strong duality between SDP (6.6) and
SDP (6.5), see e.g. [5, Theorem 5.3] for a proof. In addition, if the optimizerMd(L)opt

of SDP (6.6) satisfies the flatness condition, i.e., the linear functional underlying
Md(L)opt is 1-flat (see Definition 2.6), then the above relaxations are exact and one
has tr�( f ) = L�( f ) = trmin( f ). This exactness result is stated in [5, Theorem 5.4].

For a given nc polynomial f = f1 + · · · + f p, with fk ∈ SymR〈X(Ik)〉2d , for all
k = 1, . . . , p, we consider the following sparse variant of SDP (6.6):
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Lsparse
� ( f ) = inf

L

p∑

k=1
〈Md(L, Ik),G fk 〉

s.t. (Md(L, Ik))u,v = (Md(L, Ik))w,z, for all u�v
cyc∼ w�z,

L(1) = 1, Md(L, Ik) � 0, k = 1, . . . , p,

L : R〈X(I1)〉2d + · · · + R〈X(Ip)〉2d → R linear,

(6.7)

whose dual is the sparse variant of SDP (6.5):

trsparse� ( f ) = sup
λ

λ

s.t. f − λ ∈ �
sparse
d .

(6.8)

Now, we are ready to state the sparse variant of [5, Theorem 5.3].

Theorem 6.2 Let f ∈ SymR〈X〉 of degree 2d, with f = f1 + · · · + f p, fk ∈
SymR〈X(Ik)〉2d , for all k = 1, . . . , p. There is no duality gap between SDP (6.7)
and SDP (6.8), namely trsparse� ( f ) = Lsparse

� ( f ).

Proof The proof of strong duality is essentially the same as the one of Theorem 5.4. It
relies on the closedness of the convex cone �

sparse
d which comes from the closedness

of �
sparse
d , proved in Proposition 5.3.

As for unconstrained eigenvalue optimization, one can retrieve the solution of the
initial trace minimization problem under the same assumptions as Theorem 4.2. This
is stated in the next proposition, which is the sparse variant of [5, Theorem 5.4].

Proposition 6.3 Let f be as in Theorem 6.2, and assume that SDP (6.7) admits an
optimal solution Md(L). If the linear functional L underlying Md(L) satisfies the
flatness (H1) and irreducibility (H2) conditions stated in Theorem 4.2, then

trsparse� ( f ) = Lsparse
� ( f ) = trmin( f ).

Proof The first equality comes from Theorem 6.2. By Theorem 6.1, there exist finitely
manyn-tuples of symmetricmatrices A( j) andpositive scalarsλ j with

∑
j λ j = 1 such

that L( f ) = ∑ j λ j tr f (A( j)). Since L( f ) = ∑p
k=1〈Md(L, Ik),G fk 〉 = Lsparse

� ( f )

and trmin( f ) = ∑ j (λ j trmin( f )) ≤ ∑ j λ j tr f (A( j)) = L( f ), one has trmin( f ) ≤
Lsparse

� ( f ). The desired result then follows from weak duality between SDP (6.7) and
SDP (6.8). ��

In practice, Proposition 6.3 allows one to derive an algorithm similar to the
SparseEigGNS procedure (described in Algorithm 5.12) to find flat optimal solu-
tions for the unconstrained trace problem.
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6.3 Constrained trace optimization with sparsity

In this subsection, we provide the sparse tracial version of Lasserre’s hierarchy to
minimize the trace of a noncommutative polynomial on a semialgebraic set. Given f ∈
SymR〈X〉 and S := {g1, . . . , gm} ⊂ SymR〈X〉 as in (2.2), let us define trmin( f , S)

as follows:

trmin( f , S) := inf{tr f (A) : A ∈ DS}. (6.9)

Since an infinite-dimensional Hilbert space does not admit a trace, we obtain lower
bounds on the minimal trace by considering a particular subset of D∞S . This subset is
obtained by restricting from the algebra of all bounded operators B(H) on a Hilbert
space H to finite von Neumann algebras [57] of type I and type II. We introduce
trmin( f , S)II1 as the trace-minimum of f on DII1

S . This latter set is defined as follows
(see [5, Definition 1.59]):

Definition 6.4 LetF be a type-II1-vonNeumann algebra [57, Chapter 5]. Let us define
DF

S as the set of all tuples A = (A1, . . . , An) ∈ Fn making s(A) a positive semidefi-

nite operator for every s ∈ S. The von Neumann semialgebraic set DII1
S generated by

S is defined as

DII1
S :=

⋃

F
DF

S ,

where the union is over all type-II1-von Neumann algebras with separable predual.

By [5, Proposition 1.62], if f ∈ �S , then tr f (A) ≥ 0, for all A ∈ DS and A ∈ DII1
S .

Since DS can be modeled by DII1
S , one has trmin( f , S)II1 ≤ trmin( f , S). With d being

defined as in Sect. 5.2, one can approximate trmin( f , S)II1 frombelowvia the following
hierarchy of SDP programs, indexed by s ≥ d:

tr�,s( f , S) = sup{a : f − a ∈ �S,d}, (6.10)

whose dual is

L�,s( f , S) := inf
L
〈Ms(L),G f 〉

s.t. (Ms(L))u,v = (Ms(L))w,z, for all u�v
cyc∼ w�z,

L(1) = 1,

Ms(L) � 0, Ms−d j (g j L) � 0, j = 1, . . . ,m,

L : R〈X〉2d → R linear.

(6.11)

If the quadratic module MS is archimedean, the resulting hierarchy of SDP pro-
grams provides a sequence of lower bounds tr�,s( f , S) monotonically converging
to trmin( f , S)II1 , see e.g. [5, Corollary 3.5].
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Next, we present a sparse variant hierarchy of SDP programs providing a sequence
of lower bounds trsparse�,s ( f , S) monotonically converging to trmin( f , S)II1 . Let S ∪
{ f } ⊆ SymR〈X〉 and let DS be as in (2.6) with the additional quadratic con-
straints (2.5). Let us define the sparse variant of SDP (6.11), indexed by s ≥ d:

Lsparse
�,s ( f , S) = inf

L

p∑

k=1
〈Ms(L, Ik),G fk 〉

s.t. (Ms(L, Ik))u,v = (Ms(L, Ik))w,z, for all u�v
cyc∼ w�z,

L(1) = 1,

Ms(L, Ik) � 0, k = 1, . . . , p,

Ms−d j (g j L, Ik) � 0, j = 1, . . . ,m, k = 1, . . . , p,

L : R〈X(I1)〉2d + · · · + R〈X(Ip)〉2d → R linear.
(6.12)

whose dual is the sparse variant of SDP (6.10):

trsparse�,s ( f , S) = sup{a : f − a ∈ �
sparse
S,d }, (6.13)

With the same conditions as the ones assumed in Proposition 5.8 for constrained
eigenvalue optimization, SDP (6.12) admits strictly feasible solutions, so there is
no duality gap between SDP (6.12) and SDP (6.13). The proof is the same since the
constructed linear functional in Proposition 5.8 is tracial. In order to prove convergence
of the hierarchy of bounds given by the SDP (6.12)–(6.13), we need the following
proposition, which is the sparse variant of [5, Proposition 1.63].

Proposition 6.5 Let S ∪ { f } ⊆ SymR〈X〉 and let DS be as in (2.6) with the addi-
tional quadratic constraints (2.5). Let Assumption 2.4 hold. Then the following are
equivalent:

(i) tr f (A) ≥ 0 for all A ∈ DII1
S ;

(ii) for all ε > 0, there exists g ∈M(S)sparse with f + ε
cyc∼ g.

Proof The implication (ii) $⇒ (i) is trivial. For the converse implication, let us fix
ε > 0 such that the conclusion of (ii) does not hold. By the Hahn-Banach separation
theorem, there exists a linear functional L : SymR〈X〉 → R with L( f + ε) ≤ 0 and
L(M(S)sparse) ⊆ R

≥0. As in Theorem 3.3, the GNS construction leads to operator
algebras Ak , A jk for j, k = 1, . . . , p and j �= k, with A jk ⊆ A j ,Ak . However, in
this case the GNS construction yields tracial states on these, whence they are all finite
von Neumann algebras. Now amalgamate in the category of von Neumann algebras
(cf. [60]) to obtain a finite vonNeumann algebraAwith trace τ so that τ( f ) ≤ −ε < 0.

��
Proposition 6.5 implies the following convergence property.

Corollary 6.6 Let S ∪ { f } ⊆ SymR〈X〉 and let DS be as in (2.6) with the additional
quadratic constraints (2.5). Let Assumption 2.4 hold. Then

lim
s→∞ trsparse�,s ( f , S) = lim

s→∞ Lsparse
�,s ( f , S) = trmin( f , S)II1 .
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Proof By weak duality, one has trsparse�,s ( f , S) ≤ Lsparse
�,s ( f , S) ≤ trmin( f , S)II1 . In

addition, Proposition 6.5 implies that for each each m ∈ N, there exists s(m) ∈ N

such that f − trmin( f , S)II1 + 1
m ∈ �

sparse
S,s(m). This implies that

trmin( f , S)II1 − 1

m
≤ trsparse�,s(m)( f , S),

yielding the desired conclusion. ��
To extract solutions of constrained trace minimization problems, we rely on the fol-
lowing variant of Theorem 6.1. It is, in turn, the tracial analog of Theorem 4.2.

Proposition 6.7 Let S ⊆ SymR〈X〉2d , and assume that the semialgebraic set DS

is as in (2.6) with the additional quadratic constraints (2.5). Let Assumption 2.4(i)
hold. Set δ := max{�deg(g)/2� : g ∈ S ∪ 1}. Let Ms(L) be an optimal solution of
SDP (6.7) with value Lsparse

�,s ( f , S), for s ≥ d + δ, such that L satisfies the flatness
(H1) and irreducibility (H2) conditions of Theorem 4.2. Then there are finitely many
n-tuples A( j) of symmetric matrices in Dr

S for some r ∈ N, and positive scalars λ j

with
∑

j λ j = 1 such that

L( f ) =
∑

j

λ j tr f (A( j)).

In particular, one has trmin( f , S) = trmin( f , S)II1 = Lsparse
�,s ( f , S).

As in the dense case [5, Algorithm 5.1], one can rely on Proposition 6.7 to provide
a randomized algorithm to look for flat optimal solutions for the constrained trace
problem (6.9).

7 Numerical experiments

The aim of this section is to provide experimental comparison between the bounds
given by the dense relaxations (using NCeigMin under NCSOStools) and the ones
produced by our sparse variants. For the sake of conciseness, we focus on minimal
eigenvalue computation.
In Sect. 7.1 we focus on the unconstrained case. For a given nc polynomial f of
degree 2d, we compare the smallest eigenvalue λmin( f ) = λmin,d( f ) = Lsohs,d( f )
computed via SDP (5.6) (or equivalently SDP (5.5)) with λ

sparse
min,d ( f ) = Lsparse

sohs,d( f ),
computed via SDP (5.7) (or equivalently SDP (5.8)).
In Sect. 7.2 we focus on the constrained case. We compare the values of λs( f , S) =
Ls( f , S), obtained in the dense setting via SDP (5.12) (or equivalently SDP (5.11)),
with the values ofλsparses ( f ) = Lsparse

s ( f ), obtained in the sparse setting via SDP (5.14)
(or equivalently SDP (5.15)), for various sets of constraints S and increasing values
of the relaxation order s.

The resulting algorithm, denoted byNCeigMinSparse, is currently implemented
in NCSOStools [12]. This software library is available within Matlab and interfaced
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Table 1 NCeigMin versus NCeigMinSparse for unconstrained minimal eigenvalues of the chained
singular and generalized Rosenbrock functions

f n NCeigMin NCeigMinSparse

msdp nsdp λmin,2( f ) Time (s) msdp nsdp λ
sparse
min,2 ( f ) Time (s)

fcs 4 78 169 0 0.42 78 169 0 0.37

8 398 841 0 1.33 165 1323 0 3.69

12 974 2025 0 4.35 298 2205 0 6.28

16 1806 3721 0 14.29 413 3087 0 9.18

20 2894 5929 0 52.47 537 3969 0 12.78

24 4238 8649 0 152.17 661 4851 0 17.65

fgR 10 200 400 0 0.56 95 441 0 1.39

12 288 576 0 0.81 117 539 0 1.78

14 392 784 0 1.12 139 637 0 2.20

16 512 1024 0 1.46 161 735 0 2.67

18 648 1296 0 2.15 183 833 0 3.26

20 800 1600 0 2.92 205 931 0 4.10

with the SDP solver Mosek 8.1 [42], which turned out to yield better performance
than SeDuMi 1.3 [56]. All numerical results were obtained using a cluster available at
the Faculty of mechanical engineering, University of Ljubljana, which has 30 TFlops
computing performance. For our computations we used only one computing node
which consisted of 2 Intel Xeon X5670 2,93GHz processors, each with 6 computing
cores; 48GBDDR3memory; 500GB hard drive.We ranMatlab in a plain (sequential)
mode, without imposing any paralelization.

7.1 Unconstrained optimization

In Table 1, we report results obtained for minimizing the eigenvalue of the nc variants
of the following functions:

• The chained singular function [11]:

fcs :=
∑

i∈J
((Xi + 10Xi+1)2 + 5(Xi+2 − Xi+3)2 + (Xi+1 − 2Xi+2)4

+10(Xi − 10Xi+3)4),

where J = {1, 3, 4, . . . , n − 3} and n is a multiple of 4. In this case, one can
choose Ik = {k, k+ 1, k+ 2, k+ 3} for all k = 1, . . . , n− 3 so that the associated
sparsity pattern satisfies (2.7).

• The generalized Rosenbrock function [44]:

fgR := 1+
n−1∑

i=1

(
100(Xi+1 − X2

i )
2 + (1− Xi+1)2

)
.
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In this case, one can choose Ik = {k, k + 1} for all k = 1, . . . , n − 1 so that the
associated sparsity pattern satisfies (2.7).

We compute bounds on the minimal eigenvalues of f = fcs for each n ∈
{4, . . . , 24} being a multiple of 4, and fgR for even values of n ∈ {2, . . . , 20}. For
both functions, the minimal eigenvalue is 0. We indicate in Table 1 the data related to
the semidefinite programs solved by Mosek. For each value of n, msdp stands for the
total number of constraints and nsdp stands for the total number of variables either of
the SDP program (5.6) solved to compute λmin( f ) or the SDP program (5.7) solved
to compute λ

sparse
min,2 ( f ). As emphasized in the columns corresponding to msdp, the size

of the SDP programs can be significantly reduced after exploiting sparsity, which is
consistent with Remark 5.5. While the procedure NCeigMin does not take sparsity
into account, it relies on the Newton chip method [5, §2.3] to reduce the number of
variables involved in the Hankel matrix from SDP (5.6). This explains why nsdp is
smaller for some values of n (e.g. n = 8 for fcs) when running NCeigMin. However,
the sparse procedure NCeigMinSparse turns out to be very often more efficient
to compute the minimal eigenvalue. So far, our NCeigMinSparse procedure is
limited by the computational abilities of current SDP solvers (such as Mosek) to han-
dle matrices with more constraints and variables than the ones obtained e.g. for the
chained singular function at n = 24 (see the related values of msdp and nsdp in the
corresponding column). It turns out that exploiting the sparsity pattern yields SDP
programs with significantly fewer variables than the ones obtained after running the
Newton chip method.
In the column reporting timings, we indicate the time needed to prepare and solve the
SDP relaxation. For values of n, d � 8, our current implementation in (interpreted)
Matlab happens to be rather inefficient to construct the SDP problem itself, mainly
because we rely on a naive nc polynomial arithmetic. To overcome this computational
burden, we plan to interface NCSOStools with a C library implementing a more
sophisticated monomial arithmetic. We also emphasize that for these unconstrained
problems, each function is a sumof sparse hermitian squares, thus the sparse procedure
NCeigMinSparse always retrieves the same optimal value as the dense procedure
NCeigMin. However, the bound computed via the sparse procedure can be a strict
lower bound of the minimal eigenvalue, as shown in Lemma 5.2.

7.2 Constrained optimization

In Table 2, we report results obtained for minimizing the eigenvalue of the nc chained
singular function on the semialgebraic set Scs := {1 − X2

1, . . . , 1 − X2
n, X1 −

1/3, . . . , Xn − 1/3} for n ∈ {4, 8, 12, 16, 20, 24}. Since f has degree 4, it fol-
lows from [5, Corollary 4.18] that it is enough to solve SDP (5.7) with optimal
value λ2( f , Scs) to compute the minimal eigenvalue λmin( f , Scs). For the experi-
ments described in Table 2, we cannot rely on the Newton chip method as in the
unconstrained case. Thus the dense procedure NCeigMin suffers from a severe com-
putational burden for n > 10; the symbol “−” in a column entry indicates that the
calculation did not finish in a couple of hours. As already observed before for the
unconstrained case, the sparse procedure NCeigMinSparse performs much bet-
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Table 2 NCeigMin versus NCeigMinSparse for minimal eigenvalue of the chained singular function
on the nc polydisc Scs

n NCeigMin NCeigMinSparse

msdp nsdp λ2( fcs, Scs) Time (s) msdp nsdp λ
sparse
2 ( fcs, Scs) Time (s)

4 161 641 315.21 3.25 161 641 315.21 2.95

8 1009 6625 965.48 146.99 525 1923 965.48 4.66

12 3121 28705 1615.7 7891.6 889 3205 1615.7 7.43

16 − 1253 4487 2266.05 13.20

20 − 1617 5769 2916.32 18.50

24 − 1981 7051 3566.56 26.38

ter than NCeigMin. Surprisingly, NCeigMinSparse yields the same bounds as
NCeigMin at the minimal relaxation order s = 2, for all values of n ≤ 10.

As shown in Example 5.10, there is no guarantee to obtain the above mentioned
convergence behavior in a systematic way. We consider randomly generated cubic n-
variate polynomials frand satisfying Assumption 2.4 with Ik = {k, k+1, k+2}, for all
k = 1, . . . , n−2. The corresponding nc polyball is given byBsparse := {1−X2

1−X2
2−

X2
3, . . . , 1−X2

n−2−X2
n−1−X2

n}. In Table 3, we report results obtained for minimizing
the eigenvalue of frand on B

sparse, for each value of n ∈ {4, . . . , 10}. Here again, the
sparse procedure NCeigMinSparse yields better performance than NCeigMin.
Moreover, the sparse bound obtained for each n ≤ 10 at minimal relaxation order
s = 2 already gives an accurate approximation of the optimal bound provided by the
dense procedure. We emphasize that the value of the third order relaxation obtained
with the sparse procedure is almost equal to the optimal bound. In addition, the dense
procedure cannot handle to solve the minimal order relaxation for n > 10, while we
can always obtain a lower bound of the eigenvalue with NCeigMinSparse.

8 Conclusion and perspectives

We have presented a sparse variant of Putinar’s Positivstellensatz for positive noncom-
mutative polynomials, yielding a converging hierarchy of semidefinite relaxations for
eigenvalue and trace optimization. We also designed a general algorithm to extract
solutions of such sparse problems, thanks to a sparse variant of the Gelfand–Naimark–
Segal construction and amalgamation properties of operator algebras. Experimental
results obtained with NCSOStools prove that one can obtain accurate lower bounds
via these semidefinite relaxations in an efficient way.

An obvious direction of further research is to investigate whether and how one can
benefit from sparsity exploitation in other application fields, for instance to compute
certified approximations of quantum graph parameters or maximum violation bounds
of Bell inequalities in quantum information theory.

We have proved that there is no sparse analog of the Helton-McCullough Sums
of Squares theorem. Thus, another interesting track of research is to look for alter-
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native representations of sparse positive polynomials, e.g., representations involving
noncommutative rational functions.

Apart from sparsity, we also intend to pursue research efforts to take into account
other properties of structured noncommutative polynomials, such as symmetry.
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