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Abstract
We propose a general method calledtruncated gradientto induce sparsity in the weights of online-
learning algorithms with convex loss functions. This method has several essential properties:

1. The degree of sparsity is continuous—a parameter controlsthe rate of sparsification from no sparsifi-
cation to total sparsification.

2. The approach is theoretically motivated, and an instanceof it can be regarded as an online counterpart
of the popularL1-regularization method in the batch setting. We prove that small rates of sparsification
result in only small additional regret with respect to typical online-learning guarantees.

3. The approach works well empirically.

We apply the approach to several data sets and find for data sets with large numbers of features,
substantial sparsity is discoverable.

Keywords: truncated gradient, stochastic gradient descent, online learning, sparsity, regulariza-
tion, Lasso

1. Introduction

We are concerned with machine learning over large data sets. As an example, the largest data set
we use here has over 107 sparse examples and 109 features using about 1011 bytes. In this setting,
many common approaches fail, simply because they cannot load the data set into memory or they
are not sufficiently efficient. There are roughly two classes of approaches which can work:

1. Parallelize a batch-learning algorithm over many machines (e.g., Chu et al.,2008).

2. Stream the examples to an online-learning algorithm (e.g., Littlestone, 1988;Littlestone et al.,
1995; Cesa-Bianchi et al., 1996; Kivinen and Warmuth, 1997).

∗. Partially supported by NSF grant DMS-0706805.

c©2009 John Langford, Lihong Li and Tong Zhang.



LANGFORD, L I AND ZHANG

This paper focuses on the second approach.
Typical online-learning algorithms have at least one weight for every feature, which is too much

in some applications for a couple reasons:

1. Space constraints. If the state of the online-learning algorithm overflows RAM it can not
efficiently run. A similar problem occurs if the state overflows the L2 cache.

2. Test-time constraints on computation. Substantially reducing the number of features can yield
substantial improvements in the computational time required to evaluate a new sample.

This paper addresses the problem of inducing sparsity in learned weightswhile using an online-
learning algorithm. There are several ways to do this wrong for our problem. For example:

1. Simply addingL1-regularization to the gradient of an online weight update doesn’t work
because gradients don’t induce sparsity. The essential difficulty is thata gradient update has
the forma+b wherea andb are two floats. Very few float pairs add to 0 (or any other default
value) so there is little reason to expect a gradient update to accidentally produce sparsity.

2. Simply rounding weights to 0 is problematic because a weight may be small due tobeing
useless or small because it has been updated only once (either at the beginning of training
or because the set of features appearing is also sparse). Rounding techniques can also play
havoc with standard online-learning guarantees.

3. Black-box wrapper approaches which eliminate features and test the impact of the elimination
are not efficient enough. These approaches typically run an algorithmmany times which is
particularly undesirable with large data sets.

1.1 What Others Do

In the literature, the Lasso algorithm (Tibshirani, 1996) is commonly used to achieve sparsity for
linear regression usingL1-regularization. This algorithm does not work automatically in an online
fashion. There are two formulations ofL1-regularization. Consider a loss functionL(w,zi) which is
convex inw, wherezi = (xi ,yi) is an input/output pair. One is theconvex constraint formulation

ŵ = argmin
w

n

∑
i=1

L(w,zi) subject to‖w‖1≤ s, (1)

wheres is a tunable parameter. The other is thesoft regularization formulation, where

ŵ = argmin
w

n

∑
i=1

L(w,zi)+g‖w‖1. (2)

With appropriately choseng, the two formulations are equivalent. The convex constraint formu-
lation has a simple online version using the projection idea of Zinkevich (2003), which requires
the projection of weightw into anL1-ball at every online step. This operation is difficult to imple-
ment efficiently for large-scale data with many features even if all examples have sparse features
although recent progress was made (Duchi et al., 2008) to reduce theamortizedtime complexity to
O(k logd), wherek is the number of nonzero entries inxi , andd is the total number of features (i.e.,
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the dimension ofxi). In contrast, the soft-regularization method is efficient for a batch setting(Lee
et al., 2007) so we pursue it here in an online setting where we develop an algorithm whose com-
plexity is linear ink but independent ofd; these algorithms are therefore more efficient in problems
whered is prohibitively large.

More recently, Duchi and Singer (2008) propose a framework for empirical risk minimization
with regularization calledForward Looking Subgradients, or FOLOS in short. The basic idea is to
solve a regularized optimization problem after every gradient-descent step. This family of algo-
rithms allow general convex regularization function, and reproduce a special case of the truncated
gradient algorithm we will introduce in Section 3.3 (withθ set to∞) whenL1-regularization is used.

The Forgetron algorithm (Dekel et al., 2006) is an online-learning algorithm that manages mem-
ory use. It operates by decaying the weights on previous examples and then rounding these weights
to zero when they become small. The Forgetron is stated for kernelized onlinealgorithms, while we
are concerned with the simpler linear setting. When applied to a linear kernel, the Forgetron is not
computationally or space competitive with approaches operating directly on feature weights.

A different, Bayesian approach to learning sparse linear classifiers is taken by Balakrishnan and
Madigan (2008). Specifically, their algorithms approximate the posterior by aGaussian distribution,
and hence need to store second-order covariance statistics which require O(d2) space and time per
online step. In contrast, our approach is much more efficient, requiring only O(d) space andO(k)
time at every online step.

After completing the paper, we learned that Carpenter (2008) independently developed an algo-
rithm similar to ours.

1.2 What We Do

We pursue an algorithmic strategy which can be understood as an online version of an efficientL1

loss optimization approach (Lee et al., 2007). At a high level, our approach works with the soft-
regularization formulation (2) and decays the weight to a default value after every online stochastic
gradient step. This simple approach enjoys minimal time complexity (which is linear ink and in-
dependent ofd) as well as strong performance guarantee, as discussed in Sections 3 and 5. For
instance, the algorithm never performs much worse than a standard online-learning algorithm, and
the additional loss due to sparsification is controlled continuously with a single real-valued param-
eter. The theory gives a family of algorithms with convex loss functions for inducing sparsity—one
per online-learning algorithm. We instantiate this for square loss and show how an efficient imple-
mentation can take advantage of sparse examples in Section 4. In addition to theL1-regularization
formulation (2), the family of algorithms we consider also include some non-convex sparsification
techniques.

As mentioned in the introduction, we are mainly interested in sparse online methodsfor large
scale problems with sparse features. For such problems, our algorithm should satisfy the following
requirements:

• The algorithm should be computationally efficient: the number of operations per online step
should be linear in the number of nonzero features, and independent ofthe total number of
features.

• The algorithm should be memory efficient: it needs to maintain a list of active features, and
can insert (when the corresponding weight becomes nonzero) and delete (when the corre-
sponding weight becomes zero) features dynamically.
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Our solution, referred to astruncated gradient, is a simple modification of the standard stochastic
gradient rule. It is defined in (6) as an improvement over simpler ideas such as rounding and sub-
gradient method withL1 -regularization. The implementation details, showing our methods satisfy
the above requirements, are provided in Section 5.

Theoretical results stating how much sparsity is achieved using this method generally require
additional assumptions which may or may not be met in practice. Consequently,we rely on experi-
ments in Section 6 to show our method achieves good sparsity practice. We compare our approach
to a few others, includingL1 -regularization on small data, as well as online rounding of coefficients
to zero.

2. Online Learning with Stochastic Gradient Descent

In the setting of standard online learning, we are interested in sequential prediction problems where
repeatedly fromi = 1,2, . . .:

1. An unlabeled examplexi arrives.

2. We make a prediction based on existing weightswi ∈ Rd.

3. We observeyi , letzi = (xi ,yi), and incur some known lossL(wi ,zi) that is convex in parameter
wi .

4. We update weights according to some rule:wi+1← f (wi).

We want to come up with an update rulef , which allows us to bound the sum of losses

t

∑
i=1

L(wi ,zi)

as well as achieving sparsity. For this purpose, we start with the standardstochastic gradient descent
(SGD) rule, which is of the form:

f (wi) = wi−η∇1L(wi ,zi), (3)

where∇1L(a,b) is a sub-gradient ofL(a,b) with respect to the first variablea. The parameterη > 0
is often referred to as the learning rate. In our analysis, we only consider constant learning rate
with fixed η > 0 for simplicity. In theory, it might be desirable to have a decaying learning rate ηi

which becomes smaller wheni increases to get the so calledno-regret boundwithout knowingT in
advance. However, ifT is known in advance, one can select a constantη accordingly so the regret
vanishes asT→∞. Since our focus is on sparsity, not how to adapt learning rate, for clarity, we use
a constant learning rate in the analysis because it leads to simpler bounds.

The above method has been widely used in online learning (Littlestone et al., 1995; Cesa-
Bianchi et al., 1996). Moreover, it is argued to be efficient even for solving batch problems where
we repeatedly run the online algorithm over training data multiple times. For example, the idea has
been successfully applied to solve large-scale standard SVM formulations (Shalev-Shwartz et al.,
2007; Zhang, 2004). In the scenario outlined in the introduction, online-learning methods are more
suitable than some traditional batch-learning methods.
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Figure 1: Plots for the truncation functions,T0 andT1, which are defined in the text.

However, a main drawback of (3) is that it does not achieve sparsity, which we address in this
paper. In the literature, the stochastic-gradient descent rule is often referred to as gradient descent
(GD). There are other variants, such as exponentiated gradient descent (EG). Since our focus in this
paper is sparsity, not GD versus EG, we shall only consider modificationsof (3) for simplicity.

3. Sparse Online Learning

In this section, we examine several methods for achieving sparsity in online learning. The first idea
is simple coefficient rounding, which is the most natural method. We will then consider another
method which is the online counterpart ofL1-regularization in batch learning. Finally, we combine
such two ideas and introduce truncated gradient. As we shall see, all these ideas are closely related.

3.1 Simple Coefficient Rounding

In order to achieve sparsity, the most natural method is to round small coefficients (that are no larger
than a thresholdθ > 0) to zero after everyK online steps. That is, ifi/K is not an integer, we use
the standard GD rule in (3); ifi/K is an integer, we modify the rule as:

f (wi) = T0(wi−η∇1L(wi ,zi),θ), (4)

where for a vectorv = [v1, . . . ,vd] ∈ Rd, and a scalarθ≥ 0, T0(v,θ) = [T0(v1,θ), . . . ,T0(vd,θ)], with
T0 defined by (cf., Figure 1)

T0(v j ,θ) =

{

0 if |v j | ≤ θ
v j otherwise

.

That is, we first apply the standard stochastic gradient descent rule, and then round small coefficients
to zero.

In general, we should not takeK = 1, especially whenη is small, since each step modifieswi

by only a small amount. If a coefficient is zero, it remains small after one online update, and the
rounding operation pulls it back to zero. Consequently, rounding can bedone only after everyK
steps (with a reasonably largeK); in this case, nonzero coefficients have sufficient time to go above
the thresholdθ. However, ifK is too large, then in the training stage, we will need to keep many
more nonzero features in the intermediate steps before they are rounded tozero. In the extreme
case, we may simply round the coefficients in the end, which does not solve the storage problem in
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the training phase. The sensitivity in choosing appropriateK is a main drawback of this method;
another drawback is the lack of theoretical guarantee for its online performance.

3.2 A Sub-gradient Algorithm for L1-Regularization

In our experiments, we combine rounding-in-the-end-of-training with a simple online sub-gradient
method forL1-regularization with a regularization parameterg > 0:

f (wi) = wi−η∇1L(wi ,zi)−ηgsgn(wi), (5)

where for a vectorv = [v1, . . . ,vd], sgn(v) = [sgn(v1), . . . ,sgn(vd)], and sgn(v j) = 1 whenv j > 0,
sgn(v j) =−1 whenv j < 0, and sgn(v j) = 0 whenv j = 0. In the experiments, the online method (5)
plus rounding in the end is used as a simple baseline. This method does not produce sparse weights
online. Therefore it does not handle large-scale problems for which wecannot keep all features in
memory.

3.3 Truncated Gradient

In order to obtain an online version of the simple rounding rule in (4), we observe that the direct
rounding to zero is too aggressive. A less aggressive version is to shrink the coefficient to zero by a
smaller amount. We call this idea truncated gradient.

The amount of shrinkage is measured by agravityparametergi > 0:

f (wi) = T1(wi−η∇1L(wi ,zi),ηgi ,θ), (6)

where for a vectorv= [v1, . . . ,vd]∈Rd, and a scalarg≥0,T1(v,α,θ)= [T1(v1,α,θ), . . . ,T1(vd,α,θ)],
with T1 defined by (cf., Figure 1)

T1(v j ,α,θ) =











max(0,v j −α) if v j ∈ [0,θ]

min(0,v j +α) if v j ∈ [−θ,0]

v j otherwise

.

Again, the truncation can be performed everyK online steps. That is, ifi/K is not an integer, we
let gi = 0; if i/K is an integer, we letgi = Kg for a gravity parameterg > 0. This particular choice
is equivalent to (4) when we setg such thatηKg≥ θ. This requires a largeg whenη is small. In
practice, one should set a small, fixedg, as implied by our regret bound developed later.

In general, the larger the parametersg and θ are, the more sparsity is incurred. Due to the
extra truncationT1, this method can lead to sparse solutions, which is confirmed in our experiments
described later. In those experiments, the degree of sparsity discovered varies with the problem.

A special case, which we will try in the experiment, is to letg= θ in (6). In this case, we can use
only one parameterg to control sparsity. SinceηKg≪ θ whenηK is small, the truncation operation
is less aggressive than the rounding in (4). At first sight, the procedure appears to be an ad-hoc way
to fix (4). However, we can establish a regret bound for this method, showing it is theoretically
sound.

Settingθ = ∞ yields another important special case of (6), which becomes

f (wi) = T(wi−η∇1L(wi ,zi),giη), (7)
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where for a vectorv = [v1, . . . ,vd] ∈ Rd, and a scalarg≥ 0, T(v,α) = [T(v1,α), . . . ,T(vd,α)], with

T(v j ,α) =

{

max(0,v j −α) if v j > 0

min(0,v j +α) otherwise
.

The method is a modification of the standard sub-gradient descent method withL1-regularization
given in (5). The parametergi ≥ 0 controls the sparsity that can be achieved with the algorithm.
Note whengi = 0, the update rule is identical to the standard stochastic gradient descent rule. In
general, we may perform a truncation everyK steps. That is, ifi/K is not an integer, we letgi = 0; if
i/K is an integer, we letgi = Kg for a gravity parameterg> 0. The reason for doing so (instead of a
constantg) is that we can perform a more aggressive truncation with gravity parameter Kg after each
K steps. This may lead to better sparsity. An alternative way to derive a procedure similar to (7)
is through an application of convex hull projection idea of Zinkevich (2003) to theL1-regularized
loss, as in (5). However, instead of working with the original feature set,we need to consider a
2d-dimensional duplicated feature set[xi ,−xi ], with the non-negativity constraintw j ≥ 0 for each
component ofj (w will also have dimension 2d in this case). The resulting method is similar to ours,
with a similar theoretical guarantee as in Theorem 3.1. The proof presentedin this paper is more
specialized to truncated gradient, and directly works withxi instead of augmented data[xi ,−xi ].
Moreover, our analysis does not require the loss function to have bounded gradient, and thus can
directly handle the least squares loss.

The procedure in (7) can be regarded as an online counterpart ofL1-regularization in the sense
that it approximately solves anL1-regularization problem in the limit ofη→ 0. Truncated gradient
for L1-regularization is different from (5), which is a naïve application of stochastic gradient de-
scent rule with an addedL1-regularization term. As pointed out in the introduction, the latter fails
because it rarely leads to sparsity. Our theory shows even with sparsification, the prediction perfor-
mance is still comparable to standard online-learning algorithms. In the following, we develop a
general regret bound for this general method, which also shows how the regret may depend on the
sparsification parameterg.

3.4 Regret Analysis

Throughout the paper, we use‖ · ‖1 for 1-norm, and‖ · ‖ for 2-norm. For reference, we make the
following assumption regarding the loss function:

Assumption 3.1 We assume L(w,z) is convex in w, and there exist non-negative constants A and B
such that‖∇1L(w,z)‖2≤ AL(w,z)+B for all w∈ Rd and z∈ Rd+1.

For linear prediction problems, we have a general loss function of the form L(w,z) = φ(wTx,y). The
following are some common loss functionsφ(·, ·) with corresponding choices of parametersA and
B (which are not unique), under the assumption supx‖x‖ ≤C.

• Logistic: φ(p,y) = ln(1+exp(−py)); A= 0 andB= C2. This loss is for binary classification
problems withy∈ {±1}.

• SVM (hinge loss): φ(p,y) = max(0,1− py); A = 0 andB = C2. This loss is for binary
classification problems withy∈ {±1}.

• Least squares (square loss):φ(p,y) = (p−y)2; A= 4C2 andB= 0. This loss is for regression
problems.
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Our main result is Theorem 3.1 which is parameterized byA andB. The proof is left to the
appendix. Specializing it to particular losses yields several corollaries. Acorollary applicable to the
least square loss is given later in Corollary 4.1.

Theorem 3.1 (Sparse Online Regret) Consider sparse online update rule (6) with w1 = 0 andη > 0.
If Assumption 3.1 holds, then for all̄w∈ Rd we have

1−0.5Aη
T

T

∑
i=1

[

L(wi ,zi)+
gi

1−0.5Aη
‖wi+1 · I(wi+1≤ θ)‖1

]

≤η
2

B+
‖w̄‖2
2ηT

+
1
T

T

∑
i=1

[L(w̄,zi)+gi‖w̄ · I(wi+1≤ θ)‖1],

where for vectors v= [v1, . . . ,vd] and v′ = [v′1, . . . ,v
′
d], we let

‖v· I(|v′| ≤ θ)‖1 =
d

∑
j=1

|v j |I(|v′j | ≤ θ),

where I(·) is the set indicator function.

We state the theorem with a constant learning rateη. As mentioned earlier, it is possible to
obtain a result with variable learning rate whereη = ηi decays asi increases. Although this may
lead to a no-regret bound without knowingT in advance, it introduces extra complexity to the
presentation of the main idea. Since our focus is on sparsity rather than adapting learning rate, we
do not include such a result for clarity. IfT is known in advance, then in the above bound, one can
simply takeη = O(1/

√
T) and theL1-regularized regret is of orderO(1/

√
T).

In the above theorem, the right-hand side involves a termgi‖w̄ · I(wi+1 ≤ θ)‖1 depending on
wi+1 which is not easily estimated. To remove this dependency, a trivial upper bound ofθ = ∞ can
be used, leading toL1 penaltygi‖w̄‖1. In the general case ofθ < ∞, we cannot replacewi+1 by
w̄ because the effective regularization condition (as shown on the left-hand side) is the non-convex
penaltygi‖w · I(|w| ≤ θ)‖1. Solving such a non-convex formulation is hard both in the online and
batch settings. In general, we only know how to efficiently discover a localminimum which is
difficult to characterize. Without a good characterization of the local minimum,it is not possible
for us to replacegi‖w̄ · I(wi+1 ≤ θ)‖1 on the right-hand side bygi‖w̄ · I(w̄≤ θ)‖1 because such a
formulation implies we can efficiently solve a non-convex problem with a simple online update rule.
Still, whenθ < ∞, one naturally expects the right-hand side penaltygi‖w̄ · I(wi+1 ≤ θ)‖1 is much
smaller than the correspondingL1 penaltygi‖w̄‖1, especially whenw j has many components close
to 0. Therefore the situation withθ < ∞ can potentially yield better performance on some data. This
is confirmed in our experiments.

Theorem 3.1 also implies a trade-off between sparsity and regret performance. We may simply
consider the case wheregi = g is a constant. Wheng is small, we have less sparsity but the regret
term g‖w̄ · I(wi+1 ≤ θ)‖1 ≤ g‖w̄‖1 on the right-hand side is also small. Wheng is large, we are
able to achieve more sparsity but the regretg‖w̄· I(wi+1≤ θ)‖1 on the right-hand side also becomes
large. Such a trade-off (sparsity versus prediction accuracy) is empirically studied in Section 6. Our
observation suggests we can gain significant sparsity with only a small decrease of accuracy (that
is, using a smallg).
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Now consider the caseθ = ∞ andgi = g. WhenT → ∞, if we let η→ 0 andηT → ∞, then
Theorem 3.1 implies

1
T

T

∑
i=1

[L(wi ,zi)+g‖wi‖1]≤ inf
w̄∈Rd

[

1
T

T

∑
i=1

L(w̄,zi)+g‖w̄‖1
]

+o(1).

In other words, if we letL′(w,z)= L(w,z)+g‖w‖1 be theL1-regularized loss, then theL1-regularized
regret is small whenη→ 0 andT→∞. In particular, if we letη = 1/

√
T, then the theorem implies

theL1-regularized regret is

T

∑
i=1

(L(wi ,zi)+g‖wi‖1)−
T

∑
i=1

(L(w̄,zi)+g‖w̄‖1)

≤
√

T
2

(B+‖w̄‖2)
(

1+
A

2
√

T

)

+
A

2
√

T

(

T

∑
i=1

L(w̄,zi)+g
T

∑
i=1

(‖w̄‖1−‖wi+1‖1)
)

+o(
√

T),

which is O(
√

T) for bounded loss functionL and weightswi . These observations imply our pro-
cedure can be regarded as the online counterpart ofL1-regularization methods. In the stochastic
setting where the examples are drawn iid from some underlying distribution, thesparse online gra-
dient method proposed in this paper solves theL1-regularization problem.

3.5 Stochastic Setting

SGD-based online-learning methods can be used to solve large-scale batch optimization problems,
often quite successfully (Shalev-Shwartz et al., 2007; Zhang, 2004).In this setting, we can go
through training examples one-by-one in an online fashion, and repeat multiple times over the train-
ing data. In this section, we analyze the performance of such a procedure using Theorem 3.1.

To simplify the analysis, instead of assuming we go through the data one by one, we assume
each additional data point is drawn from the training data randomly with equalprobability. This
corresponds to the standard stochastic optimization setting, in which observed samples are iid from
some underlying distributions. The following result is a simple consequence of Theorem 3.1. For
simplicity, we only consider the case withθ = ∞ and constant gravitygi = g.

Theorem 3.2 Consider a set of training data zi = (xi ,yi) for i = 1, . . . ,n, and let

R(w,g) =
1
n

n

∑
i=1

L(w,zi)+g‖w‖1

be the L1-regularized loss over training data. Letŵ1 = w1 = 0, and define recursively for t= 1,2, . . .

wt+1 = T(wt −η∇1(wt ,zit ),gη), ŵt+1 = ŵt +
wt+1− ŵt

t +1
,
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where each it is drawn from{1, . . . ,n} uniformly at random. If Assumption 3.1 holds, then at any
time T, the following inequalities are valid for all̄w∈ Rd:

Ei1,...,iT

[

(1−0.5Aη)R

(

ŵT ,
g

1−0.5Aη

)]

≤Ei1,...,iT

[

1−0.5Aη
T

T

∑
i=1

R

(

wi ,
g

1−0.5Aη

)

]

≤η
2

B+
‖w̄‖2
2ηT

+R(w̄,g).

Proof Note the recursion of ˆwt implies

ŵT =
1
T

T

∑
t=1

wt

from telescoping the update rule. BecauseR(w,g) is convex inw, the first inequality follows di-
rectly from Jensen’s inequality. It remains to prove the second inequality.Theorem 3.1 implies the
following:

1−0.5Aη
T

T

∑
t=1

[

L(wt ,zit )+
g

1−0.5Aη
‖wt‖1

]

≤ g‖w̄‖1 +
η
2

B+
‖w̄‖2
2ηT

+
1
T

T

∑
t=1

L(w̄,zit ). (8)

Observe that

Eit

[

L(wt ,zit )+
g

1−0.5Aη
‖wt‖1

]

= R

(

wt ,
g

1−0.5Aη

)

and

g‖w̄‖1 +Ei1,...,iT

[

1
T

T

∑
t=1

L(w̄,zit )

]

= R(w̄,g).

The second inequality is obtained by taking the expectation with respect toEi1,...,iT in (8).

If we let η→ 0 andηT→ ∞, the bound in Theorem 3.2 becomes

E [R(ŵT ,g)]≤ E

[

1
T

T

∑
t=1

R(wt ,g)

]

≤ inf
w̄

R(w̄,g)+o(1).

That is, on average, ˆwT approximately solves theL1-regularization problem

inf
w

[

1
n

n

∑
i=1

L(w,zi)+g‖w‖1
]

.

If we choose a random stopping timeT, then the above inequalities says that on averagewT also
solves thisL1-regularization problem approximately. Therefore in our experiment, we use the last
solutionwT instead of the aggregated solution ˆwT . For practice purposes, this is adequate even
though we do not intentionally choose a random stopping time.

SinceL1-regularization is frequently used to achieve sparsity in the batch learning setting, the
connection toL1-regularization can be regarded as an alternative justification for the sparse-online
algorithm developed in this paper.
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Algorithm 1 Truncated Gradient for Least Squares
Inputs:
• thresholdθ≥ 0
• gravity sequencegi ≥ 0
• learning rateη ∈ (0,1)

• example oracleO

initialize weightsw j ← 0 ( j = 1, . . . ,d)
for trial i = 1,2, . . .

1. Acquire an unlabeled examplex = [x1,x2, . . . ,xd] from oracleO

2. forall weightsw j ( j = 1, . . . ,d)

(a) if w j > 0 andw j ≤ θ then w j ←max{w j −giη,0}
(b) elseifw j < 0 andw j ≥−θ then w j ←min{w j +giη,0}

3. Compute prediction: ˆy = ∑ j w
jx j

4. Acquire the labely from oracleO

5. Update weights for all featuresj: w j ← w j +2η(y− ŷ)x j

4. Truncated Gradient for Least Squares

The method in Section 3 can be directly applied to least squares regression.This leads to Algorithm
1 which implements sparsification for square loss according to Equation (6).In the description,
we use superscripted symbolw j to denote thej-th component of vectorw (in order to differentiate
from wi , which we have used to denote thei-th weight vector). For clarity, we also drop the index
i from wi . Although we keep the choice of gravity parametersgi open in the algorithm description,
in practice, we only consider the following choice:

gi =

{

Kg if i/K is an integer

0 otherwise
.

This may give a more aggressive truncation (thus sparsity) after everyK-th iteration. Since we do
not have a theorem formalizing how much more sparsity one can gain from thisidea, its effect will
only be examined empirically in Section 6.

In many online-learning situations (such as web applications), only a small subset of the features
have nonzero values for any examplex. It is thus desirable to deal with sparsity only in this small
subset rather than in all features, while simultaneously inducing sparsity onall feature weights.
Moreover, it is important to store only features with non-zero coefficients(if the number of features
is too large to be stored in memory, this approach allows us to use a hash table to track only the
nonzero coefficients). We describe how this can be implemented efficiently inthe next section.

For reference, we present a specialization of Theorem 3.1 in the following corollary which is
directly applicable to Algorithm 1.
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Corollary 4.1 (Sparse Online Square Loss Regret) If there exists C> 0 such that for all x,‖x‖ ≤C,
then for allw̄∈ Rd, we have

1−2C2η
T

T

∑
i=1

[

(wT
i xi−yi)

2 +
gi

1−2C2η
‖wi · I(|wi | ≤ θ)‖1

]

≤‖w̄‖
2

2ηT
+

1
T

T

∑
i=1

[

(w̄Txi−yi)
2 +gi+1‖w̄ · I(|wi+1| ≤ θ)‖1

]

,

where wi = [w1, . . . ,wd] ∈Rd is the weight vector used for prediction at the i-th step of Algorithm 1;
(xi ,yi) is the data point observed at the i-step.

This corollary explicitly states that average square loss incurred by the learner (the left-hand
side) is bounded by the average square loss of the best weight vector ¯w, plus a term related to the
size ofw̄ which decays as 1/T and an additive offset controlled by the sparsity thresholdθ and the
gravity parametergi .

5. Efficient Implementation

We altered a standard gradient-descent implementation, VOWPAL WABBIT (Langford et al., 2007),
according to algorithm 1. VOWPAL WABBIT optimizes square loss on a linear representationwTx
via gradient descent (3) with a couple caveats:

1. The prediction is normalized by the square root of the number of nonzero entries in a sparse
vector,wTx/

√

‖x‖0. This alteration is just a constant rescaling on dense vectors which is
effectively removable by an appropriate rescaling of the learning rate.

2. The prediction is clipped to the interval[0,1], implying the loss function is not square loss for
unclipped predictions outside of this dynamic range. Instead the update is a constant value,
equivalent to the gradient of a linear loss function.

The learning rate in VOWPAL WABBIT is controllable, supporting 1/i decay as well as a constant
learning rate (and rates in-between). The program operates in an entirely online fashion, so the
memory footprint is essentially just the weight vector, even when the amount of data is very large.

As mentioned earlier, we would like the algorithm’s computational complexity to depend lin-
early on the number of nonzero features of an example, rather than the total number of features. The
approach we took was to store a time-stampτ j for each featurej. The time-stamp was initialized
to the index of the example where featurej was nonzero for the first time. During online learning,
we simply went through all nonzero featuresj of examplei, and could “simulate” the shrinkage
of w j after τ j in a batch mode. These weights are then updated, and their time stamps are set to
i. This lazy-update idea of delaying the shrinkage calculation until needed isthe key to efficient
implementation of truncated gradient. Specifically, instead of using update rule(6) for weightw j ,
we shrunk the weights of all nonzero featurej differently by the following:

f (w j) = T1

(

w j +2η(y− ŷ)x j ,

⌊

i− τ j

K

⌋

Kηg,θ
)

,

andτ j is updated by

τ j ← τ j +

⌊

i− τ j

K

⌋

K.
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This lazy-update trick can be applied to the other two algorithms given in Section3. In the
coefficient rounding algorithm (4), for instance, for each nonzero feature j of examplei, we can
first perform a regular gradient descent on the square loss, and then do the following: if |w j | is
below the thresholdθ andi ≥ τ j +K, we roundw j to 0 and setτ j to i.

This implementation shows the truncated gradient method satisfies the following requirements
needed for solving large scale problems with sparse features.

• The algorithm is computationally efficient: the number of operations per online step is linear
in the number of nonzero features, and independent of the total number of features.

• The algorithm is memory efficient: it maintains a list of active features, and a feature can be
inserted when observed, and deleted when the corresponding weight becomes zero.

If we directly apply the online projection idea of Zinkevich (2003) to solve (1), then in the up-
date rule (7), one has to pick the smallestgi ≥ 0 such that‖wi+1‖1≤ s. We do not know an efficient
method to find this specificgi using operations independent of the total number of features. A stan-
dard implementation relies on sorting all weights, which requiresO(d logd) operations, whered is
the total number of (nonzero) features. This complexity is unacceptable for our purpose. However,
in an important recent work, Duchi et al. (2008) proposed an efficient onlineℓ1-projection method.
The idea is to use a balanced tree to keep track of weights, which allows efficient threshold finding
and tree updates inO(k lnd) operations on average, wherek denotes the number of nonzero coef-
ficients in the current training example. Although the algorithm still has weak dependency ond, it
is applicable to large-scale practical applications. The theoretical analysispresented in this paper
shows we can obtain a meaningful regret bound by picking an arbitrarygi . This is useful because
the resulting method is much simpler to implement and is computationally more efficient per online
step. Moreover, our method allows non-convex updates closely related tothe simple coefficient
rounding idea. Due to the complexity of implementing the balanced tree strategy in Duchi et al.
(2008), we shall not compare to it in this paper and leave it as a future direction. However, we be-
lieve the sparsity achieved with their approach should be comparable to the sparsity achieved with
our method.

6. Empirical Results

We applied VOWPAL WABBIT with the efficiently implemented sparsify option, as described in
the previous section, to a selection of data sets, including eleven data sets from the UCI repository
(Asuncion and Newman, 2007), the much larger data set rcv1 (Lewis et al., 2004), and a private
large-scale data set Big_Ads related to ad interest prediction. While UCI data sets are useful for
benchmark purposes, rcv1 and Big_Ads are more interesting since they embody real-world data
sets with large numbers of features, many of which are less informative formaking predictions than
others. The data sets are summarized in Table 1.

The UCI data sets used do not have many features so we expect that a large fraction of these
features are useful for making predictions. For comparison purposesas well as to better demonstrate
the behavior of our algorithm, we also added 1000 random binary features to those data sets. Each
feature has value 1 with probability 0.05 and 0 otherwise.
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Data Set #features #train data #test data task

ad 1411 2455 824 classification
crx 47 526 164 classification

housing 14 381 125 regression
krvskp 74 2413 783 classification

magic04 11 14226 4794 classification
mushroom 117 6079 2045 classification
spambase 58 3445 1156 classification

wbc 10 520 179 classification
wdbc 31 421 148 classification
wpbc 33 153 45 classification
zoo 17 77 24 regression
rcv1 38853 781265 23149 classification

Big_Ads 3×109 26×106 2.7×106 classification

Table 1: Data Set Summary.

6.1 Feature Sparsification of Truncated Gradient

In the first set of experiments, we are interested in how much reduction in thenumber of features is
possible without affecting learning performance significantly; specifically, we require the accuracy
be reduced by no more than 1% for classification tasks, and the total square loss be increased by no
more than 1% for regression tasks. As common practice, we allowed the algorithm to run on the
training data set for multiple passes with decaying learning rate. For each data set, we performed
10-fold cross validation over the training set to identify the best set of parameters, including the
learning rateη (ranging from 0.1 to 0.5), the sparsification rateg (ranging from 0 to 0.3), number of
passes of the training set (ranging from 5 to 30), and the decay of learning rate across these passes
(ranging from 0.5 to 0.9). The optimized parameters were used to train VOWPAL WABBIT on the
whole training set. Finally, the learned classifier/regressor was evaluatedon the test set. We fixed
K = 1 andθ = ∞, and will study the effects ofK andθ in later subsections.

Figure 2 shows the fraction of reduced features after sparsification is applied to each data set.
For UCI data sets, we also include experiments with 1000 random features added to the original
feature set. We do not add random features to rcv1 and Big_Ads since the experiment is not as
interesting.

For UCI data sets, with randomly added features, VOWPAL WABBIT is able to reduce the num-
ber of features by a fraction of more than 90%, except for the ad data set in which only 71% reduc-
tion is observed. This less satisfying result might be improved by a more extensive parameter search
in cross validation. However, if we can tolerate 1.3% decrease in accuracy (instead of 1% as for
other data sets) during cross validation, VOWPAL WABBIT is able to achieve 91.4% reduction, indi-
cating that a large reduction is still possible at the tiny additional cost of 0.3% accuracy loss. With
this slightly more aggressive sparsification, the test-set accuracy dropsfrom 95.9% (when only 1%
loss in accuracy is allowed in cross validation) to 95.4%, while the accuracy without sparsification
is 96.5%.
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Even for the original UCI data sets without artificially added features, VOWPAL WABBIT man-
ages to filter out some of the less useful features while maintaining the same level of performance.
For example, for the ad data set, a reduction of 83.4% is achieved. Compared to the results above,
it seems the most effective feature reductions occur on data sets with a large number of less useful
features, exactly where sparsification is needed.

For rcv1, more than 75% of features are removed after the sparsificationprocess, indicating the
effectiveness of our algorithm in real-life problems. We were not able to try many parameters in
cross validation because of the size of rcv1. It is expected that more reduction is possible when a
more thorough parameter search is performed.

The previous results do not exercise the full power of the approach presented here because the
standard Lasso (Tibshirani, 1996) is or may be computationally viable in thesedata sets. We have
also applied this approach to a large non-public data set Big_Ads where thegoal is predicting which
of two ads was clicked on given context information (the content of ads and query information).
Here, accepting a 0.009 increase in classification error (from error rate 0.329 to error rate 0.338)
allows us to reduce the number of features from about 3×109 to about 24×106, a factor of 125
decrease in the number of features.

For classification tasks, we also study how our sparsification solution affects AUC (Area Under
the ROC Curve), which is a standard metric for classification.1 Using the same sets of parameters
from 10-fold cross validation described above, we find the criterion is not affected significantly by
sparsification and in some cases, they are actually slightly improved. The reason may be that our
sparsification method removed some of the features that could have confused VOWPAL WABBIT .
The ratios of the AUC with and without sparsification for all classification tasks are plotted in
Figures 3. Often these ratios are above 98%.

6.2 The Effects ofK

As we argued before, using aK value larger than 1 may be desired in truncated gradient and the
rounding algorithms. This advantage is empirically demonstrated here. In particular, we tryK = 1,
K = 10, andK = 20 in both algorithms. As before, cross validation is used to select parameters
in the rounding algorithm, including learning rateη, number of passes of data during training, and
learning rate decay over training passes.

Figures 4 and 5 give the AUC vs. number-of-feature plots, where eachdata point is generated
by running respective algorithm using a different value ofg (for truncated gradient) andθ (for the
rounding algorithm). We usedθ = ∞ in truncated gradient.

The effect ofK is large in the rounding algorithm. For instance, in the ad data set the algorithm
usingK = 1 achieves an AUC of 0.94 with 322 features, while 13 and 7 features are needed using
K = 10 andK = 20, respectively. However, the same benefits of using a largerK is not observed
in truncated gradient, although the performances withK = 10 or 20 are at least as good as those
with K = 1 and for the spambase data set further feature reduction is achieved atthe same level of
performance, reducing the number of features from 76 (whenK = 1) to 25 (whenK = 10 or 20)
with of an AUC of about 0.89.

1. We use AUC here and in later subsections because it is insensitive to threshold, which is unlike accuracy.

791



LANGFORD, L I AND ZHANG

 0

 0.2

 0.4

 0.6

 0.8

 1

ad cr
x

ho
us

in
g

kr
vs

kp

m
ag

ic
04

sh
ro

om

sp
am w
bc

w
db

c

w
pb

c

zo
o

rc
v1

B
ig

_A
ds

F
ra

ct
io

n 
Le

ft

Dataset

Fraction of Features Left
Base data
1000 extra

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

ad cr
x

ho
us

in
g

kr
vs

kp

m
ag

ic
04

sh
ro

om

sp
am w
bc

w
db

c

w
pb

c

zo
o

rc
v1

B
ig

_A
ds

F
ra

ct
io

n 
Le

ft

Dataset

Fraction of Features LeftBase data
1000 extra

Figure 2: Plots showing the amount of features left after sparsification using truncated gradient for
each data set, when the performance is changed by at most 1% due to sparsification.
The solid bar: with the original feature set; the dashed bar: with 1000 random features
added to each example. Plot on left: fraction left with respect to the total number of
features (original with 1000 artificial features for the dashed bar). Plot on right: fraction
left with respect to the original features (not counting the 1000 artificial features in the
denominator for the dashed bar).
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Figure 3: A plot showing the ratio of the AUC when sparsification is used over the AUC when no
sparsification is used. The same process as in Figure 2 is used to determine empirically
good parameters. The first result is for the original data set, while the second result is for
the modified data set where 1000 random features are added to each example.

6.3 The Effects ofθ in Truncated Gradient

In this subsection, we empirically study the effect ofθ in truncated gradient. The rounding algorithm
is also included for comparison due to its similarity to truncated gradient whenθ = g. Again, we
used cross validation to choose parameters for eachθ value tried, and focused on the AUC metric
in the eight UCI classification tasks, except the degenerate one of wpbc.We fixedK = 10 in both
algorithm.
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Figure 4: Effect ofK on AUC in the rounding algorithm.
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Figure 5: Effect ofK on AUC in truncated gradient.
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Figure 6 gives the AUC vs. number-of-feature plots, where each data point is generated by
running respective algorithms using a different value ofg (for truncated gradient) andθ (for the
rounding algorithm). A few observations are in place. First, the results verify the observation that
the behavior of truncated gradient withθ = g is similar to the rounding algorithm. Second, these
results suggest that, in practice, it may be desirable to useθ = ∞ in truncated gradient because it
avoids the local-minimum problem.

6.4 Comparison to Other Algorithms

The next set of experiments compares truncated gradient to other algorithms regarding their abilities
to balance feature sparsification and performance. Again, we focus onthe AUC metric in UCI
classification tasks except wpdc. The algorithms for comparison include:

• The truncated gradient algorithm: We fixedK = 10 andθ = ∞, used crossed-validated pa-
rameters, and altered the gravity parameterg.

• The rounding algorithm described in Section 3.1: We fixedK = 10, used cross-validated
parameters, and altered the rounding thresholdθ.

• The subgradient algorithm described in Section 3.2: We fixedK = 10, used cross-validated
parameters, and altered the regularization parameterg.

• The Lasso (Tibshirani, 1996) for batchL1-regularization: We used a publicly available imple-
mentation (Sjöstrand, 2005).

Note that we do not attempt to compare these algorithms on rcv1 and Big_Ads simply because their
sizes are too large for the Lasso.

Figure 7 gives the results. Truncated gradient is consistently competitive with the other two
online algorithms and significantly outperformed them in some problems. This suggests the effec-
tiveness of truncated gradient.

Second, it is interesting to observe that the qualitative behavior of truncated gradient is often
similar to LASSO, especially when very sparse weight vectors are allowed (the left side in the
graphs). This is consistent with theorem 3.2 showing the relation between them. However, LASSO
usually has worse performance when the allowed number of nonzero weights is set too large (the
right side of the graphs). In this case, LASSO seems to overfit, while truncated gradient is more
robust to overfitting. The robustness of online learning is often attributed toearly stopping, which
has been extensively discussed in the literature (e.g., Zhang, 2004).

Finally, it is worth emphasizing that the experiments in this subsection try to shed some light
on the relative strengths of these algorithms in terms of feature sparsification. For large data sets
such as Big_Ads only truncated gradient, coefficient rounding, and thesub-gradient algorithms are
applicable. As we have shown and argued, the rounding algorithm is quite ad hoc and may not
work robustly in some problems, and the sub-gradient algorithm does not lead to sparsity in general
during training.

7. Conclusion

This paper covers the first sparsification technique for large-scale online learning with strong the-
oretical guarantees. The algorithm, truncated gradient, is the natural extension of Lasso-style re-
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Figure 6: Effect ofθ on AUC in truncated gradient.
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Figure 7: Comparison of four algorithms.
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gression to the online-learning setting. Theorem 3.1 proves the technique issound: it never harms
performance much compared to standard stochastic gradient descent in adversarial situations. Fur-
thermore, we show the asymptotic solution of one instance of the algorithm is essentially equivalent
to the Lasso regression, thus justifying the algorithm’s ability to produce sparse weight vectors when
the number of features is intractably large.

The theorem is verified experimentally in a number of problems. In some cases, especially for
problems with many irrelevant features, this approach achieves a one or two order of magnitude
reduction in the number of features.
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Appendix A. Proof of Theorem 3.1

The following lemma is the essential step in our analysis.

Lemma 1 Suppose update rule (6) is applied to weight vector w on example z= (x,y) with gravity
parameter gi = g, and results in a weight vector w′. If Assumption 3.1 holds, then for all̄w∈ Rd,
we have

(1−0.5Aη)L(w,z)+g‖w′ · I(|w′| ≤ θ)‖1

≤L(w̄,z)+g‖w̄· I(|w′| ≤ θ)‖1 +
η
2

B+
‖w̄−w‖2−‖w̄−w′‖2

2η
.

Proof Consider any target vector ¯w∈ Rd and letw̃ = w−η∇1L(w,z). We havew′ = T1(w̃,gη,θ).
Let

u(w̄,w′) = g‖w̄ · I(|w′| ≤ θ)‖1−g‖w′ · I(|w′| ≤ θ)‖1.

Then the update equation implies the following:

‖w̄−w′‖2

≤‖w̄−w′‖2 +‖w′− w̃‖2

=‖w̄− w̃‖2−2(w̄−w′)T(w′− w̃)

≤‖w̄− w̃‖2 +2ηu(w̄,w′)

=‖w̄−w‖2 +‖w− w̃‖2 +2(w̄−w)T(w− w̃)+2ηu(w̄,w′)

=‖w̄−w‖2 +η2‖∇1L(w,z)‖2 +2η(w̄−w)T∇1L(w,z)+2ηu(w̄,w′)

≤‖w̄−w‖2 +η2‖∇1L(w,z)‖2 +2η(L(w̄,z)−L(w,z))+2ηu(w̄,w′)

≤‖w̄−w‖2 +η2(AL(w,z)+B)+2η(L(w̄,z)−L(w,z))+2ηu(w̄,w′).

Here, the first and second equalities follow from algebra, and the third from the definition of ˜w.
The first inequality follows because a square is always non-negative.The second inequality follows
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becausew′ = T1(w̃,gη,θ), which implies(w′− w̃)Tw′ =−gη‖w′ · I(|w̃| ≤ θ)‖1 =−gη‖w′ · I(|w′| ≤
θ)‖1 and|w′j − w̃ j | ≤ gηI(|w′j | ≤ θ). Therefore,

−(w̄−w′)T(w′− w̃) =− w̄T(w′− w̃)+w′T(w′− w̃)

≤
d

∑
j=1

|w̄ j ||w′j − w̃ j |+(w′− w̃)Tw′

≤gη
d

∑
j=1

|w̄ j |I(|w′j | ≤ θ)+(w′− w̃)Tw′ = ηu(w̄,w′),

where the third inequality follows from the definition of sub-gradient of a convex function, implying

(w̄−w)T∇1L(w,z)≤ L(w̄,z)−L(w,z)

for all w andw̄; the fourth inequality follows from Assumption 3.1. Rearranging the above inequal-
ity leads to the desired bound.

Proof (of Theorem 3.1) Applying Lemma 1 to the update on triali gives

(1−0.5Aη)L(wi ,zi)+gi‖wi+1 · I(|wi+1| ≤ θ)‖1

≤L(w̄,zi)+
‖w̄−wi‖2−‖w̄−wi+1‖2

2η
+gi‖w̄ · I(|wi+1| ≤ θ)‖1 +

η
2

B.

Now summing overi = 1,2, . . . ,T, we obtain

T

∑
i=1

[(1−0.5Aη)L(wi,zi)+gi‖wi+1 · I(|wi+1| ≤ θ)‖1]

≤
T

∑
i=1

[‖w̄−wi‖2−‖w̄−wi+1‖2
2η

+L(w̄,zi)+gi‖w̄ · I(|wi+1| ≤ θ)‖1 +
η
2

B

]

=
‖w̄−w1‖2−‖w̄−wT‖2

2η
+

η
2

TB+
T

∑
i=1

[L(w̄,zi)+gi‖w̄ · I(|wi+1| ≤ θ)‖1]

≤ ‖w̄‖2
2η

+
η
2

TB+
T

∑
i=1

[L(w̄,zi)+gi‖w̄· I(|wi+1| ≤ θ)‖1].

The first equality follows from the telescoping sum and the second inequalityfollows from the initial
condition (all weights are zero) and dropping negative quantities. The theorem follows by dividing
with respect toT and rearranging terms.
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