Journal of Machine Learning Research 10 (2009) 777-801 Stdai6/08; Revised 11/08; Published 3/09

Sparse Online Learning via Truncated Gradient

John Langford JL@YAHOO-INC.COM
Yahoo! Research
New York, NY, USA

Lihong Li LIHONG@CS.RUTGERSEDU
Department of Computer Science

Rutgers University

Piscataway, NJ, USA

Tong Zhang* TONGZ@RCI.RUTGERSEDU
Department of Statistics

Rutgers University

Piscataway, NJ, USA

Editor: Manfred Warmuth

Abstract

We propose a general method caltaghcated gradiento induce sparsity in the weights of online-
learning algorithms with convex loss functions. This melthas several essential properties:

1. The degree of sparsity is continuous—a parameter contrelsate of sparsification from no sparsifi-
cation to total sparsification.

2. The approach is theoretically motivated, and an instahitecan be regarded as an online counterpart
of the populat;-regularization method in the batch setting. We prove tivatlsrates of sparsification
result in only small additional regret with respect to tygdionline-learning guarantees.

3. The approach works well empirically.

We apply the approach to several data sets and find for datavithtlarge numbers of features,
substantial sparsity is discoverable.

Keywords: truncated gradient, stochastic gradient descent, ordiaming, sparsity, regulariza-
tion, Lasso

1. Introduction

We are concerned with machine learning over large data sets. As an exémeplgrgest data set
we use here has over 16parse examples and1f@atures using about 3bbytes. In this setting,

many common approaches fail, simply because they cannot load the daté seemory or they

are not sufficiently efficient. There are roughly two classes of aghesmwhich can work:

1. Parallelize a batch-learning algorithm over many machines (e.g., Chuz9Gs).

2. Stream the examples to an online-learning algorithm (e.g., Littlestone, Li@83stone et al.,
1995; Cesa-Bianchi et al., 1996; Kivinen and Warmuth, 1997).

x. Partially supported by NSF grant DMS-0706805.

(©2009 John Langford, Lihong Li and Tong Zhang.

LANGFORD, LI AND ZHANG

This paper focuses on the second approach.
Typical online-learning algorithms have at least one weight for evextyife, which is too much
in some applications for a couple reasons:

1. Space constraints. If the state of the online-learning algorithm overfRAM it can not
efficiently run. A similar problem occurs if the state overflows the L2 cache.

2. Test-time constraints on computation. Substantially reducing the numbetwifde can yield
substantial improvements in the computational time required to evaluate a new sample

This paper addresses the problem of inducing sparsity in learned weibhésusing an online-
learning algorithm. There are several ways to do this wrong for oulgmad-or example:

1. Simply addingL;-regularization to the gradient of an online weight update doesn’'t work
because gradients don't induce sparsity. The essential difficulty is thetdient update has
the forma-+ b wherea andb are two floats. Very few float pairs add to O (or any other default
value) so there is little reason to expect a gradient update to accidentallyogreparsity.

2. Simply rounding weights to O is problematic because a weight may be small dhaeéngp
useless or small because it has been updated only once (either at iteirigegf training
or because the set of features appearing is also sparse). Rouralingjtees can also play
havoc with standard online-learning guarantees.

3. Black-box wrapper approaches which eliminate features and test thetinfiihe elimination
are not efficient enough. These approaches typically run an algonithny times which is
particularly undesirable with large data sets.

1.1 What Others Do

In the literature, the Lasso algorithm (Tibshirani, 1996) is commonly usedhie\a sparsity for
linear regression usinig;-regularization. This algorithm does not work automatically in an online
fashion. There are two formulations bof-regularization. Consider a loss functibtw, z) which is
convex inw, wherez = (X, i) is an input/output pair. One is tli®nvex constraint formulation

n
W = arg rvvinzlL(vv,zi) subject to|w|j1 < s, 1)
i=
wheresis a tunable parameter. The other is sudt regularization formulatiorwhere
) n
= argminy L(wz) +gilwa 2)
i=

With appropriately choseg, the two formulations are equivalent. The convex constraint formu-
lation has a simple online version using the projection idea of Zinkevich (20@8¢h requires
the projection of weightv into anL-ball at every online step. This operation is difficult to imple-
ment efficiently for large-scale data with many features even if all examples $parse features
although recent progress was made (Duchi et al., 2008) to redueenbitizedtime complexity to
O(klogd), wherek is the number of nonzero entriesxj andd is the total number of features (i.e.,

778

SPARSEONLINE LEARNING VIA TRUNCATED GRADIENT

the dimension ok;). In contrast, the soft-regularization method is efficient for a batch seltieg

et al., 2007) so we pursue it here in an online setting where we develdgaittam whose com-
plexity is linear ink but independent al; these algorithms are therefore more efficient in problems
whered is prohibitively large.

More recently, Duchi and Singer (2008) propose a framework forigeaprisk minimization
with regularization calledforward Looking Subgradient®r FoLOs in short. The basic idea is to
solve a regularized optimization problem after every gradient-descgmt $tas family of algo-
rithms allow general convex regularization function, and reproduceciapcase of the truncated
gradient algorithm we will introduce in Section 3.3 (wllset too) whenL;-regularization is used.

The Forgetron algorithm (Dekel et al., 2006) is an online-learning algorittat manages mem-
ory use. It operates by decaying the weights on previous examplesantbiimding these weights
to zero when they become small. The Forgetron is stated for kernelized algorg¢hms, while we
are concerned with the simpler linear setting. When applied to a linear keraéiptgetron is not
computationally or space competitive with approaches operating directhaturéeweights.

A different, Bayesian approach to learning sparse linear classifielleeis by Balakrishnan and
Madigan (2008). Specifically, their algorithms approximate the posterioiGyussian distribution,
and hence need to store second-order covariance statistics whidate @¢f) space and time per
online step. In contrast, our approach is much more efficient, requirilyg@ful) space and(k)
time at every online step.

After completing the paper, we learned that Carpenter (2008) indepiydeveloped an algo-
rithm similar to ours.

1.2 What We Do

We pursue an algorithmic strategy which can be understood as an onlgiervef an efficient.;
loss optimization approach (Lee et al., 2007). At a high level, our appre@acks with the soft-
regularization formulation (2) and decays the weight to a default valueefégy online stochastic
gradient step. This simple approach enjoys minimal time complexity (which is lindaaia in-
dependent ofl) as well as strong performance guarantee, as discussed in Sectiods53 &or
instance, the algorithm never performs much worse than a standard taméag algorithm, and
the additional loss due to sparsification is controlled continuously with a siaglevalued param-
eter. The theory gives a family of algorithms with convex loss functions fdwéimg sparsity—one
per online-learning algorithm. We instantiate this for square loss and shavamefficient imple-
mentation can take advantage of sparse examples in Section 4. In additiorLterdgularization
formulation (2), the family of algorithms we consider also include some noresosparsification
techniques.

As mentioned in the introduction, we are mainly interested in sparse online mdtrddsge
scale problems with sparse features. For such problems, our algorituid Satisfy the following
requirements:

e The algorithm should be computationally efficient: the number of operatiansntiee step
should be linear in the number of nonzero features, and independdrd tdtal number of
features.

e The algorithm should be memory efficient: it needs to maintain a list of activeres and
can insert (when the corresponding weight becomes nonzero) ete ¢ehen the corre-
sponding weight becomes zero) features dynamically.

779

LANGFORD, LI AND ZHANG

Our solution, referred to asuncated gradientis a simple modification of the standard stochastic
gradient rule. Itis defined in (6) as an improvement over simpler idedsasicounding and sub-
gradient method witlh; -regularization. The implementation details, showing our methods satisfy
the above requirements, are provided in Section 5.

Theoretical results stating how much sparsity is achieved using this methedafigmequire
additional assumptions which may or may not be met in practice. Consequentigly on experi-
ments in Section 6 to show our method achieves good sparsity practice. Wareooup approach
to a few others, includingy; -regularization on small data, as well as online rounding of coefficients
to zero.

2. Online Learning with Stochastic Gradient Descent

In the setting of standard online learning, we are interested in sequemtii¢fion problems where
repeatedly from=1,2,...:

1. An unlabeled exampbeg arrives.
2. We make a prediction based on existing weights R.

3. We observg;, letz = (x;, Vi), and incur some known loggw;,) that is convex in parameter
W;.

4. We update weights according to some rulg:1 < f(w;).

We want to come up with an update ruiewhich allows us to bound the sum of losses

ﬁiuwi,z)

as well as achieving sparsity. For this purpose, we start with the stasidaithstic gradient descent
(SGD) rule, which is of the form:

f(w) =w —nOiL(w,z), (3)

wherel1L(a,b) is a sub-gradient df(a, b) with respect to the first variabke The parameter > 0
is often referred to as the learning rate. In our analysis, we only cansiestant learning rate
with fixed n > O for simplicity. In theory, it might be desirable to have a decaying learnitegya
which becomes smaller wheincreases to get the so called-regret boundvithout knowingT in
advance. However, if is known in advance, one can select a constaatcordingly so the regret
vanishes a3 — o. Since our focus is on sparsity, not how to adapt learning rate, fatychae use
a constant learning rate in the analysis because it leads to simpler bounds.

The above method has been widely used in online learning (Littlestone et @b; C&sa-
Bianchi et al., 1996). Moreover, it is argued to be efficient evendbrisg batch problems where
we repeatedly run the online algorithm over training data multiple times. For exatnelielea has
been successfully applied to solve large-scale standard SVM formulaStiade(-Shwartz et al.,
2007; Zhang, 2004). In the scenario outlined in the introduction, onliaetieg methods are more
suitable than some traditional batch-learning methods.

780

SPARSEONLINE LEARNING VIA TRUNCATED GRADIENT

To(x,0) T1(X,a,0)

-0 | 0 ‘ a f

Figure 1: Plots for the truncation functionk, and Ty, which are defined in the text.

However, a main drawback of (3) is that it does not achieve sparsiighwie address in this
paper. In the literature, the stochastic-gradient descent rule is ofemneb to as gradient descent
(GD). There are other variants, such as exponentiated gradierid€E¢5). Since our focus in this
paper is sparsity, not GD versus EG, we shall only consider modificatiof33 for simplicity.

3. Sparse Online Learning

In this section, we examine several methods for achieving sparsity in ondinérg. The first idea
is simple coefficient rounding, which is the most natural method. We will thesider another
method which is the online counterpartlgfregularization in batch learning. Finally, we combine
such two ideas and introduce truncated gradient. As we shall see, allitlees are closely related.

3.1 Simple Coefficient Rounding

In order to achieve sparsity, the most natural method is to round smallaeef§ (that are no larger
than a threshol® > 0) to zero after everK online steps. That is, if/K is not an integer, we use
the standard GD rule in (3); if K is an integer, we modify the rule as:

f(w) = To(w; —n01L(Wi,7),8), (4)

where for a vectov = [vy,...,V4] € R4, and a scala® > 0, To(v,0) = [To(v1,8),..., To(vqg,0)], with
To defined by (cf., Figure 1)
if [vil <
To(v},6) = {0 il <8

vj otherwise

That is, we first apply the standard stochastic gradient descentmdl&hen round small coefficients
to zero.

In general, we should not také = 1, especially whem is small, since each step modifies
by only a small amount. If a coefficient is zero, it remains small after one ®@nipdate, and the
rounding operation pulls it back to zero. Consequently, rounding catobe only after everK
steps (with a reasonably larg; in this case, nonzero coefficients have sufficient time to go above
the threshold. However, ifK is too large, then in the training stage, we will need to keep many
more nonzero features in the intermediate steps before they are roungeatoln the extreme
case, we may simply round the coefficients in the end, which does not selgtoifage problem in

781

LANGFORD, LI AND ZHANG

the training phase. The sensitivity in choosing approptais a main drawback of this method;
another drawback is the lack of theoretical guarantee for its onlinerpeaftce.

3.2 A Sub-gradient Algorithm for Li-Regularization

In our experiments, we combine rounding-in-the-end-of-training with alsimpline sub-gradient
method forL-regularization with a regularization parameges O:

f(wi) =w —nOiL(Wi,z) —ngsgnwi), (5)

where for a vectow = [vi,..., Vg, sgn(V) = [sgnv1),...,sgn(vq)], and sgiv;) = 1 whenv; > 0,
sgn(vj) = —1 whenv; < 0, and sgfv;) = 0 whenv; = 0. In the experiments, the online method (5)
plus rounding in the end is used as a simple baseline. This method doesdutgeparse weights
online. Therefore it does not handle large-scale problems for whicteweot keep all features in
memory.

3.3 Truncated Gradient

In order to obtain an online version of the simple rounding rule in (4), wemesthat the direct
rounding to zero is too aggressive. A less aggressive version isitik she coefficient to zero by a
smaller amount. We call this idea truncated gradient.

The amount of shrinkage is measured lyravity parameteg; > 0:

f(wi) = Ta(w; —n01L(W;,7),NG;i, 8), (6)

where for avectov= [vi,...,vg] € RY, and a scalag > 0, Ty (v, a1, 8) = [T1(v1,a,8),..., T1(vq,a,0)],
with T; defined by (cf., Figure 1)

max0,vj —a) if v; €[0,6]
T1(vj,0,8) = ¢ min(0,v; +a) if vj € [-6,0].
Vj otherwise

Again, the truncation can be performed evé&rynline steps. That is, if/K is not an integer, we
letgi = 0; if i/K is an integer, we le; = Kg for a gravity parameteg > 0. This particular choice
is equivalent to (4) when we sgtsuch thainKg > 6. This requires a largg whenn is small. In
practice, one should set a small, fixgchs implied by our regret bound developed later.

In general, the larger the parametgrand 6 are, the more sparsity is incurred. Due to the
extra truncatiorf, this method can lead to sparse solutions, which is confirmed in our experiments
described later. In those experiments, the degree of sparsity disdoxzeres with the problem.

A special case, which we will try in the experiment, is toget 0 in (6). In this case, we can use
only one parameteagto control sparsity. SincgKg <« 8 whennK is small, the truncation operation
is less aggressive than the rounding in (4). At first sight, the proeeajysears to be an ad-hoc way
to fix (4). However, we can establish a regret bound for this methodyisqat is theoretically
sound.

Settingd = « yields another important special case of (6), which becomes

f(wi) =T(w —n0iL(W,z),ain), (7)

782

SPARSEONLINE LEARNING VIA TRUNCATED GRADIENT

where for a vectov = [vs,...,vg] € R, and a scalag > 0, T(v,a) = [T(v1,q),..., T (vg,a)], with

T(vi.a) = max(0,v;j —a) ifvj>0
P77 I min(0,vj +a) otherwise

The method is a modification of the standard sub-gradient descent method;webularization
given in (5). The parametay; > 0 controls the sparsity that can be achieved with the algorithm.
Note wheng; = 0, the update rule is identical to the standard stochastic gradient deskenbr
general, we may perform a truncation evirgteps. Thatis, if/K is not an integer, we la; = O; if

i/K is an integer, we leg; = Kg for a gravity parameteg > 0. The reason for doing so (instead of a
constang) is that we can perform a more aggressive truncation with gravity parakegteter each

K steps. This may lead to better sparsity. An alternative way to derive acanecsimilar to (7)

is through an application of convex hull projection idea of Zinkevich (3a63helL;-regularized
loss, as in (5). However, instead of working with the original featurevgetneed to consider a
2d-dimensional duplicated feature g&t, —x;], with the non-negativity constraimt! > 0 for each
component of (wwill also have dimension@in this case). The resulting method is similar to ours,
with a similar theoretical guarantee as in Theorem 3.1. The proof presientieid paper is more
specialized to truncated gradient, and directly works wjtinstead of augmented data, —X;.
Moreover, our analysis does not require the loss function to havedeougradient, and thus can
directly handle the least squares loss.

The procedure in (7) can be regarded as an online counterplagtrefyularization in the sense
that it approximately solves dn-regularization problem in the limit af — 0. Truncated gradient
for Li-regularization is different from (5), which is a naive application of séstic gradient de-
scent rule with an added;-regularization term. As pointed out in the introduction, the latter fails
because it rarely leads to sparsity. Our theory shows even with spatisificthe prediction perfor-
mance is still comparable to standard online-learning algorithms. In the follpwiagievelop a
general regret bound for this general method, which also shows teveginet may depend on the
sparsification parameter

3.4 Regret Analysis

Throughout the paper, we uge||; for 1-norm, and| - || for 2-norm. For reference, we make the
following assumption regarding the loss function:

Assumption 3.1 We assume (w, z) is convex in w, and there exist non-negative constants A and B
such that]| 0;L(w, 2)||? < AL(w, z) + B for all w € R? and ze RA+1,

For linear prediction problems, we have a general loss function of thelfw, z) = @(w' x,y). The
following are some common loss functio@§, -) with corresponding choices of parametérand
B (which are not unique), under the assumption, e < C.

e Logistic: @(p,y) = In(1+exp(—py)); A= 0 andB = C2. This loss is for binary classification
problems withy € {£1}.

e SVM (hinge loss): @(p,y) = max(0,1— py); A= 0 andB = C?. This loss is for binary
classification problems withe {£1}.

e Least squares (square losg)p,y) = (p—Y)% A= 4C? andB = 0. This loss is for regression
problems.

783

LANGFORD, LI AND ZHANG

Our main result is Theorem 3.1 which is parameterizedAandB. The proof is left to the
appendix. Specializing it to particular losses yields several corollariesrédlary applicable to the
least square loss is given later in Corollary 4.1.

Theorem 3.1 (Sparse Online Regret) Consider sparse online update rule (6) with@andn > 0.
If Assumption 3.1 holds, then for all ¢ RY we have

1-05An T i
ni_z |:L(Wi,Zj)+lgl5 ﬂr,]||Vvi+1'|(wi+1§e)Hl
n HW|2 1t _ —
< VI , . . : <
ZB+ onT +7i: [L(W,z) +Gi[[w- 1 (Wit1 < B)[1],

where for vectors v [vy,...,vg] and V = [V},...,vy], we let

d

Iv-1(V] < 8)[la = J;M\'(MI <),

where [-) is the set indicator function.

We state the theorem with a constant learning rateAs mentioned earlier, it is possible to
obtain a result with variable learning rate where- n; decays as increases. Although this may
lead to a no-regret bound without knowifigin advance, it introduces extra complexity to the
presentation of the main idea. Since our focus is on sparsity rather thptingdi@arning rate, we
do not include such a result for clarity. Tfis known in advance, then in the above bound, one can
simply taken = O(1/+/T) and thel;-regularized regret is of ord@(1/+/T).

In the above theorem, the right-hand side involves a tgiffw- | (w1 < 0)|/1 depending on
Wi 1 which is not easily estimated. To remove this dependency, a trivial uppeidaf® = c can
be used, leading tb; penaltygi||w]1. In the general case & < o, we cannot replace, by
w because the effective regularization condition (as shown on the leftgida) is the non-convex
penaltygi||w- I (|w| < 8)]|1. Solving such a non-convex formulation is hard both in the online and
batch settings. In general, we only know how to efficiently discover a logalmum which is
difficult to characterize. Without a good characterization of the local mininitiie,not possible
for us to replacei||w- | (wi1 < 8)||1 on the right-hand side bg;||w- | (w < 0)||1 because such a
formulation implies we can efficiently solve a hon-convex problem with a simgieeunpdate rule.
Still, when® < o, one naturally expects the right-hand side penglyv- | (wi+1 < 0)]]1 is much
smaller than the correspondihg penaltyg;|w]|1, especially whenmvj has many components close
to 0. Therefore the situation with< c can potentially yield better performance on some data. This
is confirmed in our experiments.

Theorem 3.1 also implies a trade-off between sparsity and regret perfoem@/e may simply
consider the case whege= g is a constant. Wheg is small, we have less sparsity but the regret
termg|lw- 1 (wiy1 < 8)|]1 < g||w]|1 on the right-hand side is also small. Wheiis large, we are
able to achieve more sparsity but the regyietr- | (w1 < 8)||1 on the right-hand side also becomes
large. Such a trade-off (sparsity versus prediction accuracy) is igalpirstudied in Section 6. Our
observation suggests we can gain significant sparsity with only a sma#ladexof accuracy (that
is, using a smald).

784

SPARSEONLINE LEARNING VIA TRUNCATED GRADIENT

Now consider the casg = o andg; = g. WhenT — oo, if we letn — 0 andnT — o, then
Theorem 3.1 implies

+0(1).

1g PR I L
T 2, (LW 2) - gliwi o] < inf, [T‘ZL(w,aHgIIMIl

In other words, if we leL’ (w, z) = L(w, z) +g||w||1 be theL;-regularized loss, then thg-regularized
regret is small when — 0 andT — . In particular, if we let) = 1/+/T, then the theorem implies
thelLi-regularized regret is

T T
;<L<vvi,z>+guwiul>—;<L<vv,z>+guvwl>
< V(e | (145) + (;L W2 +gzl |vw|1—||w.+1|1>> +o(vT),

which is O(v/T) for bounded loss functioh and weightsy;. These observations imply our pro-
cedure can be regarded as the online counterpdri-oégularization methods. In the stochastic
setting where the examples are drawn iid from some underlying distributioepttrse online gra-
dient method proposed in this paper solvesltheegularization problem.

3.5 Stochastic Setting

SGD-based online-learning methods can be used to solve large-scdl@ptigization problems,
often quite successfully (Shalev-Shwartz et al., 2007; Zhang, 20B¥}his setting, we can go
through training examples one-by-one in an online fashion, and repeatietiltigs over the train-
ing data. In this section, we analyze the performance of such a precesimg Theorem 3.1.

To simplify the analysis, instead of assuming we go through the data one byveressume
each additional data point is drawn from the training data randomly with qaoahbility. This
corresponds to the standard stochastic optimization setting, in which obsenvples are iid from
some underlying distributions. The following result is a simple consequehtieemrem 3.1. For
simplicity, we only consider the case wiéh= c and constant gravitg; = g.

Theorem 3.2 Consider a set of training data z (x,y;) fori =1,...,n, and let

R(w,g) = ZL W, Z) +g|w1

be the L1-regularized loss over training data. L&t = w; = 0, and define recursively fort 1,2, ...

b M1 — W
Wi =T (W —NU1(W, ,),9n), WHl:WH—%’

785

LANGFORD, LI AND ZHANG

where eachyiis drawn from{1,...,n} uniformly at random. If Assumption 3.1 holds, then at any
time T, the following inequalities are valid for alf € RY:

Ei,, it [(1 —0.5An)R (WT’ 1C?5Ar]>]

1—-0.5An g
< . .
_Ell,...,IT [ZR< iy 1 0 5An>

n IIVWI2 -
<—B .
<3 2nT +R(w,g)

Proof Note the recursion of; implies

1 T
cTt

from telescoping the update rule. Becal®,g) is convex inw, the first inequality follows di-
rectly from Jensen’s inequality. It remains to prove the second inequaligorem 3.1 implies the
following:

1-0.5An J | g Iw]? =
05 [+ S| <+ Je+ ik 25 Lz @
Observe that
Ei |LWLZ,) + w2 | = R (g,
' 7 1-0.5An "1—0.5An
and
1L _
9Vl + i | T Y LW2)| = RO Q).
The second inequality is obtained by taking the expectation with respEgt tg, in (8). |

If we letn — 0 andnT — o, the bound in Theorem 3.2 becomes

E[R(Wr,9) [Zlth g] <infR(W,g) +0(1).

That is, on averagey; approximately solves thie;-regularization problem

inf [ﬁi;uw,m +9HWH1] .

If we choose a random stopping tirie then the above inequalities says that on avemgealso
solves thid_;-regularization problem approximately. Therefore in our experiment, seethe last
solutionwy instead of the aggregated solutiors. "~ For practice purposes, this is adequate even
though we do not intentionally choose a random stopping time.

Sinceli-regularization is frequently used to achieve sparsity in the batch leareitiggs the
connection td-;-regularization can be regarded as an alternative justification for tmeespaline
algorithm developed in this paper.

786

SPARSEONLINE LEARNING VIA TRUNCATED GRADIENT

Algorithm 1 Truncated Gradient for Least Squares
Inputs:

e thresholdd >0

e gravity sequencg; > 0

e learning rate) € (0,1)

e example oracl®

initialize weightsw! — 0 (j =1,...,d)
for trial i = 1,2, ...

1. Acquire an unlabeled exampte= [xl,xz, ... ,xd] from oracleO
2. forall weightsw! (j =1,...,d)

(a) if wl >0 andw! < 8thenw! — max{w! —gin,0}
(b) elseifw! < 0 andw! > —8 thenw! — min{w! +gin,0}

3. Compute predictiony = 3 ; wix!
4. Acquire the labey from oracleO

5. Update weights for all featurgs w! < wl +2n(y — §)x!

4. Truncated Gradient for Least Squares

The method in Section 3 can be directly applied to least squares regreBsisteads to Algorithm

1 which implements sparsification for square loss according to Equationiri@he description,
we use superscripted symhel to denote thg-th component of vectaw (in order to differentiate
from w;, which we have used to denote thth weight vector). For clarity, we also drop the index
i fromw;. Although we keep the choice of gravity parametgrepen in the algorithm description,
in practice, we only consider the following choice:

- JKg ifi/Kisaninteger
9710 otherwise '

This may give a more aggressive truncation (thus sparsity) after &éniteration. Since we do
not have a theorem formalizing how much more sparsity one can gain froml¢hisits effect will
only be examined empirically in Section 6.

In many online-learning situations (such as web applications), only a srbaksaf the features
have nonzero values for any examgpldlt is thus desirable to deal with sparsity only in this small
subset rather than in all features, while simultaneously inducing sparsig)i éeature weights.
Moreover, it is important to store only features with non-zero coefficightise number of features
is too large to be stored in memory, this approach allows us to use a hash talalektonty the
nonzero coefficients). We describe how this can be implemented efficientig imext section.

For reference, we present a specialization of Theorem 3.1 in the foljoearollary which is
directly applicable to Algorithm 1.

787

LANGFORD, LI AND ZHANG

Corollary 4.1 (Sparse Online Square Loss Regret) If there exists@uch that for all xJ|x|| < C,
then for allw € RY, we have

1-2Cn T 2 gi

S |y e (il <)l
wiz2 1> . _
W L S T)2 4 (W] < O)]1]

“onT T L

where w= [w?,...,wf] € R is the weight vector used for prediction at the i-th step of Algorithm 1;
(x,Yi) is the data point observed at the i-step.

This corollary explicitly states that average square loss incurred by theele@he left-hand
side) is bounded by the average square loss of the best weight weqilrs a term related to the
size ofw which decays as/I and an additive offset controlled by the sparsity thresi@cdad the
gravity parameteg;.

5. Efficient Implementation

We altered a standard gradient-descent implementatiomPAL WABBIT (Langford et al., 2007),
according to algorithm 1. ¥wPAL WABBIT optimizes square loss on a linear representatibr
via gradient descent (3) with a couple caveats:

1. The prediction is normalized by the square root of the number of nomzeries in a sparse
vector,w'x/+/||x|[o. This alteration is just a constant rescaling on dense vectors which is
effectively removable by an appropriate rescaling of the learning rate.

2. The prediction is clipped to the interj@l 1], implying the loss function is not square loss for
unclipped predictions outside of this dynamic range. Instead the updateistnt value,
equivalent to the gradient of a linear loss function.

The learning rate in wPAL WABBIT is controllable, supporting/1 decay as well as a constant
learning rate (and rates in-between). The program operates in an\entitme fashion, so the
memory footprint is essentially just the weight vector, even when the amédatais very large.

As mentioned earlier, we would like the algorithm’s computational complexity toraefie-
early on the number of nonzero features of an example, rather than theuatiaer of features. The
approach we took was to store a time-stamgor each featurg. The time-stamp was initialized
to the index of the example where featyrevas nonzero for the first time. During online learning,
we simply went through all nonzero featurg®f examplei, and could “simulate” the shrinkage
of wi aftertj in a batch mode. These weights are then updated, and their time stamps are set to
i. This lazy-update idea of delaying the shrinkage calculation until needid@ isey to efficient
implementation of truncated gradient. Specifically, instead of using updatésjuier weightw!,
we shrunk the weights of all nonzero featyrdifferently by the following:

fw)=T, <wj +2an(y—9)x, {'KT’J Kng,e) ,

andt; is updated by
i — T

788

SPARSEONLINE LEARNING VIA TRUNCATED GRADIENT

This lazy-update trick can be applied to the other two algorithms given in Segtidn the
coefficient rounding algorithm (4), for instance, for each nonzegriurej of examplei, we can
first perform a regular gradient descent on the square loss, andthénhe following: if |w;| is
below the threshol@ andi > 1 + K, we roundw; to 0 and set; toi.

This implementation shows the truncated gradient method satisfies the followjnigeraents
needed for solving large scale problems with sparse features.

e The algorithm is computationally efficient: the number of operations per ortipeis linear
in the number of nonzero features, and independent of the total nuriteatares.

e The algorithm is memory efficient: it maintains a list of active features, andtarke can be
inserted when observed, and deleted when the corresponding weggithbs zero.

If we directly apply the online projection idea of Zinkevich (2003) to solve {ien in the up-
date rule (7), one has to pick the smallgst 0 such that|wi1||1 < s. We do not know an efficient
method to find this specifig; using operations independent of the total number of features. A stan-
dard implementation relies on sorting all weights, which requdeslogd) operations, wherd is
the total number of (nonzero) features. This complexity is unacceptabbeifgpurpose. However,
in an important recent work, Duchi et al. (2008) proposed an efficieline ¢;-projection method.
The idea is to use a balanced tree to keep track of weights, which allowisrfticreshold finding
and tree updates i®(kInd) operations on average, whetelenotes the number of nonzero coef-
ficients in the current training example. Although the algorithm still has wepkmtdency om, it
is applicable to large-scale practical applications. The theoretical anphgsiented in this paper
shows we can obtain a meaningful regret bound by picking an arbigrarfhis is useful because
the resulting method is much simpler to implement and is computationally more efficie|pe
step. Moreover, our method allows non-convex updates closely relatibe wimple coefficient
rounding idea. Due to the complexity of implementing the balanced tree strategycim Bt al.
(2008), we shall not compare to it in this paper and leave it as a futuretidine However, we be-
lieve the sparsity achieved with their approach should be comparable toatsitgachieved with
our method.

6. Empirical Results

We applied \owpAL WABBIT with the efficiently implemented sparsify option, as described in
the previous section, to a selection of data sets, including eleven dataosethé& UCI repository
(Asuncion and Newman, 2007), the much larger data set rcvl (Lewis, @084), and a private
large-scale data set Big_Ads related to ad interest prediction. While U&lséés are useful for
benchmark purposes, rcvl and Big_Ads are more interesting since iiteydyg real-world data
sets with large numbers of features, many of which are less informativedking predictions than
others. The data sets are summarized in Table 1.

The UCI data sets used do not have many features so we expect thge dréation of these
features are useful for making predictions. For comparison purpasesll as to better demonstrate
the behavior of our algorithm, we also added 1000 random binary fediutbose data sets. Each
feature has value 1 with probability@® and O otherwise.

789

LANGFORD, LI AND ZHANG

| Data Set | #features #train data #test data task |
ad 1411 2455 824 classification
crx 47 526 164 classification
housing 14 381 125 regression
krvskp 74 2413 783 classification
magic04 11 14226 4794 classification
mushroom 117 6079 2045 classification
spambase 58 3445 1156 classification
whbc 10 520 179 classification
wdbc 31 421 148 classification
wpbc 33 153 45 classification
Z00 17 77 24 regression
rcvl 38853 781265 23149 classification
Big Ads | 3x10° 26x10° 27x10° classification

Table 1: Data Set Summary.

6.1 Feature Sparsification of Truncated Gradient

In the first set of experiments, we are interested in how much reduction mutheer of features is
possible without affecting learning performance significantly; specificaltyrequire the accuracy
be reduced by no more than 1% for classification tasks, and the totakdqaaibe increased by no
more than 1% for regression tasks. As common practice, we allowed thétlagdo run on the
training data set for multiple passes with decaying learning rate. For etalsetawe performed
10-fold cross validation over the training set to identify the best set airpeters, including the
learning rate (ranging from 0.1 to 0.5), the sparsification rgtganging from 0 to 0.3), number of
passes of the training set (ranging from 5 to 30), and the decay ofrigawate across these passes
(ranging from 0.5 to 0.9). The optimized parameters were used to tr@amP¥L WABBIT on the
whole training set. Finally, the learned classifier/regressor was evaloatdt test set. We fixed
K =1 andf = «, and will study the effects df and® in later subsections.

Figure 2 shows the fraction of reduced features after sparsificatiqplied to each data set.
For UCI data sets, we also include experiments with 1000 random featdles & the original
feature set. We do not add random features to rcvl and Big_Ads siacexgeriment is not as
interesting.

For UCI data sets, with randomly added featuresywAaL WABBIT is able to reduce the num-
ber of features by a fraction of more than 90%, except for the ad ditawhich only 71% reduc-
tion is observed. This less satisfying result might be improved by a moresbxtgrarameter search
in cross validation. However, if we can tolerat8% decrease in accuracy (instead of 1% as for
other data sets) during cross validatiomWrPAL WABBIT is able to achieve 94% reduction, indi-
cating that a large reduction is still possible at the tiny additional cost38f6@ccuracy loss. With
this slightly more aggressive sparsification, the test-set accuracy toop95.9% (when only 1%
loss in accuracy is allowed in cross validation) to4%, while the accuracy without sparsification
is 96.5%.

790

SPARSEONLINE LEARNING VIA TRUNCATED GRADIENT

Even for the original UCI data sets without artificially added featuresyWwaL WABBIT man-
ages to filter out some of the less useful features while maintaining the sarheflpeeformance.
For example, for the ad data set, a reduction o#838is achieved. Compared to the results above,
it seems the most effective feature reductions occur on data sets witreanlarper of less useful
features, exactly where sparsification is needed.

For rcvl, more than 75% of features are removed after the sparsifigatioass, indicating the
effectiveness of our algorithm in real-life problems. We were not ableytontiny parameters in
cross validation because of the size of rcvl. It is expected that movetrend is possible when a
more thorough parameter search is performed.

The previous results do not exercise the full power of the approadepted here because the
standard Lasso (Tibshirani, 1996) is or may be computationally viable in tegaesets. We have
also applied this approach to a large non-public data set Big_Ads whegedhis predicting which
of two ads was clicked on given context information (the content of adsgaery information).
Here, accepting a.009 increase in classification error (from error rat82® to error rate 338)
allows us to reduce the number of features from aboutl®® to about 24x 10°, a factor of 125
decrease in the number of features.

For classification tasks, we also study how our sparsification solutioctia#&C (Area Under
the ROC Curve), which is a standard metric for classificatidsing the same sets of parameters
from 10-fold cross validation described above, we find the criteriontisfiected significantly by
sparsification and in some cases, they are actually slightly improved. Téanrezay be that our
sparsification method removed some of the features that could have ednfosvPAL WABBIT.
The ratios of the AUC with and without sparsification for all classification damte plotted in
Figures 3. Often these ratios are above 98%.

6.2 The Effects ofK

As we argued before, usingka value larger than 1 may be desired in truncated gradient and the
rounding algorithms. This advantage is empirically demonstrated here.tloyar, we tryK = 1,

K = 10, andK = 20 in both algorithms. As before, cross validation is used to select parameter
in the rounding algorithm, including learning rajenumber of passes of data during training, and
learning rate decay over training passes.

Figures 4 and 5 give the AUC vs. number-of-feature plots, where @atzhpoint is generated
by running respective algorithm using a different valuaydfor truncated gradient) an@l (for the
rounding algorithm). We usefli= o in truncated gradient.

The effect ofK is large in the rounding algorithm. For instance, in the ad data set the algorithm
usingK = 1 achieves an AUC of.04 with 322 features, while 13 and 7 features are needed using
K =10 andK = 20, respectively. However, the same benefits of using a la¢gemot observed
in truncated gradient, although the performances Witk 10 or 20 are at least as good as those
with K = 1 and for the spambase data set further feature reduction is achieedsaime level of
performance, reducing the number of features from 76 (WwKen1l) to 25 (whenK = 10 or 20)
with of an AUC of about (89.

1. We use AUC here and in later subsections because it is insensitivegbdhtewhich is unlike accuracy.

791

LANGFORD, LI AND ZHANG

Base data Base data

1000 extra =s===s== Fraction of Features Left 1000 extra =ssssss Fraction of Features Left
1 T T T T T T T T T 42 T T T T T T T T T T T T
0.8 . pys £]
B T 35 : .

— — H
- 06 4 p 3+ H]
g S 25} :]
3] 0.4 - S 2 H 7]
S € 15t . : : .
w 0.2 4 v 1r - H -
| | sh Ll . LEEE. E,]
o i - | H 1 oW &k & Bs 87 B3 B B B | FE |
S22 I EELL8L8SYY REZZSEELS5883¢8
©Zwvwo 9 8=TT AQNDLCI 8 £ 20238 N 2<
e =35 =7 3£ Qe o
O X © < o & 7] S
< g 0 o IS m

Dataset Dataset

Figure 2: Plots showing the amount of features left after sparsificatiog trsincated gradient for
each data set, when the performance is changed by at most 1% due dificgigm.
The solid bar: with the original feature set; the dashed bar: with 100@raridatures
added to each example. Plot on left: fraction left with respect to the total aeuofb
features (original with 1000 artificial features for the dashed bar} dPigight: fraction
left with respect to the original features (not counting the 1000 artifieiaiures in the
denominator for the dashed bar).

Base data —

1000 extra =s=sssss Ratio of AUC
12 T T T T I: T T T T
e T T
sl fEEEEEE & |
2 s Rk EEEE I
g 06@ kok 5o EEE |
@ sl EEEEEEE
4R kL EEEE E T
ol B B2 B B2 B2 B2 B2k
© E o < = £ [S] o (%] (=
@© = L Q9 Q9 >
% 5 3 £% g ¢ 8
£ g8 c ?
£
Dataset

Figure 3: A plot showing the ratio of the AUC when sparsification is used ineAUC when no
sparsification is used. The same process as in Figure 2 is used to detempinieadly
good parameters. The first result is for the original data set, while tlomdeesult is for
the modified data set where 1000 random features are added to eaghiexa

6.3 The Effects ofo in Truncated Gradient

In this subsection, we empirically study the effec@af truncated gradient. The rounding algorithm
is also included for comparison due to its similarity to truncated gradient Wheiy. Again, we
used cross validation to choose parameters for 8actiue tried, and focused on the AUC metric
in the eight UCI classification tasks, except the degenerate one of WbdixedK = 10 in both
algorithm.

792

SPARSEONLINE LEARNING VIA TRUNCATED GRADIENT

crx
1 . .
0.9—g—Laodo-tp Dy 4l
0.8
o 0.7t
2048
0.2
0.4 <-K=1 ||
A K=10
--K=20f] 0.3 -o-K=20p
10° 10" 10° 10° 10° 10" 10° 10°
Number of Features Number of Features
krvskp magic04
1 : 1, ‘
0.9
0.8
o 0.7
206
Vi
0.5 1 .
0.4 - K=1 || 0.4 - K=1 ||
A K=10 A K=10
0.3 -o-K=20|{ 0.3 -o-K=20¢
10° 10" 10° 10° 10° 10" 10° 10°
Number of Features Number of Features
spambase

mushroom
1

0.4 < K=1 1] 0.4 < K=1 i
A K=10 A K=10
0.3 -o-K=20p 0.3 -o-K=20|{
10° 10" 10° 10’ 10° 10" 10° 10°
Number of Features Number of Features
whbc wdbc
17@—%—@9-—*9““— 1 :
0.% 1 0. §
0.8] 0. :
o 0.7 O 0. :
206 0. :
0.8 0. :
0.4 < K=1 || 0. (; < K=1 ||
A K=10 A K=10
0.3 -o-K=20j| 0. -o-K=20j|
10° 10" 10° 10° 10° 10' 10° 10°
Number of Features

Number of Features

Figure 4: Effect oK on AUC in the rounding algorithm.

793

LANGFORD, LI AND ZHANG

Crx

1
0.%-H-0-¢forr—0—=ar—~A—0Poi- B
0.8
) 0.7
206 | Zose
0.5] 0.5
0.4 < K=1 || 0.4 < K=1 ||
A K=10 A K=10
0.3 --K=20y] 0.3 --K=20y]
10° 10" 10° 10° 10° 10" 10° 10°
Number of Features Number of Features
krvskp magic04
1 RN 1 :
0.9 9
08 o
o 0.7
206
0.5
0.4 - K=1 ||
A K=10
0.3 -o-K=20jp . -o-K=20j]
10° 10" 10° 10° 10° 10" 10° 10°
Number of Features Number of Features
mushroom spambase
lW 1, ! .
0.9 1 1
0.8
o 0.7
206
0.5
0.4 < K=1 || 0.4 < K=1 ||
A K=10 A K=10
0.3 -~ K=20H 0.3 -o-K=20||
10° 1 10’ 10° 1 10°
Number of Features Number of Features
whbc wdbc
I eeeia—oto——o——Ac-aad—— 1 ‘ ‘ :
[60O
0.9] 0.9
0.8 1 0.8
o 0.7] O 0.7
206 1 Zos
0.5] 0.5
0.4 < K=1 || 0.4 < K=1 ||
A K=10 A K=10
0.3 -e-K=20 0.3 --K=20/
10° 10" 10° 10° 10° 10' 10° 10°
Number of Features Number of Features

Figure 5: Effect oK on AUC in truncated gradient.

794

SPARSEONLINE LEARNING VIA TRUNCATED GRADIENT

Figure 6 gives the AUC vs. number-of-feature plots, where each ddtd is generated by
running respective algorithms using a different valuegdfor truncated gradient) an@ (for the
rounding algorithm). A few observations are in place. First, the result/\be observation that
the behavior of truncated gradient with= g is similar to the rounding algorithm. Second, these
results suggest that, in practice, it may be desirable t®useo in truncated gradient because it
avoids the local-minimum problem.

6.4 Comparison to Other Algorithms

The next set of experiments compares truncated gradient to other atgeritgarding their abilities
to balance feature sparsification and performance. Again, we foctiseoAUC metric in UCI
classification tasks except wpdc. The algorithms for comparison include:

e The truncated gradient algorithm: We fix&d= 10 and® = «, used crossed-validated pa-
rameters, and altered the gravity paramgter

e The rounding algorithm described in Section 3.1: We fikee: 10, used cross-validated
parameters, and altered the rounding thresBold

e The subgradient algorithm described in Section 3.2: We fiked 10, used cross-validated
parameters, and altered the regularization parangeter

e The Lasso (Tibshirani, 1996) for batth-regularization: We used a publicly available imple-
mentation (Sjostrand, 2005).

Note that we do not attempt to compare these algorithms on rcvl and Big_Ady biecause their
sizes are too large for the Lasso.

Figure 7 gives the results. Truncated gradient is consistently competitikietive other two
online algorithms and significantly outperformed them in some problems. Thiestsgthe effec-
tiveness of truncated gradient.

Second, it is interesting to observe that the qualitative behavior of truhgaselient is often
similar to LASSO, especially when very sparse weight vectors are allothedl€ft side in the
graphs). This is consistent with theorem 3.2 showing the relation betwemn H@vever, LASSO
usually has worse performance when the allowed number of nonzerbitwésgset too large (the
right side of the graphs). In this case, LASSO seems to overfit, whiledtadgradient is more
robust to overfitting. The robustness of online learning is often attributedrdy stopping, which
has been extensively discussed in the literature (e.g., Zhang, 2004).

Finally, it is worth emphasizing that the experiments in this subsection try to simed kght
on the relative strengths of these algorithms in terms of feature sparsifickboriarge data sets
such as Big_Ads only truncated gradient, coefficient rounding, anslubreyradient algorithms are
applicable. As we have shown and argued, the rounding algorithm is guit®e@and may not
work robustly in some problems, and the sub-gradient algorithm doesatbtdesparsity in general
during training.

7. Conclusion

This paper covers the first sparsification technique for large-scéiteedearning with strong the-
oretical guarantees. The algorithm, truncated gradient, is the naturakmiieof Lasso-style re-

795

LANGFORD, LI AND ZHANG

crx
1
0.9 SR
0.8
0 0.7
>
< 0.6
0.5; + Rounding Algorithn 0.5 + Rounding Algorithm
0.4 4 Trunc. Grad.§=19) | 0.4 4= Trunc. Grad.§=19) |
0.3 —-e-Trunc. Grad. §=co) 0 -e-Trunc. Grad. §=w)
10’ 10' 10° 10’ 10’ 10' 10° 10°
Number of Features Number of Features
krvskp magic04
1 o ———r 1 "
0.9 -~
0.8 ——&—o—o o5
O 0.?5',
2
0.6
+
05 + Rounding Algorithn + Rounding Algorithn
04 4 Trunc. Grad.g=1g) | 04 # Trunc. Grad.§=19) |
0.3 -e-Trunc. Grad. §=c) 0.3 -e-Trunc. Grad. §=w)
10° 10" 10° 10° 10° 10" 10° 10°
Number of Features Number of Features
mushroom spambase
lW 1 "
09 1
08
0 0.7 /
=
0.
0.5 + Rounding Algorithn 0.3 -nnn- At + Rounding Algorithn
0.4 4 Trunc. Grad.@=1g) | 0.4 4 Trunc. Grad.@=1g) |
-e-Trunc. Grad. §=) . -e-Trunc. Grad. §=w)
0.3 0 : : 3 0.3 0 * * 3
10 1 10 10 1 10
Number of Features Number of Features
whbc wdbc
1;:&-@-—&09—0—&—-——9—;&-—&% 1 IAD-
0.9 1 0.9
0.8 08
0 0.7 0 0.7
- - !
<06 <o.6
+
0.5 + Rounding Algorithn 0.5 + Rounding Algorithn]
0.4 4 Trunc. Grad.@=1g) | 0.4 4 Trunc. Grad.@=1g) |
—-e-Trunc. Grad. §=c) -e-Trunc. Grad.§=w)
O'O 0 ‘ 1 ‘ ‘ 3 3 0 ‘ 1 ‘ ‘ 3
10 10 10 10

1
Number of Features

1
Number of Features

Figure 6: Effect o® on AUC in truncated gradient.

796

SPARSEONLINE LEARNING VIA TRUNCATED GRADIENT

crx
1
0.9
0.8 u
0 0.7
2
< 0.6
0.5 -e-Trunc. Grad|| 0.5 -e-Trunc. Grad||
+ Rounding + Rounding
0.4 -8-Sub-gradient 0.4 -8-Sub-gradient
0 % asso . * Lasso
. . . . el . : .
10° 10' 10° 10’ 10° 10" 10° 10’
Number of Features Number of Features
krvskp magic04
1 ‘ - : - 1 ‘
0.9 %
0.8
0 0.7 @
2 0.6 "B------- B+ B £EE
+ OE---=--=-=-=-=-=-=- = —
0.5 -e-Trunc. Grad}| 0.5 -e-Trunc. Grad||
+ Rounding + Rounding
0.4 -8-Sub-gradient 0.4 -8-Sub-gradient
0.3 <% Lasso 0.3 < Lasso
10° 10" 10° 10’ 10° 10" 10° 10°
Number of Features Number of Features
mushroom spambase
1 AT B OO e —£8 1 "
B e e
% -
0.9 :
0.8
0 0.7
)
< 0.6
0.5 -e-Trunc. Grad|| 0.3 v -e-Trunc. Grad||
+ Rounding + Rounding
0.4 -8-Sub-gradient 0.4 -8-Sub-gradient
% Lasso ., % Lasso
0.3 0 3 20 3
10 1 10 10 1 10
Number of Features Number of Features
whbc wdbc
17@E¢W .
0.9
0.8
0 0.7
)
< 0.6
0.5 -e-Trunc. Grad|| 0.5 -e-Trunc. Grad||
+ Rounding + Rounding
0.4 -8-Sub-gradient 0.4 -8-Sub-gradient
0 % Lasso . * Lasso
. . . . e) . : .
10° 3 10° 10° 3 10°

1
Number of Features

1
Number of Features

Figure 7: Comparison of four algorithms.

797

LANGFORD, LI AND ZHANG

gression to the online-learning setting. Theorem 3.1 proves the technigoerid: it never harms
performance much compared to standard stochastic gradient descdweigaaial situations. Fur-
thermore, we show the asymptotic solution of one instance of the algorithrreistiedly equivalent
to the Lasso regression, thus justifying the algorithm’s ability to producesspeight vectors when
the number of features is intractably large.
The theorem is verified experimentally in a number of problems. In some, egeecially for

problems with many irrelevant features, this approach achieves a on@ artier of magnitude
reduction in the number of features.

Acknowledgments

We thank Alex Strehl for discussions and help in developirmyWwAL WABBIT. Part of this work
was done when Lihong Li and Tong Zhang were at Yahoo! Resear2d0n.

Appendix A. Proof of Theorem 3.1

The following lemma is the essential step in our analysis.

Lemma 1 Suppose update rule (6) is applied to weight vector w on exampléxzy) with gravity
parameter g= g, and results in a weight vector wif Assumption 3.1 holds, then for all ¢ RY,
we have

(1-0.5An)L(w,2) +-g[[w - 1 (|| < 6)]l1

— _ 2 V\/ 2
SL(W,Z)—i—g”WJ(’V\/’ <0)|1+ ZB+ ||w— w| anW H

Proof Consider any target vector € RY and letw=w — nO;L(w,z). We havew’ = Ty(W,gn, 8).
Let

u(w,w) = gw-1(jw| < 8)[1 —gw - I (W] < 8)[|1.

Then the update equation implies the following:

IW— w2

< [[W— W[+ [—]|

=W W[? —2(W—w) " (W — W)

<||W— W[+ 2nu(w, w)

=W W|? - [[w = |2+ 2(W — W) (W — W) + 2nu(W,w)

=W —w|? +n?|| D2 (W 2) || + 2 (W—w) T O1L (W, 2) + 2nu(W, w)
<|[IW—w[? +n?| DL (W 2)[|* +2n (L(W, 2) — L(w,2)) +2nu(wW,w)
<[IW—w||* +n*(AL(W,2) +B) +2n(L(W,2) — L(W,2)) + 2nu(W,w).

Here, the first and second equalities follow from algebra, and the thord the definition ofw”
The first inequality follows because a square is always non-negatinesecond inequality follows

798

SPARSEONLINE LEARNING VIA TRUNCATED GRADIENT

becausev = T;(W,gn,8), which implies(W — W) Tw = —gn||w - I (|W| < 8)||1 = —gn|w - 1(|w| <
0)[l1 and|w| —W;| < gnl(jwj| < 6). Therefore,

—(W—wW)T(W —W) = — W (W — W) +W " (W — W)
d
< ZlIVVjIIV\/j — Wi+ (W —W) "W
£

d
<gn 3 Wjl(jwj| <€)+ (W — W)W = nu(w,w),
=1

where the third inequality follows from the definition of sub-gradient of e function, implying
(W—w)"O1L(w,2) < L(W,2) — L(w,2)

for all w andw; the fourth inequality follows from Assumption 3.1. Rearranging the aboeguial-
ity leads to the desired bound. |

Proof (of Theorem 3.1) Applying Lemma 1 to the update on trigives
(1—0.5AN)L(Wi,Z) + Gil[Wisa - 1 ([Wita| < 6)[[1
w12 I — w412
<L(wz)+ W] quw s

Now summing ovei=12,..., T, we obtain

+ W1 (jwa] < 8) 1+ 2B,

]
> [(1- 05ANLW,)+ |Wier 1 (hss] < O)1

T TIwW=wi|[2—|[[W—wWi_]? B ~
[W—wq|]?—|[W—wr|]?2 n T -
2n + 2TB+i;[L(W,Z|)+g.||W | ([Wisa| < 0)|1]
w2 ono I B
< Ton) f i . A < .
) +2TB+;['—(W72|)+9|HW (Wit < 8)[]

The first equality follows from the telescoping sum and the second ineqtalaws from the initial
condition (all weights are zero) and dropping negative quantities. Tioeahefollows by dividing

with respect tol' and rearranging terms. |
References
Arthur Asuncion and David J. Newman. UCI machine learning repositor@072

University of California, Irvine, School of Information and Computer iebces,
http://mwww.ics.uci.edutmlearn/MLRepository.html.

799

LANGFORD, LI AND ZHANG

Suhrid Balakrishnan and David Madigan. Algorithms for sparse lineasifilxs in the massive
data settingJournal of Machine Learning Resear@®t313-337, 2008.

Bob Carpenter. Lazy sparse stochastic gradient descent for rizgdlanultinomial logistic regres-
sion. Technical report, April 2008.

Nicold Cesa-Bianchi, Philip M. Long, and Manfred Warmuth. Worst-caslcatic loss bounds for
prediction using linear functions and gradient desc#8EE Transactions on Neural Networks
7(3):604-619, 1996.

Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradskndrew Y. Ng, and
Kunle Olukotun. Map-reduce for machine learning on multicoreAdivances in Neural Infor-
mation Processing Systems 20 (NIPS;@D08.

Ofer Dekel, Shai Shalev-Schwartz, and Yoram Singer. The Forgef&dkernel-based perceptron
on a fixed budget. IMdvances in Neural Information Processing Systems 18 (NIP$86¢s
259-266, 2006.

John Duchi and Yoram Singer. Online and batch learning using fonleaidng subgradients.
Unpublished manuscript, September 2008.

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chaifdficient projections onto
the ¢1-ball for learning in high dimensions. IRroceedings of the Twenty-Fifth International
Conference on Machine Learning (ICML-0®gges 272—-279, 2008.

Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient v@gradient descent for linear
predictors.Information and Computatiqri32(1):1-63, 1997.

John Langford, Lihong Li, and Alexander L. Strehl. Vowpal Wabbés(fonline learning), 2007.
http://hunch.netivwi/.

Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y. Ng. Efficientsp&oding algorithms. In
Advances in Neural Information Processing Systems 19 (NIPS86¢s 801-808, 2007.

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. RCV1: A new benark collection for
text categorization researchournal of Machine Learning Researdt361-397, 2004.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A hegar-threshold algo-
rithms. Machine Learning2(4):285-318, 1988.

Nick Littlestone, Philip M. Long, and Manfred K. Warmuth. On-line learnindioéar functions.
Computational Complexityp(2):1-23, 1995.

Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Peddosl Estimated sub-GrAdient
SOlver for SVM. InProceedings of the Twenty-Fourth International Conference on Machin
Learning (ICML-07) 2007.

Karl Sjostrand. Matlab implementation of LASSO, LARS, the elastic net andASBahe 2005.
Version 2.0, http://www2.imm.dtu.dk/pubdb/p.php?3897.

800

SPARSEONLINE LEARNING VIA TRUNCATED GRADIENT

Robert Tibshirani. Regression shrinkage and selection via the ldssmal of the Royal Statistical
Society, B.58(1):267-288, 1996.

Tong Zhang. Solving large scale linear prediction problems using stoclymatient descent al-
gorithms. InProceedings of the Twenty-First International Conference on Machéesrning
(ICML-04), pages 919-926, 2004.

Martin Zinkevich. Online convex programming and generalized infinitesimadignt ascent. In
Proceedings of the Twentieth International Conference on Machinenir@a(ICML-03) pages
928-936, 2003.

801

