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Abstract. We present a novel model for object recognition and detec-
tion that follows the widely adopted assumption that objects in im-
ages can be represented as a set of loosely coupled parts. In contrast
to former models, the presented method can cope with an arbitrary
number of object parts. Here, the object parts are modelled by image
patches that are extracted at each position and then efficiently stored in
a histogram. In addition to the patch appearance, the positions of the
extracted patches are considered and provide a significant increase in
the recognition performance. Additionally, a new and efficient histogram
comparison method taking into account inter-bin similarities is proposed.
The presented method is evaluated for the task of radiograph recognition
where it achieves the best result published so far. Furthermore it yields
very competitive results for the commonly used Caltech object detection
tasks.

1 Introduction

In the last years, part-based models in general, and patch-based models in par-
ticular, have gained an enormous amount of interest in the computer vision
community [1, 2, 3]. These approaches offer some immediate advantages such as
robustness against occlusion and translation invariance because the parts can be
modeled more or less independently and thus an object that is partly occluded
can be classified correctly as long as the visible parts can be recognized.

Nearly all aproaches presented extract features only from a subset of positions
in the images: most approaches use interest point detectors [1, 2, 3], random
points [4], or points from a regular grid [5]. Obviously, by choosing a subset of
feature extraction points, image information is lost which may result in decreased
recognition performance. This may be passable in the case of general object
recognition and detection, but can be unsuitable in the case of medical image
analysis where no details may be missed. In contrast to all these approaches, the
method presented here can efficiently deal with arbitrarily many features and
thus we choose to extract several features at each position of the image. Only
recently, some approaches that extract local features from all positions in the
image were proposed [6, 7].



Similar to other approaches [5, 8], the presented approach uses patches, i.e.
subimages, extracted from the images. Feature vectors representing the patches
are derived from a PCA dimensionality reduction. These feature vectors are then
stored in a special histogram structure that allows us to store high-dimensional
feature vectors, which are then classified using various classification methods.

Another type of information that is often discarded when part-based mod-
els are applied is the spatial relationship between the parts. Many approaches
completely discard these data [1,5], and other approaches that explicitly model
spatial relationships [8] have to be greatly simplified in order to become compu-
tationally feasible [2]. In the model presented here, the positions of the patches
can be integrated directly without significant increase in computation time or
storage requirements.

Furthermore, many approaches require time-consuming preprocessing steps
such as vector quantization, to create a code-book of possible object parts [5,8,9].
Our approach skips this step and instead uses a generalized form of a code-book
that is identical for all kinds of data. That is, the code-book is not learned
from training data but is fixed before we know what data we will deal with.
Obviously, this code-book needs a large amount of possible ‘code-words’ but due
to an efficient representation this becomes computationally feasible.

The remainder of this paper is structured as follows: In the next section, we
introduce the feature extraction technique and the sparse histogram represen-
tation of the images. In Section 3 we shortly introduce the three classification
methods that are used to recognize the images represented by the sparse his-
tograms. Section 4 describes the databases used to evaluate the methods and
Section 5 presents and compares the experimental results with the best results
published so far. Finally, the paper is shortly summarized and concluded in
Section 6.

2 Sparse Histograms of Image Patches

Histograms are a well-known method to represent the distribution of data and
are applied in the field of computer vision in various ways. One problem with
histograms is that they become difficult to handle if the dimensionality of the in-
put data is large, because the number of bins in a histogram grows exponentially
with the number of dimensions of the data. For example, given 8 dimensional
input data and only 4 subdivisions per dimension results in 48 = 65, 536 bins.

To overcome this problem, we propose to use a sparse representation of the
histograms, i.e. we store only those bins whose content is not empty. Sparse
histograms have been used for other applications before [10]. This representation
allows us to create histograms for data of arbitrary dimensionality. The only
practical limitation to the size of the histogram is that for very large sizes, most
of the bins that actually contain an element will contain only one single element,
and this makes the comparison of histograms very unreliable.



2.1 Features.

It has been shown that patches extracted from the images are a suitable means
of representing local structures in images [5, 8, 9]. Thus, we choose to extract
patches of different sizes at every position in each image. More precisely, we
extract square patches with the edge lengths 7, 11, 21, and 31 pixels, which are
then scaled to a common size of 15 pixels to be able to process them jointly later.
These multiple patch sizes allow to account for objects of various sizes and lead
to a certain invariance with respect to scale changes. A very similar approach to
account for different scales was used in [11].

All patches are extracted from all training images and then a PCA trans-
formation is jointly estimated. Using this PCA transformation all patches are
reduced in dimensionality.

2.2 Creation of histograms.

The distribution of the feature vectors described in the previous section is then
approximated using a histogram. To reduce the necessary storage, the histograms
are created without explicitly storing any feature vector. Thus, the creation of the
histograms is a three step procedure: in the first step, the PCA transformation
is determined as described above. In the second step, the mean and the variance
of the transformed patches are calculated to determine a reasonable grid for the
histograms. In the last step, the histograms themselves are created. For each of
these steps, all training images are considered.

1. In the first step, all possible patches in various sizes from all training images
are extracted and their mean and the covariance matrix are estimated to
determine the PCA transformation matrix.

2. Given this PCA transformation matrix and the means, the mean µd and the
variance σ2

d for each component d of the transformed vectors is calculated to
determine the bin boundaries for the histograms. The bins for component d
are uniformly distributed between µd − ασd and µd + ασd.

3. Then, we consider all dimensionality reduced patches from the training im-
ages and create one histogram per training image. This step is depicted in
Figure 1. The processing is from left to right: first the patches are extracted,
then PCA transformed, then the position of the patch is concatenated to the
PCA transformed feature vector, and finally the vectors are inserted into the
sparse histogram data structure.

As mentioned above, the patches are not explicitly stored in any of these steps
as this would lead to immense memory requirements.

Informal experiments have shown that 6 to 8 dimensions for the PCA reduced
vectors lead to the best results, and that α = 1.5 is a good value to determine
bin boundaries. Values exceeding the given range are clipped.
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Fig. 1. Creation of sparse histograms. Solid arrows denote appearance informa-
tion of the patches, dotted arrows denote spatial information of the patches

Spatial Information. One serious issue with many part-based models is the in-
corporation of spatial information. To incorporate spatial information in our
approach, we simply concatenate the extraction position to the PCA reduced
feature vectors and thus simply add two further components to the histograms.
These additional components can easily be handled by the histograms. As the
range of values for each component is calculated individually and independently
of the other components, no special processing ot these additional components
is required. One issue with the inclusion of the absolute patch extraction po-
sitions is that translation invariance, normally one of the major advantages of
part-based models, is partly lost. Still, currently it is unclear how to incorporate
relative position information into the model presented here. It will be shown
later that for the tasks considered here, either the translation invariance is not
required, or translations are sufficiently represented in the training data.

3 Classification of Sparse Patch Histograms

Given the sparse histograms that represent the images, any classifier that is able
to handle the sparse representation can be used. We have tested three different
classifiers: the nearest neighbor classifier in which we use two different distance
functions, a classifier based on log-linear models trained using the maximum
entropy criterion, and support vector machines.

3.1 Nearest Neighbor Classification

Nearest neighbor classification is often used as a baseline for classification. Im-
mediate advantages are that no expensive training process is necessary, imple-
mentation can be done easily, and different distance functions can be used to
compare the data used. In accordance with [12] we use Jeffrey Divergence to
compare histograms. To classify the histogram h representing the image X the



following decision rule r(x) is used:

h 7→ r(h) = arg min
k

{
min

n=1...Nk

d(h, hn)
}

, (1)

where hn is the histogram representing the nth training image from class k. The
Jeffrey Divergence d(h, h′) between two histograms h and h′ is defined as

d(h, h′) =
C∑

c=1

hc log
2hc

hc + h′
c

+ h′
c log

2h′
c

h′
c + hc

. (2)

Here, hc and h′
c are the cth bins of the histograms h and h′, respectively.

One problem with the Jeffrey Divergence is that similarities between neigh-
boring bins are completely neglected. Other distance measures that take into
account inter-bin-similarities, for example the earth mover’s distance [12], are
too computationally expensive to be used for histograms with several thousand
bins. We propose to use a much simpler way of taking into account neighboring
bins that is inspired by an image matching algorithm [13]. This method is called
Histogram Distortion Model (HDM) and it can be implemented for any bin-by-
bin histogram comparison measure straightforwardly, as long as neighborhoods
are defined for the underlying histograms. Given a bin at position c = (c1, . . . cD),
we use the bin from position γ out of the neighborhood U(c) of c that minimizes
the resulting distance. Here, we use it as an extension to the Jeffrey Divergence,
i.e., we replace the distance function d(h, h′) by dHDM(h, h′) with

dHDM(h, h′) =
C∑

c=1

min
γ∈U(c)

hc log
2hc

hc + h′
γ

+ h′
γ log

2h′
γ

h′
γ + hc

. (3)

A related but computationally more expensive way to account for neighboring
bins in the comparison of histograms would be to smooth the histograms. Here,
the smoothing would lead to non-sparse histograms and thus it would lead to
greatly increased computational requirements.

3.2 Maximum Entropy Classification

Maximum entropy classification and log-linear models are a well-known way
to model probability distributions in natural language processing and in image
recognition [14].

The maximum entropy approach directly optimizes the class posterior prob-
ability p(k|X). Thus, it is a discriminatively trained model. Here, we want to
model the posterior probability p(k|h) where h is the sparse histogram repre-
senting image X. Thus, the model for p(k|h) is

p(k|h) =
1

Z(h)
exp

(
αk +

C∑
c=1

λkchc

)
(4)

where hc is the cth bin of the histogram h and Z(h) a normalization factor.
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Fig. 2. Example images of the IRMA 10000 database together with their class.

Efficient algorithms to determine the parameters {αk, λkc} exist. We use a
modified version of generalized iterative scaling [15] to decrease the necessary
computational effort. For classification, Bayes’ decision rule is used:

h 7→ r(h) = arg max
k

{p(k|h)} . (5)

3.3 Support Vector Machines

Support-vector-machines (SVM) are often used as a classification method that
provides reasonable performance across various tasks. In the experiments we
tried linear, polynomial and radial basis function kernels and optimized all pa-
rameters in cross-validation experiments on the training data.

4 Databases and Experimental Results

This section briefly presents the two databases used to evaluate our method, the
IRMA 10000 database of medical radiographs and three of the Caltech object
databases.

4.1 IRMA 10000.

The IRMA 10000 database1 was used in the automatic annotation task of the
2005 ImageCLEF evaluation [17]. It consists of 10,000 fully classified radiographs
taken randomly from medical routine at a large hospital. The images are split
into 9,000 training and 1,000 test images and are subdivided into 57 classes.
Example images for some of the classes are given in Figure 2. In the ImageCLEF
2005 automatic annotation task a total of 40 runs were submitted by 12 groups.
In Table 1 we give the best results from the evaluation and compare our results
to these. To keep the computing requirements low, we scaled all images such
that the longest edge was 128 pixels while preserving the aspect ratio.

4.2 Caltech databases.

To compare the performance of our method to object recognition algorithms
from other groups, we use some of the Caltech databases that were introduced
1 http://irma-project.org

http://irma-project.org


Fig. 3. Example images from the Caltech data sets airplanes, faces, and motor-
bikes, and a background image.

by Fergus et al. [8]. The task is to determine whether an object is present in
an image or not. For this purpose, several sets of images containing certain
objects (airplanes, faces, and motorbikes) and a set of background images not
containing any of these objects 2 are given. The images are of various sizes and
for the experiments they were converted to gray images. The airplanes and the
motorbikes task consist of 800 training and 800 test images each, the faces task
consists of 436 training and 434 test images. For each of these tasks, half of the
images contain the object of interest and the other half does not. An example
image of each set is shown in Figure 3. Many different groups have published
results for these data. In Table 2 we summarize the best results we are aware of
for each of the tasks to compare our results to. Here, we scaled the images to
a common height of 128 pixels to keep the computing requirements low and to
avoid the known issue that it is possible to classify some of the images just by
image size [5].

5 Experimental Results

In this section, we present the results we obtained using sparse histograms of
image patches for the IRMA and the Caltech tasks.

Table 1 gives an overview of the best results obtained for the IRMA tasks
from the ImageCLEF 2005 evaluation [17] along with the results we obtained
using sparse patch histograms with and without position information. For all
experiments, the patches were reduced to 6 components using PCA. For the
experiments with position, two components representing position were concate-
nated to the data vector thus resulting in 8 dimensional data. For all experi-
ments, each component was subdivided into four steps, thus resulting in 4,096
and 65,536 bin-histograms for the experiments without and with spatial informa-
tion respectively. These parameters were determined in informal cross-validation
experiments to perform best on the average: For dimensionality reduction we
measured the performance for dimensionalities between 4 and 10. Furthermore,
we tried 2 to 6 subdivisions per component.

The results we obtained for this task are better than all results that are
published for these data so far. With and without positions, the error rate is
greatly improved using the histogram distortion model in comparison to using

2 http://www.robots.ox.ac.uk/~vgg/data

http://www.robots.ox.ac.uk/~vgg/data


Table 1. Results for the IRMA data. The comparison results are taken from
the ImageCLEF 2005 automatic annotation task [17].

method rank group error rate [%]

image distortion model 1 RWTH Aachen 12.6
image distortion model & texture feature 2 IRMA Group 13.3
patch-based object classifier (maximum entropy) 3 RWTH Aachen 13.9
patch-based object classifier (boosting) 4 Uni Liège 14.1
image distortion model & texture feature 5 IRMA Group 14.6
patch-based object classifier (decision trees) 6 Uni Liège 14.7
GNU image finding tool 7 Uni Geneva 20.6

32×32 images, Euclidean distance, nearest neighbor - - 36.8

sparse histograms (w/o position) this work
+ nearest neighbor 13.0
+ histogram distortion model, nearest neighbor 12.5
+ maximum entropy classification 11.6
+ support vector machine 11.3

sparse histograms (w/ position) this work
+ nearest neighbor 10.1
+ histogram distortion model, nearest neighbor 9.8
+ maximum entropy classification 9.3
+ support vector machine 10.0

only the Jeffrey Divergence. This shows that the histogram distortion model
is, at least partly, able to compensate for the sparseness of the histograms. As
mentioned above, an alternative to the histogram distortion model would be to
smooth the histograms, but informal experiments have shown that, apart from
the problems of storage, the improvement is lower than using the deformation
model. The result obtained using maximum entropy training is again clearly
improved for the case without position information. For the case with position
information, the maximum entropy training cannot improve on the results.

In Table 2, results for the experiments on the three Caltech tasks are given.
The first part of the table gives the best results we know for each of these
tasks, the second part gives the results we obtained. We highlighted the best
results in total and the best results we obtained with our method. Here again,
using the histogram distortion model usually gave an improvement over the
normal Jeffrey Divergence, and a further improvement can be achieved using
the discriminatively trained log-linear model. Although the model we present is
clearly much simpler than the models presented in [1,2,4,8,11], we achieve very
competitive error rates. Using SVMs, the results are in the same area as those
using the maximum entropy training. For both maximum entropy and SVM
classifiers the results are better than those obtained using the nearest neighbor
classification rule. This clearly shows that discriminative modeling can improve
the results.



Table 2. Results for the Caltech data

error rate
method airp. faces motb.

constellation model [8] 9.8 3.6 7.5
improved constellation model [2] 6.3 9.7 2.7
PCA SIFT features [18] 2.1 0.3 5.0
patch-histograms, discriminative training [11] 1.4 3.7 1.1
boosting weak hypotheses [1] 2.5 0.0 5.7
texture features [19] 0.8 1.6 7.4

sparse histograms (w/o position)
+ nearest neighbor 4.9 12.7 6.1
+ histogram distortion model, nearest neighbor 4.8 13.6 7.0
+ maximum entropy classification 3.5 7.8 4.8
+ support vector machines 2.4 4.1 2.3

sparse histograms (w/ position)
+ nearest neighbor 9.1 6.5 6.8
+ histogram distortion model, nearest neighbor 6.5 7.6 6.9
+ maximum entropy classification 1.9 3.9 1.8
+ support vector machines 0.8 4.4 1.3

6 Conclusion

In this work we presented a part-based approach to object recognition that was
evaluated on a database of medical radiographs and on three object recogni-
tion tasks. An advantage of this novel approach over other approaches is that it
does not require large parts of the data to be disregarded, but instead almost
arbitrary numbers of image patches can be handled by using a sparse histogram
representation. Possible problems resulting from data sparseness are effectively
counteracted by using a histogram distortion model which also improves the
recognition results. Furthermore, the approach does not require an expensive
training process, as the code-book is determined independently from the train-
ing data. The results obtained are the best published results for the task of
radiograph recognition and are very competitive for the Caltech object recogni-
tion tasks. It was also shown that spatial information can easily be incorporated
into the approach and that this information, although to the cost of loosing
translation invariance, can improve the results notably for the restricted domain
task of radiograph recognition and in most cases for the Caltech tasks.

In the future we plan to extend the presented model to incorporate relative
patch positions.
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