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Abstract. Directional modulation (DM) has been applied to sparse lin-
ear antenna arrays to increase security of signal transmission. In this
work, we extend the DM design to sparse planar antenna arrays and pro-
vide the corresponding design formulations. In previous studies, group
sparsity technique was used for sparse antenna array design, but no quan-
titative analyses were given. In this paper, both designs with and without
group sparsity are provided, and the corresponding optimised antenna
locations are shown explicitly. Design examples are provided to verify
the effectiveness of the proposed design.

Keywords: Directional modulation, group sparsity, planar antenna ar-
ray

1 Introduction

Directional modulation (DM) as a physical layer security technique was intro-
duced to keep known constellation mappings in a desired direction or directions,
while scrambling them for the remaining ones [1]. Both reconfigurable arrays [2]
and phased antenna arrays [3–5] were employed in its design. In [6], a phased
antenna array was combined with a reflecting surface to achieve positional mod-
ulation (PM), where the signal can only be received at desired locations instead
of directions. Similarly, multiple phased antenna arrays [7] were also proposed
for the PM design. From the algorithm’s aspect, dual beam DM [8], bit error rate
(BER) DM transmitter synthesis [9], artificial-noise-aided zero-forcing synthesis
approach [10], a multi-relay design [11] and a pattern synthesis approach [12, 13]
were introduced to the DM design area.

Recently, the so-called artificial noise (AN) was introduced with an aim to
create a noise component which does not affect the signal received by desired
receivers, but distorts the signal intercepted by eavesdroppers. Two methods
were proposed for the AN design, including the orthogonal vector method [14,



2 Bo Zhang1, Wei Liu2, Yang Li1, Xiaonan Zhao1, and Cheng Wang1∗

15], where the added AN vector is orthogonal to the steering vector of the desired
direction, and the AN projection matrix method [16, 17], where by designing an
artificial noise projection matrix, the AN vector is projected into the zero space
of the derivative of the desired direction.

However, to our best knowledge, almost all of the existing studies are fo-
cused on one dimensional DM. In this work, we extend the DM design to a
two-dimensional (2-D) planar antenna array, and to further reduce the number
of antenna, a sparse planar antenna array design method is proposed with opti-
mised antenna locations. In previous studies, group sparsity was used for sparse
antenna array design, but no quantitative analyses were given. In this paper,
both designs with and without group sparsity are provided, and the correspond-
ing optimised antenna locations are shown explicitly.

The remaining part of this paper is structured as follows. A review of planar
antenna array based beamforming is given in Sec. 2. The proposed sparse planar
antenna array design for DM is presented in Sec. 3. In Sec. 4, design examples
are provided, with conclusions drawn in Sec. 5

2 Review of Planar Antenna Array Based Beamforming

A narrowband planar antenna array for transmit beamforming is shown in Fig.
1, consisting of N omni-directional antennas with the spacing dx,n along the
x-axis, and K omni-directional antennas with the spacing dy,k along the y-axis,
where dx,n and dy,k (n = 0, . . . , N − 1 and k = 0, . . . ,K − 1) represent the
spacing between the first antenna to its subsequent antennas, respectively. The
elevation angle θ ∈ [0◦, 180◦], and azimuth angle φ ∈ [0◦, 180◦]∪ [0◦,−180◦]. For
the antenna on the n-th position of the x-axis and k-th position of the y-axis,
the corresponding weight coefficient is represented by wn,k. Here we gather all
weight coefficients together to form a vector represented by w,

w = [wx0,yo
, wx0,y1

, . . . , wx0,yK−1
, . . . , wxN−1,yK−1

]T . (1)

where {·}T is the transpose operation. Then the corresponding steering vector
is given by

s(ω, θ, φ) = [1, ejω(dx,0 sin θ cosφ+dy,0 sin θ sinφ)/c, . . . ,

ejω(dx,0 sin θ cosφ+dy,K−1 sin θ sinφ)/c, . . . ,

ejω(dx,N−1 sin θ cosφ+dy,K−1 sin θ sinφ)/c]T ,

(2)

where c is the speed of propagation. The beam response of the array can be
written as

p(ω, θ, φ) = wHs(ω, θ, φ), (3)

where {·}H represents the Hermitian transpose.
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Fig. 1. A planar antenna array.

3 Sparse Planar Antenna Array Design for DM

The method to achieve DM is to find the corresponding weight vector of the
antenna array for each symbol. Here we assume the weight vector for the m-th
symbol is given by

wm = [wm,x0,y0
, wm,x0,y1

, . . . , wm,x0,yK−1
, . . . , wm,xN−1,yK−1

]T , (4)

m = 0, . . . ,M − 1. The desired response pm(ω, θ, φ) for the m-th symbol can
be categorised into two regions: the mainlobe response pm,ML and the sidelobe
response pm,SL. Without loss of generality, we assume R elevation angles are
sampled for each azimuth angle φv (v = 0, 1, . . . , V − 1), and the desired direc-
tions are θ0, θ1, . . . , θr−1 with φ0. Then, the desired beam responses and steering
vectors for the mainlobe and sidelobe regions can be written as

pm,ML = [pm(ω, θ0, φ0), pm(ω, θ1, φ0), . . . , pm(ω, θr−1, φ0)],

pm,SL = [pm(ω, θr, φ0), pm(ω, θr+1, φ0), . . . , pm(ω, θR−1,φ0
), pm(ω, θ0, φ1),

. . . , pm(ω, θR−1, φ1), . . . , pm(ω, θR−1, φV−1)],

SML = [s(ω, θ0, φ0), s(ω, θ1, φ0), . . . , s(ω, θr−1, φ0)],

SSL = [s(ω, θr, φ0), s(ω, θr+1, φ0), . . . , s(ω, θR−1,φ0
), s(ω, θ0, φ1),

. . . , s(ω, θR−1, φ1), . . . , s(ω, θR−1, φV−1)].

(5)

The CS-based sparse antenna array design is to make the designed response
close to the desired one with the minimum number of non-zero valued weight
coefficients; those antennas with zero-valued coefficients can then be removed
from the array, leading to a sparse solution. To achieve this goal, we employ the
reweighted l1 norm minimisation method, which provides a closer approximation
to the required l0 norm than the original l1 norm [18–20]. Then, the weight vector
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wm for the m-th symbol is given by

min
wm

N−1∑

n=0

K−1∑

k=0

δum,n,k||wu
m,xn,yk

||2

subject to ||pm,SL − (wu
m)HSSL||2 ≤ α

(wu
m)HSML = pm,ML,

(6)

where || · ||2 represents the l2 norm, the superscript u indicates the u-th itera-
tion, and δm,n,k is the reweighting term for the coefficient at the n-th location
of the x-axis and the k-th location of the y-axis for the m-th symbol, given
by δum,n,k = (||wu−1

m,xn,yk
||2 + ξ)−1 (ξ > 0 provides numerical stability to prevent

δm,n,k becoming infinity). The inequality constraint is to make the difference be-
tween desired and designed responses in sidelobe regions under a given threshold
value α, while the equality constraint is to set the same value between designed
and desired responses in mainlobe directions.

However, the corresponding optimised locations deduced from the weight
vectors w0, . . . ,wM−1 in (6) may not be the same, i.e., the optimised antenna
locations for one symbol may be the redundant locations for other symbols.
Therefore, a common set of active antenna locations for all symbols is needed,
and the group sparsity technique can provide the solution [21]. Here, we introduce
w̃xn,yk

, representing weight coefficients for all M symbols at the n-th location
of the x-axis and the k-th location of the y-axis,

w̃xn,yk
= [w0,xn,yk

, w1,xn,yk
, . . . , wM−1,xn,yk

]. (7)

Then the weight vectors and the corresponding optimised locations for all sym-
bols based on group sparsity can be obtained by solving the following problem

min
W

N−1∑

n=0

K−1∑

k=0

δun,k||w̃u
xn,yk

||2

subject to ||PSL − (Wu)HSSL||2 ≤ α

(Wu)HSML = PML,

(8)

where W, PSL and PML are three matrices for weight coefficients, beam re-
sponses in sidelobe regions and beam responses in mainlobe directions,

W = [w0,w1, . . . ,wM−1], (9)

PSL = [p0,SL,p1,SL, . . . ,pM−1,SL]
T , (10)

PML = [p0,ML,p1,ML, . . . ,pM−1,ML]
T . (11)

The above problem can be solved by the CVX toolbox in MATLAB, a package
for specifying and solving convex problems [22, 23].
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Fig. 2. Resultant beam pattern based on the sparse planar array design in (8).
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Fig. 3. Resultant phase pattern based on the sparse planar array design in (8).
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Fig. 4. Optimised locations for the planar antenna array without group sparsity in (6).
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Fig. 5. Optimised locations for the planar antenna array with group sparsity in (8).
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4 Design Examples

In this section, we consider a 5λ × 5λ uniform planar antenna array with a
0.1λ spacing between adjacent antennas. Without loss of generality, the desired
direction θML = 0◦ with φ = 90◦. The sidelobe regions θSL ∈ [5◦, 90◦] for
φ = ±90◦. The desired response in the mainlobe direction is a value of one
(magnitude) with 90◦ phase shift (QPSK), i.e.,

√
2

2
+ i

√
2

2
,−

√
2

2
+ i

√
2

2
,−

√
2

2
− i

√
2
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√
2

2
− i

√
2

2
(12)

for symbols ‘00’, ‘01’, ‘11’, ‘10’, and a value of 0.1 (magnitude) with random
phase shifts over the sidelobe regions. The given threshold α = 2 for the design
without group sparsity (location optimisation for each symbol separately) in
(6), while α = 4 for the design with group sparsity (a common set of optimised
locations for all symbols) in (8). Bit error rate (BER) is also calculated based
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Fig. 6. BER based on the sparse planar array design in (8).

on in which quadrant the received signal lies in the IQ complex plane, and 106

randomly generated bits are transmitted, with signal to noise ratio (SNR = 12
dB) in the desired direction.

The resultant beam and phase patterns in (8) for all symbols are shown in
Figs. 2 and 3, respectively, where we can see that all main beams are exactly
pointed to the desired direction 0◦ with a low sidelobe level, and the phase only in
the desired direction follows the required QPSK modulation, with random values
in other directions. Fig. 4 shows the optimised locations for the design without
group sparsity technique. It can be seen that the set of optimised locations
for all symbols are not the same, and not even for a single optimised location,
which means we have to keep all these optimised locations (the total number of
optimised locations is 47, where for symbol ‘00’ is 11, for symbol ‘01’ is 14, for
symbol ‘11’ is 10, and for symbol ‘10’ is 12), while Fig. 5 shows the common set of
optimised locations for the design with group sparsity (the number of optimised
locations is 14). BER in all transmission angles is shown in Fig. 6, which is down
to 10−5 in the desired direction, and around 0.5 in other directions.
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5 Conclusions

Directional modulation design has been applied to planar antenna arrays with
optimised antenna locations for the first time. Satisfactory design results for
beam patten, phase pattern and BER were provided, where the main beams for
all symbols are pointed to the desired direction, with the given QPSK modulation
based phase value, while in other directions power level is low and phase values
are random. The BER pattern shows that error bits received in the desired
direction is the lowest, while in other directions the BER is about 0.5, indicating
that it would be extremely difficult for eavesdroppers located in these regions
to crack the information. Moreover, design examples with and without group
sparsity were shown in comparison with each other, further demonstrating the
effectiveness of the proposed formulations.
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