
Sparse PLS discriminant analysis: biologically
relevant feature selection and graphical displays
for multiclass problems
Lê Cao et al.

Lê Cao et al. BMC Bioinformatics 2011, 12:253

http://www.biomedcentral.com/1471-2105/12/253 (22 June 2011)



RESEARCH ARTICLE Open Access

Sparse PLS discriminant analysis: biologically
relevant feature selection and graphical displays
for multiclass problems
Kim-Anh Lê Cao1*, Simon Boitard2 and Philippe Besse3

Abstract

Background: Variable selection on high throughput biological data, such as gene expression or single nucleotide

polymorphisms (SNPs), becomes inevitable to select relevant information and, therefore, to better characterize

diseases or assess genetic structure. There are different ways to perform variable selection in large data sets.

Statistical tests are commonly used to identify differentially expressed features for explanatory purposes, whereas

Machine Learning wrapper approaches can be used for predictive purposes. In the case of multiple highly

correlated variables, another option is to use multivariate exploratory approaches to give more insight into cell

biology, biological pathways or complex traits.

Results: A simple extension of a sparse PLS exploratory approach is proposed to perform variable selection in a

multiclass classification framework.

Conclusions: sPLS-DA has a classification performance similar to other wrapper or sparse discriminant analysis

approaches on public microarray and SNP data sets. More importantly, sPLS-DA is clearly competitive in terms of

computational efficiency and superior in terms of interpretability of the results via valuable graphical outputs. sPLS-

DA is available in the R package mixOmics, which is dedicated to the analysis of large biological data sets.

Background

High throughput technologies, such as microarrays or

single nucleotide polymorphisms (SNPs) are seen as a

great potential to gain new insights into cell biology,

biological pathways or to assess population genetic

structure. Microarray technique has been mostly used to

further delineate cancers subgroups or to identify candi-

date genes for cancer prognosis and therapeutic target-

ing. To this aim, various classification techniques have

been applied to analyze and understand gene expression

data resulting from DNA microarrays ([1-3], to cite only

a few). Genome wide association studies using SNPs

aim to identify genetic variants related to complex traits.

Thousands of SNPs are genotyped for a small number

of phenotypes with genomic information, and clustering

methods such as Bayesian cluster analysis and

multidimensional scaling were previously applied to

infer about population structure [4].

Variable selection

As these high throughput data are characterized by

thousands of variables (genes, SNPs) and a small num-

ber of samples (the microarrays or the patients), they

often imply a high degree of multicollinearity, and, as a

result, lead to severely ill-conditioned problems. In a

supervised classification framework, one solution is to

reduce the dimensionality of the data either by perform-

ing feature selection, or by introducing artificial vari-

ables that summarize most of the information. For this

purpose, many approaches have been proposed in the

microarray literature. Commonly used statistical tests

such as t- or F-tests are often sensitive to highly corre-

lated variables, which might be neglected in the variable

selection. These tests may also discard variables that

would be useful to distinguish classes that are difficult

to classify [5]. Machine Learning approaches, such as

Classification and Regression Trees (CART, [6]),
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Support Vector Machines (SVM, [7]) do not necessarily

require variable selection for predictives purposes. How-

ever, in the case of highly dimensional data sets, the

results are often difficult to interpret given the large

number of variables. To circumvent this problem, sev-

eral authors developed wrapper and embedded

approaches for microarray data: Random Forests (RF,

[8]), Recursive Feature Elimination (RFE, [3]), Nearest

Shrunken Centroids (NSC, [9]), and more recently Opti-

mal Feature Weighting (OFW, [5,10]). Other approaches

were also used for exploratory purposes and to give

more insight into biological studies. This is the case of

Linear Discriminant Analysis (LDA), Principal Compo-

nent Analysis (PCA, see [11,12] for a supervised ver-

sion), Partial Least Squares Regression (PLS, [13], see

also [14-16] for discrimination purposes), to explain

most of the variance/covariance structure of the data

using linear combinations of the original variables. LDA

has often been shown to produce the best classification

results. However, it has numerical limitations. In parti-

cular, for large data sets with too many correlated pre-

dictors, LDA uses too many parameters that are

estimated with a high variance. There is therefore a

need to either regularize LDA or introduce sparsity in

LDA to obtain a parsimonious model. Another limita-

tion of the approaches cited above is the lack of inter-

pretability when dealing with a large number of

variables.

Numerous sparse versions have therefore been pro-

posed for feature selection purpose. They adapt well

known ideas in the regression context by introducing

penalties in the model. For example, a l2 norm penalty

leads to Ridge regression [17] to regularize non inverti-

ble singular matrices. In particular, penalties of type l1
norm, also called Lasso [18], or l0 norm, were also pro-

posed to perform feature selection, as well as a combi-

nation of l1 and l2 penalties [19]. These penalties (l1
and/or l2) were applied to the variable weight vectors in

order to select the relevant variables in PCA [20,21] and

more recently in Canonical Correlation Analysis [22-24]

and in PLS [25-27]. [28,29] also proposed a penalized

version of the PLS for binary classification problems.

Recently, [30] extended the SPLS from [27] for multi-

class classification problems and demonstrated that both

SPLSDA and SPLS with an incorporated generalized fra-

mework (SGPLS) improved classification accuracy com-

pared to classical PLS [31-33].

Multiclass problems

In this study, we specifically focus on multiclass classifi-

cation problems. Multiclass problems are commonly

encountered in microarray studies, and have recently

given rise to several contributions in the literature [34]

and more recently [35,36]. Extending binary classification

approaches to multiclass problems is not a trivial task.

Some approaches can naturally extend to multiclass pro-

blems, this is the case of CART or LDA. Other

approaches require the decomposition of the multiclass

problem into several binary problems, or the definition of

multiclass objective functions. This is the case, for exam-

ple, of SVM one-vs.-one, one-vs.-rest or multiclass SVM.

Sparse PLS-DA

We introduce a sparse version of the PLS for discrimi-

nation purposes (sPLS-Discriminant Analysis) which is a

natural extension to the sPLS proposed by [25,26].

Although PLS is principally designed for regression pro-

blems, it performs well for classification problems

[37,38]. Using this exploratory approach in a supervised

classification context enables to check the generalization

properties of the model and be assured that the selected

variables can help predicting the outcome status of the

patients. It is also important to check the stability of the

selection, as proposed by [39,40]. We show that sPLS-

DA has very satisfying predictive performances and is

well able to select informative variables. In contrary to

the two-stages approach recently proposed by [30],

sPLS-DA performs variable selection and classification

in a one step procedure. We also give a strong focus to

graphical representations to aid the interpretation of the

results. We show that the computational efficiency of

sPLS-DA, combined with graphical outputs clearly give

sPLS-DA a strong advantage to the other types of one

step procedure variable selection approaches in the mul-

ticlass case.

Outline of the paper

We will first discuss the number of dimensions to

choose in sPLS-DA, and compare its classification per-

formance with multivariate projection-based approaches:

variants of sLDA [41], variants of SPLSDA and with

SGPLS from [30]; and with five multiclass wrapper

approaches (RFE, NSC, RF, OFW-cart, OFW-svm) on

four public multiclass microarray data sets and one pub-

lic SNP data set. All approaches perform internal vari-

able selection and are compared based on their

generalization performance and their computational

time. We discuss the stability of the variable selection

performed with sPLS-DA and the biological relevancy of

the selected genes. Unlike the other projection-based

sparse approaches tested, we show that sPLS-DA pro-

poses valuable graphical outputs, also available from our

R package mixOmics, to guide the interpretation of the

results [42,43].

Results and Discussion

In this section, we compare our proposed sPLS-DA

approach with other sparse exploratory approaches such
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as two sparse Linear Discriminant Analyses (LDA) pro-

posed by [41], and three other versions of sparse PLS

from [30]. We also include in our comparisons several

wrapper multiclass classification approaches. Compari-

sons are made on four public cancer microarray data

sets and on one SNP data set. All these approaches per-

form variable selection in a supervised classification set-

ting, i.e. we are looking for the genes/SNPs which can

help classifying the different sample classes.

We first discuss the choice of the number of dimen-

sions H to choose with sPLS-DA, the classification per-

formance obtained with the tested approaches and the

computational time required for the exploratory

approaches. We then perform a stability analysis with

sPLS-DA that can help tuning the number of variables

to select and we illustrate some useful graphical outputs

resulting from the by-products of sPLS-DA. We finally

assess the biological relevancy of the list of genes

obtained on one data set.

Data sets

Leukemia

The 3-class Leukemia version [1] with 7129 genes com-

pares the lymphocytes B and T in ALL (Acute Lympho-

blastic Leukemia, 38 and 9 cases) and the AML class

(Acute Myeloid Leukemia, 25 cases). The classes AML-

B and AML-T are known to be biologically very similar,

which adds some complexity in the data set.

SRBCT

The Small Round Blue-Cell Tumor Data of childhood

(SRBCT, [44]) includes 4 different types of tumors with

23, 20, 12 and 8 microarrays per class and 2308 genes.

Brain

The Brain data set compares 5 embryonal tumors [45]

with 5597 gene expression. Classes 1, 2 and 3 count 10

microarrays each, the remaining classes 4 and 8.

GCM

The Multiple Tumor data set initially compared 14

tumors [46] and 7129 gene expressions. We used the

normalized data set from [47] with 11 types of tumor.

The data set contains 90 samples coming from different

tumor types: breast (7), central nervous system (12),

colon (10), leukemia (29), lung (6), lymphoma (19), mel-

anoma (5), mesotheolima (11), pancreas (7), renal (8)

and uterus (9).

SNP data

The SNP data set considered in our study is a subsam-

ple of the data set studied by [48] in the context of the

Human Genome Diversity Project, which was initiated

for the purpose of assessing worldwide genetic diversity

in human. The original data set of [48] included the

genotypes at 525,910 single-nucleotide polymorphisms

(SNPs) of 485 individuals from a worldwide sample of

29 populations. In order to work on a smaller sample

size data set with still a large number of classes or

populations (K = 7) and with a high complexity classifi-

cation, we chose to keep only the African populations:

Bantu Kenya, Bantu South Africa, Biaka Pygmy, Man-

denka, Mbuty Pygmy, San and Yoruba. We filtered the

SNPs with a Minor Allele Frequency> 0.05. For compu-

tational reasons, in particular to run the evaluation pro-

cedures using the wrapper methods, we randomly

sampled 20,000 SNPs amongst the ones of the original

dataset. The aim of this preliminary analysis is to show

that sPLS-DA is well able to give satisfying results on

biallelic discrete ordinal data (coded 0, 1 or 2, i.e. the

number of mutant alleles at one SNP for one individual)

compared to the other approaches.

Choosing the number of sPLS-DA dimensions

In the case of LDA or sparse LDA (sLDA), it is of con-

vention to choose the number of discriminant vectors H

≤ min(p, K - 1), where p is the total number of variables

and K is the number of classes. The p-dimensional data

will be projected onto a H-dimensional space spanned

by the first H discriminant vectors, also called dimen-

sions in the case of sPLS.

To check if the same applies to sPLS-DA, we have

plotted the mean classification error rate (10 cross-vali-

dation averaged 10 times) for each sPLS-DA dimension

(Figure 1 for the Brain and SNP data sets, see Addi-

tional file 1 for the other data sets). We can observe

that the estimated error rate is stabilized after the first

K - 1 dimensions for any number of selected variables

for the microarray data sets. For the SNP data set, H

should be set to K - 2. The latter result is surprising,

but can be explained by the high similarity between two

of the classes: the Bantu Kenya and Banty South Africa

populations, as illustrated later in the text.

Therefore, according to these graphics, reducing the

subspace to the first K - 1 (K - 2) dimensions is suffi-

cient to explain the covariance structure of the micro-

array (SNP) data. In the following, we only record the

classification error rate obtained after K - 1 (K - 2)

deflation steps have been performed with sPLS-DA -

this also applies to the tested variants of SPLS from

[30].

Comparisons with other multiclass classification

approaches

We compared the classification performance obtained

with state-of-the-art classification approaches: RFE [49],

NSC [9] and RF [8], as well as a recently proposed

approach: OFW [10] that has been implemented with

two types of classifiers, CART or SVM and has also

been extended to the multiclass case [5]. These wrapper

approaches include an internal variable selection proce-

dure to perform variable selection.

Lê Cao et al. BMC Bioinformatics 2011, 12:253

http://www.biomedcentral.com/1471-2105/12/253

Page 3 of 16



We compared the classification performance of sPLS-

DA to sLDA variants proposed by [41] based on a

pooled centroids formulation of the LDA predictor

function. The authors introduced feature selection by

using correlation adjusted t-scores to deal with highly

dimensional problems. Two shrinkage approaches were

proposed, with the classical LDA (subsequently called

sLDA) as well as with the diagonal discriminant analysis

(sDDA). The reader can refer to [41] for more details

and the associated R package sda.

Finally, we included the results obtained with 3 other

versions of sparse PLS proposed by [30]. The SPLSDA

formulation is very similar to what we propose in sPLS-

DA, except that the variable selection and the classifica-

tion is performed in two stages - whereas the prediction

step in sPLS-DA is directly obtained from the by-pro-

ducts of the sPLS - see Section Methods. The authors in

[30] therefore proposed to apply different classifiers

once the variable selection is performed: Linear Discri-

minant Analysis (SPLSDA-LDA) or a logistic regression

(SPLSDA-LOG). The authors also proposed a one-stage

approach SGPLS by incorporating SPLS into a general-

ized linear model framework for a better sensitivity for

multiclass classification. These approaches are imple-

mented in the R package spls.

Figure 2 displays the classification error rates esti-

mated on each of the five data sets for all the tested

approaches and Table 1 records the computational time

required by the exploratory approaches to train the data

on a given number of selected variables. Table 2 indi-

cates the minimum estimated classification error rate

obtained on each data set and for most of the

approaches. Note that this table should be interpreted in

conjunction with the results displayed in Figure 2 to

obtain a better comprehensive understanding of how all

approaches perform in relation with each other.

Details about the analysis

The aim of this section is to compare the classification

performance of different types of variable selection

approaches that may require some parameters to tune.

We performed 10 fold cross-validation and averaged the

obtained classification error rate accross 10 repetitions,

and this for different variable selection sizes (Figure 2).

The wrapper approaches were run with the default

parameters or the parameters proposed by the authors

[8,50]. The sDDA and sLDA approaches are actually

two-stages approaches as variables need to be ranked

first before sLDA/DDA can be applied, but they do not

require any other input parameter than the number of

variables to select. sPLS-DA, SPLSDA-LOG/LDA and

SGPLS require as input the number of PLS dimensions

as discussed above. In addition, while sPLS-DA requires

the number of variables to select on each dimension as

an input parameter, SPLSDA-LOG/LDA and SGPLS

require to tune the h parameter that varies between 0

and 1 - the closer to 1 the smaller variable selection

size, so that it matched the variable selection sizes with

the other approaches. SPLSDA-LOG/LDA are per-

formed in two steps: one step for variable selection with

SPLS and one step for classification.

Complexity of the data sets

All data sets differ in their complexity. For example, the

4-class SRBCT data set is known to be easy to classify

[5] and most approaches - except NSC, have similar

good performances. Analogously, the GCM data set that

contains numerous classes (11) gives similar overall clas-

sification error rates for all approaches. The Brain and

Leukemia data sets with 5 and 3 classes respectively

seem to increase in complexity, and, therefore, lead to

more accentuated discrepancies between the different

approaches. The SNP data set is more complex due to

the discrete ordinal nature of the data (3 possible values

for each variable), a high number of populations (7) that

have similar characteristics - some of them, for instance

Bantu Kenya and Bantu South Africa, are closely related.

Consequently, it can be expected that a large number of

SNP may be needed to discriminate at best the different

populations. This is what we observe, but, nonetheless,

Figure 1 Choosing the number of dimensions in sPLS-DA. Estimated classification error rates for Brain and SNP (10 cross-validation averaged

10 times) with respect to each sPLS-DA dimension. The different lines represent the number of variables selected on each dimension (going

from 5 to p).
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most approaches (except OFW) perform well, in parti-

cular NSC.

Computational efficiency

We only recorded the computational time of the

exploratory approaches sDDA, sLDA, SPLSDA-LOG,

SPLSDA-LDA, SGPLS and sPLS-DA as the wrapper

approaches are computationally very greedy (the training

could take from 15 min up to 1 h on these data). Some

computation time could not be recorded as a R memory

allocation problem was encountered (SNP data for

sLDA and SGPLS).

The fastest approach is sDDA (except for Leukemia).

This approach is not necessarily the one that performs

the best, but is certainly the most efficient on large data

sets. sPLS-DA is the second fastest one. The SPLSDA

approaches were efficient on SRBCT but otherwise

number of genes

e
rr

o
r 

ra
te

5 10 15 20 25 30 35 40 45 50 100 200 500 7129

0
.2

0
0
.2

5
0
.3

0
0
.3

5
0
.4

0
0
.4

5
0
.5

0

Leukemia

number of genes

e
rr

o
r 

ra
te

5 10 15 20 25 30 35 40 45 50 100 200 500 2308

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

SRBCT

number of genes

e
rr

o
r 

ra
te

5 10 15 20 25 30 35 40 45 50 100 200 500 6144

0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0
0
.3

5

Brain

5 10 15 20 25 30 35 40 45 50 100 200 500 7129

0
.0

0
.2

0
.4

0
.6

e
rr

o
r 

ra
te

number of genes

GCM

10 20 50 100 200 500 1000 2000 5000 20000

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

e
rr

o
r 

ra
te

SNP Human

number of SNPs

RFE
OFW svm

RF
OFW cart

NSC
sPLS DA

sDDA
sLDA

SPLSDA LDA
SPLSDA LOG

SGPLS

Figure 2 Comparisons of the classification performance with other variable selection approaches. Estimated classification error rates for

Leukemia, SRBCT, Brain, GCM and the SNP data set (10 cross-validation averaged 10 times) with respect to the number of selected genes (from

5 to p) for the wrapper approaches and the sparse exploratory approaches.
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performed third, while SGPLS computation time was

similar to sPLSDA except for large multiclass data set

such as GCM.

Wrapper approaches

Amongst the wrapper approaches, RFE gave the best

results for a very small selection of variables in most

cases. The performance of RFE then dramatically

decreased when the number of selected variables

becomes large. This is due to the the backward elimina-

tion strategy adopted in the approach: the original vari-

ables are progressively discarded until only the

‘dominant’ mostly uncorrelated variables remain. RF

seemed to give the second best performance for a larger

number of variables. OFW-cart also performed well, as

it aggregates CART classifiers, whereas OFW-svm per-

formed rather poorly. This latter result might be due to

the use of the one-vs-one multiclass SVM. NSC seemed

affected by a too large number of variables, but per-

formed surprisingly well on the SNP data.

sDDA/sLDA

Both variants gave similar results, but we could observe

some differences in the GCM data set. In fact, [41]

advised to apply sDDA for extremely high-dimensional

data, but when a difference was observed between the

two approaches (GCM, Leukemia), it seemed that sLDA

performs the best. However, in terms of computational

efficiency, sDDA was the most efficient.

SPLSDA-LOG/SPLSDA-LDA

SPLSDA-LDA gave better results than SPLSDA-LOG

except for SRBCT where both variants performed simi-

larly. On Leukemia, Brain and SNP, SPLSDA-LDA had

a similar performance to sPLS-DA but only when the

selection size became larger.

SGPLS

SGPLS performed similarly to sPLS-DA on SRBCT and

gave similar performance to sPLS-DA on Leukemia when

the selection size was large. However, it performed poorly

in Brain where the number of classes becomes large and

very unbalanced. SGPLS could not be run on GCM data

as while tuning the h parameter, the smallest variable

selection size we could obtain was 100, which did not

make SGPLS comparable to the other approaches. On the

SNP data SGPLS encountered R memory allocation issues.

sPLS-DA

sPLS-DA gave similar results to sDDA and sLDA in the

less complex data sets SRBCT and GCM. The

Table 1 Computational time

Data set sDDA sLDA sPLS-DA SPLS-LDA SPLS-LOG SGPLS

Leukemia 10 32 6 31 29 8

SRBCT 1 3 2 3 3 6

Brain 1 39 6 22 23 29

GCM 1 34 11 52 53 252

SNP 2 NA 17 749 731 NA

Computational time in seconds on a Intel(R) Core (TM) 2 Duo CPU 2.40 GHz

machine with 4 GB of RAM to run the approaches on the training data for a

chosen number of selected variables (50 for the microarray data and 200 for

the SNP data).

Table 2 Minimum classification error rate estimated for each data set for the first best approaches (percentage) and

the associated number of genes/SNPs that were selected

Data set rank 1 rank 2 rank 3 rank 4 rank 5 rank 6 rank 7 rank 8 rank 9

Leukemia RFE SPLSDA-
LDA

LDA SPLSDA-
LOG

RF DDA sPLS NSC SGPLS

error rate 20.55 22.36 22.78 23.33 24.17 24.31 24.30 26.25 26.67

# genes 5 200 7129 500 200 50 10 500 500

SRBCT RF OFW-
cart

DDA LDA sPLS NSC SGPLS RFE SPLSDA-
LDA

error rate 0.00 0.00 0.00 0.00 0.16 0.63 1.27 1.58 1.90

# genes 30 50 30 100 100 500 50 5 200

Brain RFE DDA LDA sPLS RF SPLSDA-
LDA

NSC OFW-
cart

SPLSDA-
LOG

error rate 10.56 10.78 11.11 11.22 11.89 14.45 15.11 15.56 17.00

# genes 10 25 30 6144 500 35 20 35 50

GCM RFE LDA RF SGPLS-
LDA

sPLS OFW-
svm

SGPLS-
LOG

OFW-
cart

NSC

error rate 0.81 1.14 1.22 1.63 3.41 4.01 4.71 4.88 7.23

# genes 5 500 500 200 200 500 500 7129 10

SNP NSC DDA SPLS RFE SPLSDA-
LDA

RF SPLSDA-
LOG

OFW-
cart

OFW-
svm

error rate 6.50 11.54 11.71 12.36 13.01 17.40 31.22 49.96 51.67

# SNPs 5000 1000 2000 20000 2000 20000 200 20000 20000

The approaches are ranked by their performances.
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performance obtained on Brain was quite poor, but

results were very competitive in Leukemia for a number

of selected genes varying between 5 and 30. Note that

the number of selected variables is the total number of

variables selected accross the K - 1(K - 2) chosen

dimensions (SNP data). In overall, sPLS-DA gave better

results than the wrapper approaches, and remained very

competitive to the other exploratory approaches. One

winning advantage of sPLS-DA is the graphical outputs

that it can provide (see next Section), as well as its com-

putational efficiency.

Stability analysis of sPLS-DA

It is useful to assess how stable the variable selection is

when the training set is perturbed, as recently proposed

by [39,40]. For instance, the idea of bolasso [40] is to

randomize the training set by drawing boostrap samples

or drawing n/2 samples in the training set, where n is

the total number of samples. The variable selection

algorithm is then applied on each subsample with a

fixed number of variables to select and the variables that

are selected are then recorded [40]. proposed to keep in

the selection only the variables that were selected in all

subsamples, whereas [39] proposed to compute a rela-

tive selection frequency and keep the most stable vari-

ables in the selection.

We chose to illustrate the latter option as we believe

that the stability frequency, or probability, gives a better

understanding of the number of stable discriminative

variables that are selected in sPLS-DA. The highly cor-

related variables will get a higher probability of being

selected in each subsample, while the noisy variables

will have a probability close to zero. This stability mea-

sure can also guide the user in the number of variables

to choose on each sPLS-DA dimension. Once the num-

ber of variables to select has been chosen for the first

dimension, the stability analysis should be run for the

second dimension and so on. Note that [39] proposed

an additional perturbation by introducing random

weights in the Lasso coefficients, called random lasso.

This latter approach could not, however, be directly

applied in the sPLS-DA algorithm due to its iterative

nature.

Figure 3 illustrates the stability frequencies for the first

two dimensions of the sPLS-DA for the GCM and SNP

data sets using bootstrap sampling (i.e. of size n). The

frequencies obtained on the GCM data set clearly show

that the first 3 variables are often selected accross

numerous bootstrap samples on the first dimension. We

can see that while most microarray data could achieve a

reasonably high stability frequency (see Additional file

2), this was not the case, however, for the SNP data.

Several SNPs may contain similar information, this may

induce a lower stability across the bootstrap samples for

a small variable selection. Once the variable selection

size grows larger, then there is enough stable informa-

tion to be retained.

We also noticed that once we reached too many

dimensions (i.e. close K - 1), then the frequencies of all

variables dropped, which clearly showed that sPLS-DA

could not distinguish between discriminative variables

and noisy variables any more (not shown).

Data visualization with sPLS-DA

Representing the samples and the variables

Data interpretation is crucial for a better understanding of

highly dimensional biological data sets. Data visualization

is one of the clear advantage of projection-based methods,

such a Principal Component Analysis (PCA), the original

PLS-DA or sPLS-DA, compared to the other tested

approaches (wrapper methods, SPLSDA and SGPLS). The

decomposition of the data matrix into loading vectors and

latent variables provide valuable graphical outputs to easily

visualize the results. For example, the latent variables can

be used to represent the similarities and dissimilarities

between the samples: Figure 4 illustrates the difference in

the sample representation between classical PLS-DA (no

variable selection) and sPLS-DA (26 genes selected on the

first 2 dimensions) for the Brain data set. Variable selec-

tion for highly dimensional data sets can be beneficial to

remove the noise and improve the samples clustering. A

3D graphical representation can be found in Additional

file 3 with sPLS-DA. Figures 5, 6 and 7 compare the sam-

ple representation on the SNP data set using PCA (SNP

data set only), classical PLS-DA and sPLS-DA on several

principal components or PLS dimensions. On the full data

set, PCA is able to discriminate the African hunter gath-

erers populations San, Mbuti and Biaka from the 4 other

populations that are very similar (Mandeka, Yoruba, Bantu

South Africa and Bantu Kenya). This is a fact that was pre-

viously observed [48] and it indicates a good quality of the

data. With PCA however, the differentiation between the

4 populations Mandeka, Yoruba, Bantu South Africa and

Bantu Kenya is not very clear, even for further dimensions

(Figure 5). On the contrary to PCA, PLS-DA (Figure 6)

and sPLS-DA (Figure 7) are able to discriminate further

these 4 populations on dimensions 4 and 5. In particular,

the Mandeka population is well differentiated on dimen-

sion 4, and so is the Yaruba population on dimension 5. In

terms of sample representation and in contrary to what

was obtained with the Brain data set (Figure 4), the differ-

ence between PLS-DA and sPLS-DA is not striking on

this particular data set. This is probably because the SNP

variables, although containing redundant information, are

all informative and mostly not noisy. This also explains

the good population clusters obtained with PCA (Figure

5). However, the variable selection performed in sPLS-DA

has two advantages: firstly it reduces the size of the data
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set for further investigation and analyses; secondly, since

each (s)PLS dimension focuses on the differentiation of

some particular populations (Figures 5 and 6) and since

sPLS selects an associated subset of variables on each on

these dimensions, each of these subsets of variables is well

able to differentiate these particular populations. This vari-

able selection therefore gives more insight into the data

(see [25] for more details). Figure 8 illustrates the weights

in absolute value of the sparse loading vectors for each

sPLS-DA dimension in the Brain data set. Only the genes

with a non-zero weight are considered in the sPLS-DA

analysis and were included in the gene selection (50 genes

in total for this example). Generally, the sparse loading

vectors are orthogonal to each other, which permits to

uniquely select genes across all dimensions. The latent

variables can also be used to compute pairwise correla-

tions between the genes to visualize them on correlation

circles and better understand the correlation between the

genes on each dimension (Figure 9(a)). Note that this type

of output is commonly used for Canonical Correlation

Analysis.

On the contrary, the pooled centroid formulation used

in sDDA and sLDA do not provide such latent variables,

and, therefore, lack of such useful outputs. The same

can be said about the wrapper approaches, which often

have a much higher computational cost than the sparse

exploratory approaches applied in this study.

Brain data set: biological interpretation

Comparisons between the gene lists

The ultimate aim when performing variable selection is

to investigate whether the selected genes (or SNPS)

have a biological meaning. We saw for example that

some of the tested approaches gave similar perfor-

mances, even though they select different variables.

We therefore compared the lists of 50 genes selected

with the different approaches on the Brain data set.

Note that the selection size has to be large enough to

extract known biological information from manually

curated databases.

Unsurprisingly, given the variety of approaches used,

there were not many genes in common: there were

Figure 3 Stability analysis. Stability frequency using bolasso for the first two dimensions of sPLS-DA for GCM (top) and SNP data (bottom).

One has to sequentially choose the most stabler genes/SNPs in the first dimension in order to pursue the stability analysis for the next sPLS-DA

dimension.
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between 12 and 30 genes shared between sPLS-DA,

sDDA, sLDA and SPLDA - sDDA and sLDA shared the

most important number of genes (30). The gene selec-

tion from SGPLS grandly differed from the other multi-

variate approaches (between 2 and 9 genes). This may

explain why the performance of SGPLS was pretty poor

compared to the other approaches on the Brain data set.

RF seemed to be the approach that selected the highest

number of genes in common with all approaches except

with NSC (between 10 and 23 genes). A fact to be

expected was that there were very few commonly

selected genes between the exploratory approaches and

the wrapper approaches (between 2 and 10 genes).

We then investigated further the biological meaning of

the selected genes. This analysis was performed with the

GeneGo software [4] that outputs process networks,

gene ontology processes as well as the list of diseases

potentially linked with the selected genes.

It was interesting to see that in all these gene lists

(except NSC and RFE), between 3 to 5 genes were

linked to networks involved in neurogenesis, apoptosis,

as well as DNA damage (sPLS-DA, sDDA) and neuro-

physiological processes (OFW-cart). Most of the lists

that were selected with the wrapper approaches gener-

ated interesting gene ontology processes, such as degen-

eration of neurons (RF), synaptic transmission or

generation of neurons (OFW-svm). On the contrary, the

sparse exploratory approaches seemed to pinpoint

potential biomarkers linked with relevant diseases: cen-

tral nervous system and brain tumor (sPLS-DA), Sturge

Weber syndrome, angiomatosis, brain stem (sDDA,

sLDA), neurocutaneous syndrome (sDDA), neurologic

manifestations and cognition disorders (SGPLS).

This preliminary analysis shows that the different

approaches are able to select relevant genes linked to

the biological study and are able to select complemen-

tary information. This was also the conclusion drawn in

[10].

Further biological interpretation with the sPLS-DA list

Using the GeneGo software, known biological networks

were generated from the list of genes selected with

sPLS-DA - 26 genes in total for the first two dimen-

sions. For example, the network represented in Figure 9

(b) is based on 12 of these selected genes (indicated

with a red dot), which are involved in biological func-

tions such as cell differentiation, cellular developmental

process and central nervous system development. These

genes are organised around two transcription factors,

ESR1 and SP1. SP1 can activate or repress transcription

in response to physiological and pathological stimuli

and regulates the expression of a large number of genes

involved in a variety of processes such as cell growth,

apoptosis, differentiation and immune responses.

Interestingly, all 12 genes present in the network were

also found to be highly correlated to the sPLS-DA

dimensions 1 and 2 (indicated in green for the ESR1

network, magenta for the SP1 network and red for com-

mon genes in both subgraphs). This latter result sug-

gests a. that the first (second) dimension of sPLS-DA

seems to focus on the SP1 (ESR1) network and b. that

the genes selected with sPLS-DA are of biological rele-

vance (see Table 3 for a description of most genes).

Further investigation would be required to give more

insight into the sPLS-DA gene selection.

Conclusions

In this article, we showed that sPLS could be naturally

extended to sPLS-DA for discrimination purposes by

coding the response matrix Y with dummy variables.

sPLS-DA often gave similar classification performance

to competitive sparse LDA approaches in multiclass

problems. Undoubtedly, the sparse approaches that we

Figure 4 Brain data: sample representation and comparison

with classical PLS-DA. Comparisons of the sample representation

using the first 2 latent variables from PLS-DA (no variable selection)

and sPLS-DA (26 genes selected).
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Figure 5 SNP data: sample representation with PCA. Sample representations using the first 5 principal components from PCA.

Figure 6 SNP data: sample representation with classical PLS-DA. Sample representation using the first 5 latent variables from PLS-DA (no

SNPs selected).
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tested are extremely competitive to the wrapper meth-

ods, which are often considered as black boxes with no

intuitive tuning parameters (such as the kernels to use

in the SVM). The preliminary biological analysis showed

that some tested approaches brought relevant biological

information. The PLS-based approaches such as the

sPLS-DA approach that we propose have a well estab-

lished framework for class prediction. The computa-

tional efficiency of sPLS-DA as well as the valuable

graphical outputs that provide easier interpretation of

the results make sPLS-DA a great alternative to other

types of variable selection techniques in a supervised

classification framework. We also showed that a stability

analysis could guide the parameter tunings of sPLS-DA.

On the Brain data set, we showed that sPLS-DA selected

relevant genes that shed more light on the biological

study. For these reasons, we believe that sPLS-DA pro-

vides an interesting and worthwhile alternative for fea-

ture selection in multiclass problems.

Methods

In this section, we introduce the sparse Partial Least

Squares Discriminant Analysis (sPLS-DA) to perform

feature selection. sPLS-DA is based on Partial Least

Squares regression (PLS) for discrimination analysis, but

a Lasso penalization has been added to select variables.

We denote X the n × p sample data matrix, where n is

the number of patients or samples, and p is the number

of variables (genes, SNPs, ...). In this supervised classifi-

cation framework, we will assume that the samples n

are partitioned into K groups.

Introduction on PLS Discriminant Analysis

Although Partial Least Squares [13] was not originally

designed for classification and discrimination problems,

it has often been used for that purpose [38,51]. The

response matrix Y is qualitative and is recoded as a

dummy block matrix that records the membership of

each observation, i.e. each of the response categories are

coded via an indicator variable. The PLS regression (now

PLS-DA) is then run as if Y was a continuous matrix.

Note that this might be wrong from a theoretical point of

view, however, it has been previously shown that this

works well in practice and many authors have used

dummy matrice in PLS for classification [30,37,51,52].

PLS constructs a set of orthogonal components that

maximize the sample covariance between the response

and the linear combination of the predictor variables.

The objective function to be solved can be written as

arg max
u′

h uh=1,v′
hvh=1

cov
2(u′

h
X, v

′
h
Y)

where uh and vh are the hth left and right singular vector

of the singular value decomposition (SVD) of XT Y

Figure 7 SNP data: sample representation with sPLS-DA. Sample representation using the first 5 latent variables from sPLS-DA (1000 SNPs

selected on each dimension).

Lê Cao et al. BMC Bioinformatics 2011, 12:253

http://www.biomedcentral.com/1471-2105/12/253

Page 11 of 16



respectively [53] for each iteration or dimension h of the

PLS. These singular vectors are also called loading vectors

and are associated to the X and Y data set respectively.

In the case of discrimination problems, the PLS model

can be formulated as follows:

Y = Xβ + E,

where b is the matrix of the regression coefficients and

E is the residual matrix. To give more details, b = W*V T,

where V is the matrix containing the loading vectors (or

right singular vectors from the SVD decomposition) (v1,

..., vH ) in columns, W* = W (UT W )-1, where W is the

matrix containing the regression coefficients of the

regression of X on the latent variable th = v′
h
Y , and U is

the matrix containing the loading vectors (or left singular

vectors from the SVD decomposition) (u1, ..., uH ) in col-

umns. More details about the PLS algorithm and the PLS

model can be found in the reviews of [53,54]. The predic-

tion of a new set of samples is then

Ynew = Xnewβ ,

The identity of the class membership of each new

sample (each row in Ynew ) is assigned as the column

index of the element with the largest predicted value in

this row.

Discriminant PLS for large data sets

Numerous variants of PLS-DA have been proposed in

the literature to be adapted to classification problems

for large data sets such as microarray. Iterative

Reweighted PLS was first proposed by [31] to extend

PLS into the framework of generalized linear models. In

the same context, [51,55,56] proposed a two-stage

approach, first by extracting the PLS-DA latent variables

to reduce the dimension of the data, and then by apply-

ing logistic discrimination or polychotomous discrimina-

tion in the case of multiclass problems. To avoid infinite

parameters estimates and non convergence problems,

other authors [32] extended the work of [31] by apply-

ing Firth’s procedure to avoid (quasi) separation,

whereas [33] combined PLS with logistic regression

penalized with a ridge parameter. The response variables

Y is modelled either as a dummy matrix [51,55,56], or as

a pseudo-response variable whose expected value has a

linear relationship with the covariates [33]. The

approach proposed by [32] updates the adjusted depen-

dent variable as the response rather than working with

the original outcome. While these authors propose to

address the problem of dimension reduction, they still

require to perform gene filtering beforehand, with, for

example, t-statistics or other filtering criterion such as

the BSS/WSS originally proposed by [2].
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sparse PLS Discriminant Analysis

sparse PLS for two data sets

The sparse PLS proposed by [25,26] was initially

designed to identify subsets of correlated variables of

two different types coming from two different data sets

X and Y of sizes (n × p) and (n × q) respectively. The

original approach was based on Singular Value Decom-

position (SVD) of the cross product Mh = XT

h
Yh . We

denote uh (vh) the left (right) singular vector from the

SVD, for iteration h, h = 1 ... H where H is the number

of performed deflations - also called chosen dimensions

of the PLS. These singular vectors are named loading

vectors in the PLS context. Sparse loading vectors were

then obtained by applying l1 penalization on both uh
and vh. The optimization problem of the sPLS mini-

mizes the Frobenius norm between the current cross

product matrix and the loading vectors:

min
uh,vh

||Mh − uhv
′
h
||

2

F +Pλ1(uh) + Pλ2(vh), (1)

where Pl1 (uh) = sign(uh)(|uh| - l1)+, and Pl2 (vh) =

sign(vh)(|vh| - l2)+ are applied componentwise in the

vectors uh and vh and are the soft thresholding functions

that approximate Lasso penalty functions [21]. They are

simultaneously applied on both loading vectors. The

problem (1) is solved with an iterative algorithm and the

Xh and Yh matrices are subsequently deflated for each

iteration h (see [25] for more details). For practical pur-

poses, sPLS has been implemented in the R package

mixOmics such that the user can input the number of

variables to select on each data set rather than the pena-

lization parameters l1 and l2.

sPLS extended to sPLS-DA

The extension of sparse PLS to a supervised classifica-

tion framework is straightforward. The response matrix

Y of size (n × K) is coded with dummy variables to

indicate the class membership of each sample. Note that

in this specific framework, we will only perform variable

selection on the X data set, i.e., we want to select the

discriminative features that can help predicting the

classes of the samples. The Y dummy matrix remains

unchanged. Therefore, we set Mh = XT

h
Yh and the opti-

mization problem of the sPLS-DA can be written as:

min
uh,vh

||Mh − uhv
′
h
||2

F
+ Pλ(uh),

with the same notation as in sPLS. Therefore, the

penalization parameter to tune is l. Our algorithm has

been implemented to choose the number of variables to

select rather than l for practical reasons. For the class

prediction of test samples, we use the maximum dis-

tance as presented above for the PLS case as it seemed

to be the one that worked better in practice for multi-

class problems. Note that other distances such as the

centroids or Malhanobis distances are also implemented

in the mixOmics package [42,43]. In the results section,

we illustrated how to tune the PLS dimension H as well

as the number of X variables to select.

sPLS-DA for multiclass classification

In binary problems, sPLS-DA was shown to bring rele-

vant results in microarray cancer data sets (see [57]). In

this paper, we investigated the use of sPLS-DA in the

more complex multiclass case, as PLS-DA and sPLS-DA

are naturally adapted to multiclass problems. In this

paper, we did not attempt to address the specific pro-

blem of unbalanced classes, that would require the

development of appropriately weighted multiclass objec-

tive functions for wrapper classification approaches (see

for example [58]).

Parameters to tune in sPLS-DA

There are two parameters to tune in sPLS-DA: the

number of dimensions H, and the number of variables

to select on each dimension. In the Results Section, we

Table 3 Brain data: Biological relevance of some of the selected genes

Bard1 Plays a central role in the control of the cell cycle in response to DNA damage

PGDH Possibly involved in development and maintenance of the blood-brain, blood-retina, blood-aqueous humor and blood-testis barrier. It is
likely to play important roles in both maturation and maintenance of the central nervous system and male reproductive system

Na(v)
Beta1

Involved in the generation and propagation of action potentials in muscle and neuronal cells

NDF1 Differentiation factor required for dendrite morphogenesis and maintenance in the cere bellar cortex

Neuronatin May participate in the maintenance of segment identity in the hindbrain and pituitary development, and maturation or maintenance of
the overall structure of the nervous system

PEA15 death effector domain (DED)-containing protein predominantly expressed in the central nervous system, particularly in astrocytes

CD97 Receptor potentially involved in both adhesion and signalling processes early after leukocyte activation. Plays an essential role in
leukocyte migration

ALDOC is expressed specifically in the hippocampus and Purkinje cells of the brain

Cyclin D1 The protein encoded by this gene has been shown to interact with tumor suppressor protein Rb Mutations, amplification and
overexpression of this gene, which alters cell cycle progression, are observed frequently in a variety of tumors and may contribute to
tumour genesis

Description of the genes or proteins encoded by the genes selected by sPLS-DA and present in the known GeneGO biological network.
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showed that for most cases, the user could set H = K -

1, similar to what is advised in a LDA case. The number

of variables to select is more challenging given the com-

plexity of such data sets and is still as an open question.

The tuning of such parameter can be guided through

the estimation of the generalisation classification error

and a stability analysis. However, these analyses might

be seriously limited by the small number of samples.

Most importantly, the user should keep in mind that a

close interaction with the biologists is necessary to care-

fully tune this parameter in order to answer biological

questions. Sometimes, an optimal but too short gene

selection may not suffice to give a comprehensive biolo-

gical interpretation, and experimental validation might

be limited in the case of a too large gene selection.

Additional material

Additional file 1: Tuning the number of dimensions in sPLS-DA.

Estimated classification error rates for Leukemia, SRBCT and GCM (10

cross-validation averaged 10 times) with respect to each sPLS-DA

dimension. The different lines represent the number of variables selected

on each dimension (going from 5 to p).

Additional file 2: Stability analysis. Stability frequency using bolasso

for the first two dimensions of sPLS-DA for Brain (top) and SRBCT data

(bottom). One has to sequentially choose the most stabler genes/SNP in

the first dimension in order to go on to the next sPLS-DA dimension.

Additional file 3: Brain data: sample representation in 3D. Example

of 3D samples plot using the first 3 latent variables from sPLS-DA with

the R mixOmics package.
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