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Abstract—Unsupervised learning approaches, such as Partial
Least Squares, can be used to investigate relationships between
multiple sources of data, such as neuroimaging and behavioural
data. In cases of high-dimensional datasets with limited number
of examples (e.g. neuroimaging data) there is a need for reg-
ularisation to enable the solution of the ill-posed problem and
prevent overfitting. Different approaches have been proposed to
optimise the regularisation parameters in unsupervised models,
however, so far, there has been no comparison between the
different approaches using the same data. In this work, two
optimisation frameworks (i.e. a permutation and a train/test
framework) were compared using sparse PLS to investigate
associations between brain connectivity and behaviour data. Both
frameworks were able to identify at least one brain-behaviour
associative effect. A second brain-behaviour effect was only found
using the train/test framework. More importantly, the results
show that the multivariate associative effects found with the
train/test framework generalise better to new data, suggesting
that results based on the permutation framework should be
carefully interpreted.
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I. INTRODUCTION

In recent years, unsupervised learning approaches have
been increasingly used in neuroimaging due to the potential of
these methods to explore multivariate relationships in different
types of data. Canonical Correlation Analysis (CCA) and
Partial Least Squares (PLS) are examples of these approaches
and are used to find pairs of weight vectors that maximise the
correlation or covariance, respectively, between the projections
of data sources. Typically, neuroimaging data consists of a few
samples that are high-dimensional. This represents an ill-posed
problem which can be addressed with dimensionality reduction
(e.g. PCA) or regularisation (e.g. sparse PLS) techniques. The
former has been used to reduce the dimensionality of the
data, for instance before applying CCA [1]. In the latter,
regularisation constraints are added to the models, for instance
to constrain the norm of the weights. Sparse PLS (SPLS) is a
sparse version of PLS, in which L1 and L2 regularisations are
used to impose sparsity on the weights [2]. The L1-constraint
has a hyper-parameter that controls the degree of sparsity,
which will affect the number of variables selected in each
data source. The contribution of this work is to compare two
frameworks that have been previously proposed to optimise
the SPLS hyper-parameters, the permutation framework [3]

and a recent train/test framework proposed by Monteiro et
al. [4]. The two strategies were compared in terms of the
similarity between the SPLS weights and generalisability of
the associative effects using a hold-out framework.

II. MATERIAL

A. Data

We used resting-state functional magnetic resonance imag-
ing (rfMRI) and extensive item-level questionnaire data cov-
ering positive and negative mental health related behaviour
and symptoms of 299 healthy and 33 depressed participants,
comprising adolescents and young adults (14-24 years old)
from the NeuroScience in Psychiatry Network (NSPN) study
[5]. All MRI data were acquired on three identical 3T whole-
body MRI systems (Magnetom TIM Trio; VB17 software
version; Siemens Healthcare). rfMRI data from all participants
were acquired using a multi-echo acquisition protocol with
three volumes (echo times TE = 13, 31, 48 ms) per time
point. For each participant, there were ∼11-minute time-series
of rfMRI data with temporal resolution (TR) of 2420 ms
and spatial resolution 3.8 mm isotropic. T1-weighted scans of
resolution 1.0 mm isotropic were also acquired (TR = 18.70
ms) using six equidistant echo times (TE) between 2.2 and
14.7 ms, and averaged to form a single image of increased
signal-to-noise ratio (SNR).

B. Data pre-processing

The initial questionnaire data comprised 380 variables
(item-level). However, some variables were either removed
because more than 95% of all participants had the same value
(21 items) or because their standard deviation was zero (2
items). A total of 357 variables per participant were used.

The three series of rfMRI volumes were parcellated into
137 regions using an anatomical atlas. Regional mean time-
series were estimated by averaging the fMRI signals over a set
of voxels (n = 58) sampled from each region to avoid biasing
the connectivity estimates by region size. The probabilistic
sulci atlas from BrainVISA was used to define 123 cortical
regions [6] and the Harvard-Oxford atlas was used to define
14 subcortical regions [7]. Six parameters from the realignment
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step of the pre-processing were regressed out of the averaged
regional time-series. To estimate connection strengths between
regions, partial correlations using L2-norm ridge regression
were computed [1]. Partial correlation values were converted
into z-scores using Fisher’s transformation (using FSLNets
toolbox with the regularisation parameter ρ = 0.01 [1]) which
has been shown to be a good option to estimate brain networks
from fMRI data [8]. Partial correlation z-statistic matrices
were estimated separately for each echo time-series and then
averaged across the three echo times for each participant,
resulting in a single functional brain connectivity matrix per
participant, which was then vectorised. A total of 9316 brain
connectivity variables per participant were used.

Confounding effects were regressed out of both brain and
behavioural data using the following demeaned measures:
Mean frame displacement, i.e. a summary statistic quantifying
average subject head motion during the resting-state fMRI
acquisitions; site (each MRI site was encoded as a one-hot
variable); age; sex.

III. METHODS

All analyses were performed using two different
sources/views, i.e. brain connectivity data (data matrix X ∈
R

n×p) and behavioural data (data matrix Y ∈ R
n×q), where

n is the number of subjects (i.e. 332 subjects), p is the number
of brain connectivity features (i.e. 9316 connections) and q is
the number of behavioural features (i.e. 357 variables).

A. Sparse PLS

SPLS finds a pair of sparse weight vectors u and v,
such that the covariance between the projections of X and
Y onto these weight vectors is maximized. This allows vari-
able selection and modelling in a one-step procedure, which
potentially improves the interpretability of the results and
avoids overfitting [2]. Witten et al. [3] proposed a framework
called Penalized Matrix Decomposition (PMD) which was then
modified to create the following sparse version of PLS:

maximiseu,v uTXTY v

subject to

‖u‖22 ≤ 1, ‖v‖22 ≤ 1, ‖u‖1 ≤ cu, ‖v‖1 ≤ cv

(1)

where the sparse weight vectors u and v have the same
length as the number of features of the corresponding view,
i.e u ∈ R

p×1 and v ∈ R
q×1 and several entries equal zero.

The regularisation hyper-parameters cu and cv control the L1-
norm constraints of u and v, respectively. If cu and cv are
sufficiently small, the L1-norm constraints imposes sparsity
on the corresponding view and consequently fewer features are
included in the model. The values of cu and cv can be simply
chosen according to the desired amount of sparsity imposed
on u and v or using a grid search analysis [3], [4]. The hyper-
parameters must be chosen in 1 ≤ cu ≤ √

p and 1 ≤ cv ≤ √
q

to both L1-norm and L2-norm constraints be active [2]. Each
pair of weight vectors represent a multivariate associative
effect between the two views. The problem described in
Equation 1 can be solved using the SPLS algorithm that can
be found in [4].

Fig. 1. Random split of data into the optimisation and hold-out sets.

B. Learning frameworks

The learning frameworks consist of 3 parts: hyper-
parameter optimisation, statistical significance evaluation and
matrix deflation. Only the first one is different across frame-
works. To evaluate the generalisability of each framework,
the data matrices X and Y were first randomly split into an
optimisation set (80% of the data, opt) and a hold-out set (20%
of the data, hd) (Fig. 1). The former was used for optimising
the hyper-parameters and the latter was used for validating the
model.

1) Hyper-parameter optimisation: For both frameworks,
the hyper-parameter values were optimised by performing a
grid-search analysis, in which 20 equidistant points in 1 ≤
cu ≤ √

p and 1 ≤ cv ≤ √
q were chosen.

Permutation framework: For each hyper-parameter combi-
nation {cuj

, cvj
}, the weight vectors uj and vj are computed

using the optimisation set. Then the correlation ρj between the
projections of Xopt and Yopt onto uj and vj is computed:
ρj = Corr(Xoptuj, Yoptvj) (Fig. 2A).

The rows of Yopt are randomly permuted (number of
permutations B = 1000) to obtain the matrix Y b

opt, where

b ∈ 1, ..., B. Weight vectors ub
j and vb

j are then computed and

correlations ρbj between the projections of Xopt and Y b
opt onto

ub
j and vb

j are computed (Fig. 2A) [3]. Finally, the p-value for
ρj is calculated:

p =
1 +

∑B

b=1 1ρb
j
≥ρj

B + 1
(2)

The hyper-parameter pair with the lowest p-value (punc <
0.001) is chosen. However, it is likely that several combina-
tions have the same p-value and then a second criteria must
be used. Therefore, the hyper-parameter combination with
the largest distance between the true correlation and the null

distribution of the correlations (dj =
ρj − 1

B

∑B

b=1 ρ
b
j

sd(ρBj )
, where

sd(ρBj ) indicates the standard deviation of ρ1j , ..., ρ
B
j ) is chosen

[3]. The best hyper-parameter pair is finally passed for use in
the statistical significance evaluation. (Fig. 3).

Train/test framework: For each hyper-parameter combi-
nation, the optimisation set is randomly split K = 50 into
a training set (80%) and a testing set (20%) (Fig. 2B).
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Fig. 2. Hyper-parameter optimisation step for (A) permutation and (B)
train/test frameworks.

The weight vectors pairs (u(−k) and v(−k)) are computed
using the training set (Xopt(−k)

and Yopt(−k)
) and the test

correlation is computed by projecting the testing data (Xopt(k)

and Yopt(k)
) onto these weights for each split k [4]:

ρk = Corr(Xopt(k)
u(−k),Yopt(k)

v(−k)) (3)

Then, the K correlation values are averaged across splits
for each hyper-parameter combination (arithmetic mean: ρ̄j =
1

K

∑K

k=1 ρk). This procedure is repeated for all hyper-

parameter combinations and the one with the highest average
test correlation is selected (Fig. 2B). As multiple hyper-
parameter combinations can have the same average correlation,
the sparsest one is chosen [4]. The best hyper-parameter pair
is then passed for use in the statistical significance step (Fig.
3).

2) Statistical significance evaluation: For both frame-
works, the statistical significance of the associative effect is
assessed using a permutation test. Firstly, the model is trained
with the best hyper-parameter pair using the optimisation
set (Fig. 3). Then, the hold-out set (Xhd and Yhd) is pro-
jected onto the new weight vectors u and v and the hold-
out correlation between the projections is calculated (ρhd =
Corr(Xhdu,Yhdv)) (Fig. 3). After that, Yopt is permuted
and the model is trained with the best hyper-parameter pair
for each permutation m, where m ∈ 1, ...,M . The hold-out
set is projected onto the computed weight vectors (um and
vm) and the correlation between the projections is computed
(ρmhd = Corr(Xhdum,Yhdvm)). The process is repeated
M = 10000 times and a p-value for the hold-out correlation
can be computed using Equation 2.

In neuroimaging settings, the samples sizes are small and
therefore few samples may be included in the hold-out set,
which can lead to high variance in the results since the valida-
tion is dependent on how the data is split. To make the model
validation more robust, multiple hold-out sets (here 10 random
splits of the data) are used [4]. The omnibus hypothesis is used

Fig. 3. Statistical significance evaluation step.

to evaluate if any of the hold-out sets is statistically significant
[4]. The p-values are corrected for multiple comparisons using
Bonferroni correction (α = 0.05/10 = 0.005), which means
that the omnibus hypothesis is rejected if any pcorr ≤ 0.005.
The weight vector pair with lowest p-value is chosen to deflate
the data matrices among the significant pairs.

3) Matrix deflation: If any of the weight vector pairs is
considered statistically significant, then the effect explained by
that weight vector (e.g. uh or vh) must be removed from the
data to allow the finding of new potential effects (e.g. uh+1

or vh+1). The process is known as matrix deflation. Here,
we used the projection deflation method proposed by Mackey
[9] and tested in a similar multiple hold-out framework by
Monteiro et al [4].

IV. RESULTS

The frameworks were compared in terms of the obtained
associative effects (u and v) and generalisability, measured by
the hold-out correlation values.

A. Weight vectors or associative effects

Two statistically significant associative effects were found
using the train/test framework and only one was found with
the permutation framework. Fig. 4 shows non-zero weights
of the first associative effect obtained using both frameworks.
For visualisation purposes, only the top 5 positive and negative
behavioural variables associated with the first associative effect
(the variables with the highest weights) are shown. Although
the behavioural weight vectors were very similar (ρpearson =
0.84), there is a considerable difference in terms of sparsity
in the brain connectivity weight vectors (ρpearson = 0.41).
Indeed, only one brain connectivity variable is contributing to
the associative effect in the permutation framework (Fig. 4).

B. Generalisability of the frameworks

Table I shows the hold-out correlations of the 10 different
splits of the data for the first and second effect, for each
framework. In both effects, the significant hold-out correlations
(i.e. p < 0.005) were consistently higher in the train/test
framework than the ones in the permutation framework.

V. DISCUSSION

The most common framework for optimising hyper-
parameters in unsupervised sparse models, such as the SPLS,
is the permutation framework [3]. However, an important



Fig. 4. The top 5 non-zero positive and negative behavioural variables (top)
and all non-zero brain connections (bottom) associated with the first associa-
tive effect for both frameworks. L - left hemisphere; R - right hemisphere.

TABLE I. HOLD-OUT CORRELATIONS AND P-VALUES OF 10
DIFFERENT SPLITS OF THE DATA FOR THE FIRST AND SECOND

ASSOCIATIVE EFFECT USING BOTH FRAMEWORKS.

Train/test framework Permutation framework

First effect Second effect First effect Second effect

Split ρhd (phd) ρhd (phd) ρhd (phd) ρhd (phd)

1 0.53 (0.0018) 0.31 (0.0529) 0.40 (0.0220) -0.06 (0.6967)

2 0.70 (0.0002) 0.42 (0.0372) 0.37 (0.0008) -0.04 (0.6055)

3 0.37 (0.0214) 0.25 (0.0590) 0.39 (0.0448) -

4 0.35 (0.0159) 0.17 (0.1741) 0.42 (0.0213) -

5 0.64 (0.0001) 0.28 (0.0641) 0.39 (0.0171) -

6 0.51 (0.0018) 0.53 (0.0100) 0.38 (0.0131) -

7 0.44 (0.0012) 0.36 (0.0092) 0.39 (0.0665) -

8 0.68 (0.0003) 0.42 (0.0454) 0.37 (0.1887) -

9 0.45 (0.0104) 0.38 (0.0046) 0.39 (0.0066) -

10 0.44 (0.0098) 0.54 (0.0020) 0.39 (0.1244) -

limitation of this framework is that the whole data is used to
fit the model and often an out of sample model performance
(e.g. out of sample correlation) is not available. Recently
a new framework based on multiple splits of the data has
been proposed to address this limitation [4]. In the present
work, we compared these two frameworks for optimising the
SPLS parameters using a hold-out framework to access their
generalisability in terms of hold-out correlation.

Both frameworks were able to identify at least one brain-
behaviour associative effect. However, for the first associative
effect, the weight vectors had different levels of sparsity across
frameworks, particularly the brain connectivity weight vectors.
The observed differences in sparsity level can be related to the
different criteria used to optimize the hyper-parameters but
might also be due to the signal to noise ratio in the data. The
second associative effect was only found using the train/test
optimisation framework. This might be explained by the fact
that the permutation-based framework is not generalising well
(i.e. the average hold-out correlation is close to zero for
the second weight vector pair). Despite of having only one
significant split, the hold-out correlation values were more
stable across different splits for permutation framework. This

effect is expected because, for the permutation framework, all
examples in the optimisation set are used for optimising the
hyper-parameters, whereas for the train/test framework, the
data is randomly split into train/test many times during the
optimisation, which introduces greater variability in the model.
In terms of computational costs, the train/test optimisation
framework (20001 computations per split) is much more
efficient than the permutation optimisation framework (400400
computations per split).

In summary, a careful choice of how to optimise the
model’s hyper-parameters should always be made, because
different criteria and frameworks might have a strong influence
on the results. As expected, optimising hyper-parameters using
a metric based on test data (test correlation) leads to a better
generalisability than using metrics a based on the whole data.
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