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Abstract

We introduce a financial portfolio optimization framework that allows to automat-
ically select the relevant assets and estimate their weights by relying on a sorted
¢1-Norm penalization, henceforth SLOPE. To solve the optimization problem, we
develop a new efficient algorithm, based on the Alternating Direction Method of
Multipliers. SLOPE is able to group constituents with similar correlation proper-
ties, and with the same underlying risk factor exposures. Depending on the choice
of the penalty sequence, our approach can span the entire set of optimal portfolios
on the risk-diversification frontier, from minimum variance to the equally weighted.
Our empirical analysis shows that SLOPE yields optimal portfolios with good out-
of-sample risk and return performance properties, by reducing the overall turnover,
through more stable asset weight estimates. Moreover, using the automatic group-
ing property of SLOPE, new portfolio strategies, such as sparse equally weighted

portfolios, can be developed to exploit the data-driven detected similarities across
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assets.
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1 1. Introduction

2 The development of successful asset allocation strategies requires the construction
s of portfolios that perform well out-of-sample, provide diversification benefits, and are
+ cheap to maintain and monitor. The problem is then one of statistical model selec-
s tion and estimation, i.e. the identification of the assets in which to invest and the
s determination of the optimal weight for each asset.? In 1952, Harry Markowitz laid
7 the foundation for the modern portfolio theory by introducing the mean-variance
s optimization framework. Assuming that asset returns are normally distributed, such
o model requires only two input estimates: the vector of expected returns and the
10 expected covariance matrix of the assets. Solving the quadratic optimization prob-
u lem, by minimizing the portfolio expected risk, for a given level of expected return,
12 the investor can then find the optimal portfolio allocation. Although Markowitz’s
13 model has been widely criticized, it is the backbone of the vast majority of portfolio
14 optimization frameworks and is still largely used in practice, especially in fintech
15 companies as part of their robo-advisory (see e.g. Kolm et al. (2014)).

16 One of the major shortcomings of the mean-variance approach is the fact that opti-

2 Another stream of literature investigates the utilization of norm penalties in portfolio selection
from a behavioral perspective, in which the investor tries to model a simplified version of a complex
investment processes. In such context, sparsity allows to simplify the model at hand by focusing the
attention on the relevant variables and thereby taking into account the mental cost of processing
data. Using the LASSO or the SLOPE penalty still results in tractable models, not NP-Hard ones,
which allow a natural way to model investors preference for simpler representation of the world, in
which many features are eliminated and sparsity can model dynamic attention to features of the
environment. For the behavioral perspective, we refer the interested reader to Gabaix (2014) and
references therein.
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v mized weights are highly sensitive to estimation errors and to the presence of mul-
18 ticollinearity in the inputs. In particular, it is acknowledged that estimating the
1 expected returns is more challenging, than just focusing on risk minimization and
20 thereby looking for the portfolios with minimum risk, i.e. the so-called global min-
2 imum variance portfolios (GMV) (Merton, 1980; Chopra and Ziemba, 1993; Jagan-
» nathan and Ma, 2003). But even in the GMV set-up, the sample covariance matrix
23 might exhibit estimation error that can easily accumulate, especially when dealing
2 with a large number of assets (Michaud, 1989; Ledoit and Wolff, 2003; DeMiguel and
»s  Nogales, 2009; Fan et al., 2012). Furthermore, multicollinearity and extreme obser-
2 vations often leads to undesirable and unrealistic extrenie long and short positions,
2z which can hardly be implemented in practice, due to regulatory and short selling
2 constraints (Shefrin and Statman, 2000; DeMiguel et al., 2009b; Boyle et al., 2012;
» Roncalli, 2013). An ideal portfolio then has: a) conservative asset weights, which are
» stable in time, to avoid high turnover and transaction costs, and b) still promotes
a the right amount of diversification; while being able to control the total amount of
»2 shorting.

;3 A natural approach to solve this problem is to extend the Markowitz optimization
u framework, by using a penalty function on the weight vector, typically given by the
55 norm, and whose intensity is controlled by a tuning parameter A. Probably, the
s most recent successful approach, using convex penalty functions, is the Least Abso-
» lute Shrinkage and Selection Operator (LASSO) introduced by Tibshirani (1996).

;s The LASSO framework typically relies on adding to the Markowitz formulation a
% penalty proportional to the ¢;-Norm? on the asset weight vector (Brodie et al., 2009;

3Let w = [wy, w2, ...., wy]’ be the portfolio weight vector, then the £,-Norm is defined as: ||w||, =
(Zle |wi|q)5, with 0 < ¢ < 00. If ¢ = 1, then ¢, = Zle |w;| (LASSO), while for ¢ = 2 we have
lwls = (X, w2)}/2 (RIDGE). Note that £, with 0 < ¢ < 1 is not a norm but a quasi norm.
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w DeMiguel et al., 2009a; Carrasco and Noumon, 2012; Fan et al., 2012). DeMiguel
a et al. (2009a) provide a general framework that nests regularized portfolio strategies
2 based on the ¢;-Norm with the approaches introduced by Ledoit and Wolff (2003)
s and Jagannathan and Ma (2003). Furthermore, the authors advocate their superior
s performance in an out-of-sample setting. Brodie et al. (2009) and Fan et al. (2012)
s show that the LASSO (a) results in constraining the gross exposures, (b) can be
s used to implicitly account for transaction costs, and (c) sets an upper bound on the
« portfolio risk depending just on the maximum estimation error of the covariance ma-
s trix. Moreover, the shrinkage covariance estimation of Jagannathan and Ma (2003),
» obtained by adding a no-short sale constraint (the so-called GMV long-only (GMV-
5o LO)), can be considered a special case of the LASSO.

st Despite its appealing properties, the LASSO has reported shortcomings of (a) large
2 biased coefficient values (Gasso et al., 2010; Fastrich et al., 2015), of (b) reduced
53 recovery of sparse signals when applied to-highly dependent data, like crisis periods
s« (Giuzio and Paterlini, 2016), and of (c) randomly selecting among equally correlated
ss coefficients (Bondell and Reich, 2008). Moreover, it is ineffective in the presence of
ss 1o short selling (i.e. w; > 0) and an imposed budget constraint (i.e., Zf:l w; = 1),
sz as the /1-Norm is then just equal to 1.

ss 10 overcome these limitations, we extend the literature on convex regularization
so methods in wvarious ways: First, we introduce the Sorted ¢1 Penalized Estimator
oo (SLOPE), as a new penalty function within the mean-variance portfolio optimiza-
61 tion framework. The SLOPE penalty takes the form of a sorted ¢; - Norm, in
s which each asset weight is penalized individually using a vector of tuning parame-
3 ters, Asrope = (A1, A2, ..., Ak), with Ay > Ay > ... > A\ > 0 and whereas Ag opp
6 is decreasing, attributing the largest weight to the highest regularization parameter,

s such that SLOPE penalizes the weights according to their rank magnitude. This

4
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o leads to an octagonal shape of the penalty in a 2-dimensional setting (see Figure 1)
&7 that combines the two favorable properties of the £o-Norm and the ¢;-Norm*, which
ss 1s the grouping of variables (i.e. some asset weights are assigned the same coefficient
o value), and the singularity at the origin, respectively. Our work shows that, opposed
7 to the LASSO, in portfolio optimization and together with an added budget con-
7 straint (i.e. Zle w; = 1), SLOPE continues to shrink the active weights, even when
22 short sales are restricted (i.e. w; > 0, Vi = 1,...,k). Consequently, it spans the
73 diversification frontier from the GMV-LO up to the equally weighted (EW) portfolio,
7 as Asrope goes to infinity. Together with the feature of grouping equally correlated
s assets, the penalty provides an increased flexibility for the investor in creating indi-
7 vidual trading strategies, as opposed to state-of-the-art shrinkage methods.

77 Second, we introduce a new optimization algorithm to solve the mean-variance port-
7 folio problem with the sorted ¢; regularization and linear constraints on the asset
7 weights. The algorithm uses the ideas of variable splitting and the Alternating Direc-
o tion Method of Multipliers (ADMM) framework (Powell, 1969; Hestenes, 1969; Boyd
s et al.,, 2011). Using a mathematically equivalent reformulation of the original prob-
22 lem, the algorithm can use existing implementations of proximal operators (Parikh
&3 and Boyd, 2014), associated with the ¢;, the sorted ¢, and even other regularizers.
sa  Furthermore, Appendix C shows that the ADMM provides a more efficient alter-
ss native for solving the LASSO optimization problem, than the state-of-art Cyclic
s Coordinate Descend (CyCoDe) algorithm.

&z Third, we are, to our knowledge, the first to investigate the properties of SLOPE un-
ss der a realistic factor model, which assumes that all assets can be represented as linear

g0 combination of a small number of hidden risk factors, as e.g. in Fan et al. (2008).

4Given a weight vector w with k elements, the (o = ||w]||oo = maz (w1, ....., wy).
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o In the set-up of classical multiple regression, in which the explanatory variables are
o assumed independent, Bogdan et al. (2013, 2015) and Su and Candes (2016) provide
o extensive evidence of SLOPE’s superior model selection and estimation properties.
o3 Further evidence for these properties are provided by the results of Bellec et al.
w (2016a) and Bellec et al. (2016b), which show that contrary to LASSO, SLOPE is
os asymptotically optimal for the general class of design matrices satisfying the modi-
o fied Restricted Eigenvalue condition.

oo Moreover, Bondell and Reich (2008) and Figueiredo and Nowak (2014) investigate
e the properties of SLOPE and its predecessor OSCAR (Octagonal Shrinkage and Se-
o lection Operator, Bondell and Reich (2008)) in the situation, when regressors are
o strongly correlated. Bondell and Reich (2008) apply OSCAR to agricultural data,
1w showing that the method successfully forms predictive clusters, which can then be
102 analyzed according to their individual characteristics. Figueiredo and Nowak (2014)
103 illustrate the “clustering” properties of the ordered weighted ¢; - Norm (OWL) in
s the linear regression framework with strongly correlated predictors, providing fur-
s ther simulation and theoretical results. However, none of these works addresses the
ws interesting situation, in which the correlation structure results from the dependency
w7 of the explanatory variables on a few hidden factors and on financial real-world data.
s Recently, Xing et al. (2014) applied the OSCAR to the mean-variance portfolio op-
w0 timization, together with a linear combination of the ¢;- and the ¢,-Norms. They
mo  advocate the method for its ability to identify portfolios that attain higher Sharpe Ra-
m  tios and lower turnovers compared to those resulting from traditional approaches like
2 the GMV and the GMV-LO portfolios. However, they do not point out the clumping
us  property of the OSCAR. With SLOPE, we consider a generalized framework that
s nests the GMV, the GMV-LO, the LASSO, the /., - Norm and the approach of Xing
us et al. (2014).
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ue In this paper, we analyze the properties of SLOPE, with both simulated and real
u7 world data. The simulations show that SLOPE reduces the estimation errors in the
us portfolio weights and groups assets depending on the same risk factors together. This
o grouping behavior then allows the investor to select individual constituents from the
0 clusters, for example based on her preferences and asset-specific properties, enabling
21 her to develop new investment strategies such as SLOPE-EW, which we introduce
122 in Section 4.1.

123 For the real world data analysis, we use monthly returns of the 10- and 30-Industry
12 portfolios (Ind), as well as the 100 Fama French (FF) portfolios formed on Size and
125 Book-to-Market, covering the period from 1970 to 2017. Furthermore, we consider
16 daily returns of the S&P 500 (SP500) from 2004 to 2016. Our results show that the
127 risk of the SLOPE portfolio is comparable to or smaller than the risk of the LASSO
s portfolio. Also, we observe that SLOPE outperforms the LASSO, yielding better
120 risk- and weight diversification measures. In fact, the sorted ¢;- Norm is able to span
130 the entire risk-diversification frontier, starting from the GMV, via the GMV-LO up
1 to the EW. The investor can then select the portfolio with the risk-diversification
12 trade-off that best fits her preferences.

133 The above mentioned characteristics establish SLOPE as a new attractive portfolio
134 construction alternative, capable of controlling short sales and identifying groups of
135 assets. It thereby offers the possibility to implement individual views, which goes
s beyond the standard statistical shrinkage or regularization approaches.

137 The paper is structured as follows: Section 2 introduces our methodology and dis-
s cusses the properties of SLOPE. Section 3 analyses the behavior of SLOPE in simu-
139 lated environments, while Section 4 focuses on the empirical results. Section 5 con-

uo cludes.
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w1 2. Sparse Portfolio Selection via the Sorted £;-Norm

142 Given k jointly normally distributed asset returns Ry, . .., Ry, with expected value
us vector g = [pq, ..., ux) and covariance matrix 3, a generalization to the Markowitz

s (1952) portfolio selection problem can be stated as the following optimization:

k
min %w’Efw — p/w, subject to Zwi =1 (1)

Rk
we i=1

s where 012, = w'Yw is the portfolio risk, p/'w is the portfolio return and ¢ > 0 is the
us coefficient of relative risk aversion (Markowitz, 1952; Fan et al., 2012; Li, 2015).

w7 Despite the advantage of being a quadratic optimization problem, the generalized
us  Markowitz model is often criticized, as it leads to extreme and unstable optimal
1o portfolio weights.

150 One approach to circumvent instability and extreme estimates is to modify the opti-
151 mization problem (1), by adding a penalty function, py(w).® In typical applications,
12 the penalty is a non-decreasing function of w and leads to shrinking an estimate of
153 the weight vector towards zero. The shrinkage stabilizes the weight estimates and, in
154 case when py(w) has a singularity at zero, promotes the sparsity by shrinking some
155 coordinates of the estimated vector to 0. An additional parameter A controls the
156 impact of the penalty and thereby the amount of shrinkage applied to the weights
157 vector and the level of sparsity. Additionally, the penalty function allows to take

155 into account a prior knowledge of an investor, who can assign smaller penalty terms

5 Another stream of literature focusses on directly shrinking the moments of the distribution, as
opposed to adding a norm penalty on the weight vector to the model in (1). However, as have been
shown by DeMiguel et al. (2009a), adding a norm constraint on the weight vector to the portfolio
optimization is equal to shrinking the extreme estimates in the covariance matrix. For elaborations
on directly improving the inputs to the Markowitz optimization, the interested reader is referred
to Ledoit and Wolff (2003, 2004a), Jorion (1986) and references therein.

8
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159 to selected important assets. The optimization problem can be stated as:

k
.9 /

w'Sw — Y wi=1 p
min w'Sw p'w + pr(w) s i_lw (2)

1o The simplest approach is the LASSO, which considers as a penalty function the ¢;-
11 Norm of the asset weights vector (py(w) = A X Zle |w;|, with A being a scalar).
12 The resulting optimization problem is still convex, while promoting model selection
13 and estimation in a single step. From a financial perspective, LASSO is interpreted
164 as a gross exposure constraint (i.e. a constraint on the total amount of shorting)
165 Or a way to account for transaction costs (Brodie et al., 2009). However, it is not
166 effective in the presence of both a budget (Zle w; = 1), and a no-short selling (i.e.,
67 w; > 0) constraint, as the ¢;-norm is then simply equal to 1.

s Following, we propose a more general approach that within a single optimization
160 algorithm allows us to encompass the original LASSO, the OSCAR of Bondell and
o Reich (2008), and the combination of ¢; and ¢, penalties, as proposed in Xing et al.
o (2014).

12 In fact, we penalize the weights vector by considering as py(w) the sorted ¢;-Norm,

173 defined as:

e

pa(w) == " Nilwley = Mlwlay + Aalwle) + - + Alwle) (3)
=1

St. Ay > A > ..., > 0and |w|(1) > |w|(2) > ...|w|(k) ,

s where |w|;) denotes the ith largest element in absolute value of the vector w. The
s sorted ¢;-Norm was originally introduced in Bogdan et al. (2013, 2015) to con-

e struct the Sorted ¢; Penalized Estimator for the selection of explanatory variables
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177 in the multiple regression model. It was also developed independently by Zeng and
s Figueiredo (2014) as Ordered Weighted ¢; Norm (OWL). To our knowledge, this is
o the first work in financial portfolio selection that applies SLOPE and discusses its

1o grouping properties, while also introducing a new optimization algorithm.

w1 2.1. Geometric Interpretation

182 Compared to most of the other regularization methods, SLOPE does not rely
183 on a single tuning parameter A, but rather on a non-increasing sequence Aspopr =
8 (A1, Agy ey Ag), with Ay > Ay > ... > Ay > 0. This sequence is aligned to the sorted
185 weight vector, such that the largest absolute weight is penalized with the largest
16 tuning parameter. Consequently, the sequence of A parameters gives a natural in-
17 terpretation of importance to the asset weights, besides providing full flexibility in
188 recapturing the profiles of the ¢;- and /.- Norms, as well as of their linear combina-
189 tions. Figure 1 shows a simple set-up with two assets and the respective shapes of
1o spheres (i.e. the set points for which py(w) = ¢) that we obtain, depending on how
01 the sequence Agropr = (A1; Ag) is chosen. As shown in Panel (a), if A} = Ay > 0 the
12 SLOPE sphere coincides with the well studied diamond shape of the LASSO penalty.
w3 Through its singularity at the origin, the LASSO promotes sparse solutions that set
104 one of the two assets’ weights exactly equal to zero. On the other hand, choosing
s Ao = 0 and Ay > 0, yields the regularization term of the /,.-Norm. The respective
s shape, as shown in Panel (b), takes the form of a square and promotes the grouping
17 of variables, i.e. it encourages solutions under which both asset weights are assigned
108 exactly the same value.

1w Given these two extreme cases, Panel (c) of Figure 1 shows the octagonal shape of
200 SLOPE, obtained by using a decreasing sequence of lambda values, with A\; > Ay > 0.

201 By choosing different tuning parameter sequences, the penalty allows to approximate

10
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202 a variety of norms between the ¢; and the ¢, combining the properties of the Lasso
203 and the /o, penalties and due to its singularity, is either able to set some weights
200 exactly equal to zero, and/or to assign the same value to some of the other weights.
20s  Furthermore, it approximates the shape of the already well studied RIDGE penalty,
206 which corresponds to a circle in the 2-dimensional set-up, and is even able to reach
207 one of RIDGE’s special solutions, i.e. the equally weighted portfolio, which is ob-
208 tained, when RIDGE’s penalty parameter approaches infinity. Although RIDGE
200 is still convex, the shape of the penalty does not promote sparsity among the co-
a0 efficients, leading to undesirable portfolios with a large nunmiber of active positions
a1 (Carrasco and Noumon, 2012; DeMiguel et al., 2009a).  Thus, the choice of the
22 lambda sequence for SLOPE provides the investor with the flexibility to choose any
213 of these shapes of the unit sphere and of the corresponding mode of shrinking the

212 dimension of the weight vector.

Figure 1: Geometric Representation of Penalty Functions

Al =X >0 AL >N =0 AL >N >0
A A

Y
Y

w, wy

(a) (b)
For two asset weights w = [w1 w2]’, the figure shows the unit spheres for different SLOPE sequences: (a) the LASSO
£1 sphere, when A1 = A2 > 0, (b) the o sphere, when A1 > A2 = 0 and (c) the SLOPE sphere, when A1 > A2 > 0.
The dashed lines in (c) represent the diamond shape of the LASSO and the RIDGE ¢2-balls, respectively.

215

216 In portfolio optimization, a budget constraint that requires the weights of the port-

11
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217 folio to sum to one, is imposed. Consequently, we discuss how the penalties behave
218 in the presence of such an additional constraint. Figure 2 plots the SLOPE penalty,
20 together with the LASSO and the RIDGE penalty for a universe of two assets and
20 under the condition that w; + wy = 1. Furthermore, we consider the penalty func-
21 tions in the presence of short sales (gray area) and no short sales (white area).

2> In Figure 2, we can see that the LASSO (shown in black) is only effective when
23 short sales are permitted, while the presence of the budget constraint makes it in-
24 effective in the long-only area. In contrast, the RIDGE attains its minimum for an
»s equally weighted portfolio, and when short sales are restricted. Similarly, the SLOPE
»s penalty (shown in red) also reaches its minimum at the equally weighted solution
27 (l.e.,, wp = wy = 0.5). Still, to control for monitoring and transaction costs of fi-
28 nancial assets, we prefer SLOPE over the RIDGE estimator, because it can promote
29 sparsity by exploiting the singularities.

230

an Figure 3 plots the contours of the objective function, together with those of the
22 SLOPE spheres for the two asset case, and when we do not impose a budget con-
23 straint (i.e. Zf:l w; = 1), as well as considering orthogonal and correlated designs.
24 As noted before, if only Ay > 0, SLOPE always has singular points when one of the
235 asset weights is equal to zero, thereby promoting sparsity. When A\; > Ay > 0, that
26 i, the sequence is monotonically decreasing, then SLOPE has additional singular
27 points, which correspond to |w;| = |wg|. This is an appealing property in the pres-
23 ence of correlated data. Specifically, as Panel (b) shows, strong correlation between
239 assets lead to the same weights and thereby grouping. This is consistent with port-
a0 folio theory, as it is known that, if assets have all the same correlation coefficients,
21 as well as identical means and variances, the EW is the unique optimal portfolio.

22 SLOPE then allows us to automatically group assets with similar correlation.

12
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Figure 2: Penalty Functions in a Two Asset Universe with Budget Constraint

257

== m RIDGE
= m LASSO
mmmmm SLOPE: A\ > \y >0

20

-0.5 0 0.5 1 1.5

The figure plots the SLOPE coefficient alongside the LASSO (¢; — Norm)
and the RIDGE penalty (¢2 — Norm), for a two asset case and under the
condition that wq +ws = 1.

243
24 For our simulation analysis and empirical investigations, SLOPE requires us to define
25 a specific form of the sequence of Agropr = (A1, A2,..., A\x). For that, we use the
us decreasing sequence of quartiles of the standard normal distribution, as in Bogdan
x7 et al. (2013) and Bogdan et al. (2015), with \; = a® (1 — ¢;), Vi = 1,..., k, where
25 @ is the cumulative distribution function of the standard normal distribution and
20 q; = 1 X 0/2k, and in which § = 0.01, regulates how fast the sequence of lambda
250 parameters is decreasing. Bogdan et al. (2013) and Bogdan et al. (2015) have shown
1 that in orthogonal design this sequence controls the False Discovery Rate in a multiple

2  testing framework.©

SWe investigated different sequences of lambda parameters, including changing values of 6, as
well as a linear decreasing sequence and obtained qualitative similar results. Consequently, we

13
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Figure 3: Sorted ¢;-Norm Penalty without Budget Constraint

it
2

(a) (b)

The figure plots in Panel (a) and (b), the Sorted ¢;-Norm Penalty (SLOPE) in a 2-dimensional setting, considering
orthogonal design and correlated design, respectively.

A

"

Fwsy

2.2. Optimization Algorithm

In this section, we describe our solution algorithm, which is based on equivalent
reformulations of the Alternating Direction Method of Multipliers (ADMM) approach

(see Appendix A for details).

choose the exponentially decreasing sequence, as proposed by Bogdan et al. (2013) and Bogdan
et al. (2015). Still, future research on how to choose the sequence of lambda parameters is currently
high on our agenda.

14
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Algorithm 1 ADMM Algorithm

1: Input: Expected value vector p € R¥, covariance matrix 3 € RF**,

2: Initialize w® € R*, v° € R*, a® € R¥, B € R and j = 0.

3: Given a stopping threshold value 7 > 0.

4: while G(w’, v, a’, 87) > 7 do
5. Update w’, v/, o/, and 3’ as follows,
w/t = argmin,, L,(w,v’;a/,57) = (X +n(I +ee)) " (p—af — Fe+n(v +e))
v/ =argmin, L,(w™ v, f7) = prox, , (wt + (1/n)ad) (4)
@t = ad 4 p(witt — it
gt =g p(ewtt - 1)
6: Jj=75+1
7: end while

»7 In Algorithm 1, the quantity G(w’, v’ &/, 37) represents the primal-dual gap which
s converges to the zero value when the iterates w’,v’, o/, 37 approaches the optimal
20 quantities (see Appendix B for details). In the presence of the no-short selling con-
20 straint, we consider a slightly different formulation to (2) with an extra constraint
1 that w > 0. In this case, we can use the Algorithm 1 almost as it is, except that the

22w update in (4) is modified as follows,

wt = argining sy Ly(w,v’;0f, f7) = max {(¢X + n(I + e€)) " (u — o’ — Fe+ (v’ +e)), 0} ,

(5)
263 where the minimizer is obtained by adding a simple clipping operation, since L, (w, v/,

o ) 37) is a convex function in w.

s Our algorithm can also be used to solve the LASSO optimization problem, which

15



Journal Pre-proof

6 1S a specific instance of SLOPE. In Appendix C, we provide a direct comparison of
27 our algorithm to the state-of-art Cyclic Coordinate Descent (CyCoDe) for LASSO,
x%s considering a simulated constant correlation model.

269

o0 Bounds on the Objective Function. To solve the mean-variance problem, as
o stated in (2), the investor needs to provide an estimate of the true covariance matrix
212 of asset returns 3 and of the true mean g, which are in the most simplest form given
213 by the sample covariance matrix 3 and the sample mean fi, respectively. However, 3|
o and i might be prone to substantial estimation errors and highly sensitive to outliers.
25 Let us define M (X, p) = %’w’ Yw — w'p, where w is the vector of weights returned
26 by SLOPE. Now, observe that the Sorted ¢;-Norm satisfies py(w) > A||w]|1. Thus,
o as A\, > 0, we have ||lw||; < ¢, with ¢ = %}:"), and simple calculations following the

s results of Fan et al. (2012) for LASSO, yield:

M(S, ) - M(Z, )| < glli — Bllopr(w) /A% + 10— pllsopa(w) /A (6)

2 where || — 3||o and ||t el are the maximum component-wise estimation errors
0 for the covariance matrix and the expected return.

2s1 This result implies that the difference between the objective functions for the esti-
22 mated and true vector of parameters decreases, as we restrict the Sorted ¢;-Norm of
283 the weight vector. It is also important to observe that, due to the budget constraint,

2« a higher weight on the penalty sets an upper bound on the total amount of short

25 sales in the portfolio, as py(w) > A||w||[1 = Ac(w™+w™), with wT—w™ = 1, where
w wh = > w; and w™ = ) w; are the gross amount of long and short positions,
w; >0 w; <0

7 respectively.
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28 3. Simulation Analysis

289 This section investigates the effect of SLOPE on the model risk, the sparsity and
200 the grouping properties, by considering simulated data. The purpose of the simula-
21 tions is to investigate the properties of our new penalty, when the data generating
22 mechanism is completely known, so that the results can be compared to the so-called
23 oracle solution. Furthermore, and as is it widely acknowledged that the estimation
204 errors in g are much larger than in 3, we focus on a risk minimization framework.
205 Assuming X to be known, we can use the alternative formulation of SLOPE and

206 define:

Wopt = arg min wXw and Wy = arg min w'Xw (7)
w:Zle wi=1, pa(w)<c w:Zi“:l wi=1, pr(w)<e

207 whereas w,,; and W, are the theoretical optimal and the empirical optimal weights
208 vector, respectively. We then define the empirical portfolio risk as f/iz's\k('cbopt) =
209 ﬁ;;ptiﬁzopt, the actual portfolio risk as Risk(Wep) = W), LW, and the oracle
w0 portfolio risk as Risk(wp:) = W, Zwey, respectively. Following the proof of Theo-

;0 rem 1 of Fan et al. (2012), we can easily show that when A, > 0, the pair differences

32 between the three nieasures are upper bounded by:

|Risk(Wop) — Risk(Wop)| < 26|18 — 2|, (8)
| Risk(top) — Risk(to)| < | — 2||u, (9)
|Risk(wopr) — Rish(op)| < |5 — 3 (10)

53 The three risk measures then allow us to extract different information: The empirical
s+ 1isk is the only one that is known, as it is estimated from our in-sample data. The

ss actual risk is the one, to which the investor is truly exposed to, when using the
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s estimated optimal weights (w,y;). Finally, the oracle risk is the risk the investor
57 could only obtain, if 3 is known. As the SLOPE penalty becomes more binding,
8 when X ”increases”, the three risk measures align. In the following section, we
w9 investigate how increasing the SLOPE penalty allows to reduce the estimation error
s and to avoid its accumulation in the portfolio risk.

su  Assume that the return of an asset is represented by a linear combination of r risk
sz factors. Furthermore, let ¢ be the number of observations, k£ be the number of assets,
a3 and Fyy, = [fy fo ... f,], where f, is the t x 1 vector of returns of the " risk
s factor. Moreover, let B, be the loading matrix for the individual risk factors.
us Then, the ¢ x k matrix of asset returns from the Hidden Factor Model (i.e. Rpyr)

316 can be represented as:

RHF:FXB+E (11)

sz where € is a t X k matrix of error terms.
sis For our first illustration of the performance of SLOPE, we generate the data using

s the following simplified scenario:

320 0t=50,]{?=12,7‘=3,

321 e the risk factors f1, ..., f3 are independent from the multivariate standard
32 normal N (0, I,,.) distribution, with I, being an identity matrix,

323 e the vectors of error terms ¢, ¢ = 1,...,k, for each asset are independent
324 from each other, as well as from each of the risk factors and come from the
325 multivariate normal distribution N(0,0.05 x I,,)

326 e the loadings matrix B,y is made of exactly four copies of each of the following
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27 columns: [0.77 0.64 0], [0.9 0 —0.42] and [0 0.31 0.64].

»s In this way, we generate three different groups that have the same exposure to the
2o same two risk factors and are thus strongly correlated.”

s Finally, given (11), the covariance matrix of the assets Xy is given by:

EHF = B/B + 0.05 x Ikxk- (12)

s After generating our ¢ x k matrix Ry of asset returns from (11), we can then estimate
s Xgp, using the sample covariance estimate 3\ rr.S Figure 4 shows the correlation
133 matrix resulting from (12), illustrating that our simulation scenario explicitly models
;4 a block correlation environment, with strong correlation among each of the assets
135 having the same underlying risk factor exposures, and low to negative correlations
13 between the assets with a different underlying factor structure. Following, we inves-
s tigate the behavior of SLOPE and the LASSO with respect to portfolio risk, and
138 when we increase the value of the tuning parameter.

19 Unlike the LASSO, SLOPE requires us to define a decreasing sequence of Aspopr =
30 (A1, Ay ..., A\g). As pointed out in Section 2.1, we use the decreasing sequence of
s quantiles of the standard normal distribution, as in Bogdan et al. (2013) and Bog-
s dan et al. (2015), with \; = a® (1 — ¢;), Vi = 1,...,k, where ® is the cumulative
3 distribution function of the standard normal distribution and ¢; = i x 0/2k, and in

ss - which 6 = 0.01, regulates how fast the sequence of lambda parameters is decreasing.

“For the robustness of our results, we tested SLOPE in various set-ups, with qualitatively similar
results. Due to space limitations, we report only the most interesting one. The results of the
remaining simulations are available from the authors upon request.

8We explicitly restrict us to use the sample covariance estimate, as opposed to an alternative
shrinkage or factor based estimate, to investigate SLOPE’s ability to account for estimation errors
in the optimization.
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Figure 4: Hidden Factors Correlation Matrix

Oracle Correlation Matrix

2 4 6 8 10 12

The figure plots the correlation matrix, based on the mod-
eled Hidden Factor Structure, considering a universe of 12
assets, of which 4 are always exposed to exactly two out of
the three risk factors in the market.

us In our simulations, we vary the scaling parameter a so that the first element of the
us  sequence A\ = a® (1 — ¢q) is equal to a grid of 100 log-spaced values between 107°
w7 and 10%2. Note that in the case of the LASSO, we only choose one lambda param-
us eter, which then remains constant for all assets. Throughout the paper, we always
a9 choose Apasso = A1. This choice favors sparser solutions for the LASSO, since for
30 the remaining k& — 1 assets its penalty is larger than that of SLOPE.

1 Figure 5 plots the resulting risk and weight profile for the minimum variance opti-
32 mization, when we solve (2) separately with the LASSO and the SLOPE penalties for
33 the grid of 100 lambda parameters, and considering ¥z r and the sample covariance
s estimate 3 F, respectively. In particular, Panels (a) and (b) show the risk profile of
35 the LASSO and SLOPE, i.e. the actual, the oracle, and the empirical risk, together
56 with the results of the GMV, the GMV-LO and the EW portfolios. For both, the
57 oracle and the actual solution, Panels (c) and (d) display on top the number of active

38 weights together with the number of groups, that is the number of distinct coeffi-
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Figure 5: Hidden Factors Minimum-Variance Profile
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The figure shows the Hidden Factor minimum-variance risk profile for the LASSO and the SLOPE, including in Panel
(a) and (b) their actual, empirical and oracle risk profiles, together with that of the GMV, the GMV-LO and the EW
solutions. Furthermore, Panel (c) and (d) display the number of active weights, together with the grouping profile
(top) and the total amount of shorting (bottom). All values are computed based on a Hidden Factor Structure, with
three risk factors and considering for the exponentially decreasing sequence of lambda parameters, a grid of 100 log
spaced starting points for A; from 107° (i.e. x-value = 1) to 102 (i.e. x-value = 100).

cients, while on the bottom, it shows the amount of shorting (i.e. w™). The grey

surface indicates the no-short-sale-area (i.e. w; > 0V i = 1,.., k). Figure 5 shows
that for a tuning parameter equal to zero, which corresponds to the GMV solution,

the empirical risk is about 1.3 times lower than the actual risk (Panels (a) and (b)),

21



Journal Pre-proof

33 with 12 active positions (Panel (c)) and slightly under 100% short sales (Panel (d)).
s« ' This can be interpreted as evidence that in over-fitted models the estimation error in
w Spr strongly affects the estimation of the asset weights. As here neither the LASSO
6 nor the SLOPE penalty are binding, estimation errors can enter unhindered into the
37 optimization. Michaud (1989) describes this phenomenon as “error maximization”,
s in which the ill-conditioned covariance estimates are amplified through the optimiza-
w0 tion, leading to extreme long and short portfolio weights. Moving along the grid of A
wo parameters from the left to the right, Panels (c¢) and (d) show that the two penalties
sn reduce the total amount of shorting in the oracle and the actual portfolio.

sz As we move from the GMV towards the GMV-LO, the actual, oracle, and empirical
sz risk of the LASSO and the SLOPE align. This effect was first observed and theo-
s retically motivated by Fan et al. (2012), showing that the portfolio risk evolves in
a5 a U-shape, in which risk first decreases before increasing again, due to the restric-
we  tion of short sales. With the observations above, we extend the results of Fan et al.
w7 (2012), showing that the U-shaped behavior of the portfolio risk is not the only pos-
sz sible one. Especially when the dependence among the assets is positive, the tighter
s constraint in terms of short sales shrinks the optimization search space of feasible
;0 solutions, making it impossible to exploit the optimal diversification benefits. This
s leads to a higher portfolio risk when reaching the GMV-LO. The investor also reaches
;22 the maximum sparsity, that is the maximum number of coefficients equal to zero, at
33 this point. For the LASSO, increasing the tuning parameter beyond this point does
;s not alter the allocation any further, as the regularization penalty is constant and
s equal to 1.

sss  This is different for SLOPE: in fact, Figure 6 shows the evolution of the portfolio
sz weights for both the oracle and the actual solution, considering both the LASSO and

s the SLOPE penalty. As before, the grey surface indicates the no-short-sale-area.
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From Figure 6, we can observe two important characteristics of SLOPE: First,

Figure 6: Hidden Factors Minimum-Variance Weight Profiles
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The figure shows the weight profile of the oracle (top) and actual (bottom) solution of the LASSO and the SLOPE
penalty, considering a minimum variance setup. All values are computed based on a Hidden Factor Structure, with
three risk factors and considering for the exponentially decreasing sequence of lambda parameters, a grid of 100 log
spaced starting points for A1 from 107° (i.e. x-value = 1) to 10? (i.e. x-value = 100). Equally colored weights
characterize assets with the same underlying factor exposure.

389
s0  while the LASSO shrinks the weights up until the no short sale area, all non-zero
s coefficients still receive a different weight, independent of their underlying factor ex-
52 posures. SLOPE, on the other hand, is able to identify the three distinct types of
303 securities, consistent with the true model, and groups them together, by assigning
s the same coefficient values to them. This provides information about the dependence
w5 structure among the assets, and gives the investor the flexibility to select from the
w6 groups the assets, which best fit her individual preferences. Not surprisingly, the
37 oracle risk starts to form groups among the securities even before entering into the
ws 1o short sale area, while the actual weights can only capture the underlying structure
39 much later, and when we already impose a larger tuning parameter value. Second,
wo and different to the LASSO, increasing the lambda parameters past the point of
w1 the GMV-LO, the octagonal shape of the penalty pushes the solution towards the
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w2 equally weighted portfolio. That is, the aforementioned grouping effect increases,
w3 and all weights - even those that were shrunken towards zero - are assigned the
ss  same coefficient value of % Given that the equally weighted portfolio is only optimal
w5 when all assets have the same risk and return characteristics, in our example, this
ws allocation results in higher portfolio risk when compared to the GMV-LO or GMV
w7 portfolios.

w0  Summing up, SLOPESs properties allows investors to set up sophisticated asset alloca-
w0 tion strategies, exploiting its grouping property, like SLOPE-EW, which we introduce

40 1n Section 4.

a1 4. Empirical Analysis

a2 4.1. Set up and Data

a13 This section studies the out-of-sample performance of the SLOPE procedure in
a4 a minimum variance framework (see i.e. Jagannathan and Ma (2003); Brodie et al.
as (2009); DeMiguel et al. (2009a); Giuzio and Paterlini (2016)) and compare it with
a6 state-of-the-art portfolio selection methods, such as the EW, the GMV, the GMV-
sz LO, the equal risk contribution (ERC), the RIDGE and the LASSO portfolio. Fur-
se  thermore, we examine two extensions to our standard SLOPE procedure: (1) SLOPE
s with an added long-only constraint (SLOPE-LO) and (2) a portfolio in which we uti-
20 lize SLOPE-LO’s selection and grouping ability (SLOPE-EW). For the latter, the
w21 portfolio is initialized in ¢ = 1, keeping for each data set only the first G groups with
w22 the largest estimated parameter values active, while setting the remaining weights
w3 equal to zero. Afterwards, the portfolio is re-scaled, such that the weights sum again
w24 toone. At each subsequent ¢, we then rebalance the portfolio, if there is a statistically

w5 significant difference in the covariance matrices, at a = 0.1, to the last re-balance
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ns  date.’

w27 In the following analysis, we consider four data sets, including the monthly log-return
28 observations for the 10- and 30 Industry Portfolios (Ind), the 100 Fama French (FF)
w9 portfolios, formed on Size and Book-to-Market, as well as the daily returns of the
s0 SP500. The monthly portfolio values are taken from Kenneth French’s Homepage!'®
s and span the period from January 1970 to January 2017 (7' = 565 monthly obser-
a2 vations). The daily return data are obtained from Datastream, covering the period
s from 31.12.2004 to 31.01.2016 (7" = 2890 daily observations). Table 1 reports the
sa  descriptive statistics. As shown by the skewness and the kurtesis values, all of them
.5 exhibit the typical return time series characteristics, including fat tails and slight

436 asymmetry.

Table 1: Descriptive Statistics of the Dataset

2

Dataset | T k 0 o med " min  mar  skew Furt period fregq.
10Ind 565 10 | 0.099 0.043 0.012 -0.211 0.156 -0.476 5.077 01/1970 - 01/2017 Monthly
30Ind 565 30 | 0.010 0.048 0.012 -0.255 0.179 -0.507 5.749 01/1970 - 01/2017 Monthly
100FF 565 100 | 0.011 0.052 0.015 -0.262 0.241 -0.551 5.600 01/1970 - 01/2017 Monthly
SP500 | 2890 443 | 0.000 0.014 0.000 -0.107 0.109 -0.418 13.234 12/2004 - 01/2016  Daily

The table reports descriptive summary statistics for the 10 Industry Portfolios, the 30 Industry Portfolios, the 100
Fama French Portfolios and the S&P 500, respectively. Reported are for the daily (monthly) data: the number of

observations (7T'), the number of constituents(k), the mean (fi), the standard deviation (), the median ('r@), the

minimum (min), the maximum (#az), the skewness (s/ke\w), the kurtosis (k/u7t)7 the period that the data set covers
(period) and the frequency (freq.).

437
ss  To evaluate the portfolios in an out-of-sampling setting, we rely on a rolling window

130 approach with a window size of 7 = 120 monthly observations for the 10Ind, the

9We use the MBox test (see e.g. Stevens (1992)) to test, if there is a significant difference in
the covariance matrices. Furthermore, we perform robustness tests for « = 0.01,0.05, which are
available from the authors upon request.

Onttp://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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wo 30Ind, and the 100FF, as well as 7 = 500 daily observations for the SP500.1% All
w1 portfolios are re-balanced monthly, discarding the oldest and including the most
a2 recent observations, allowing for a total of ¢ = 445 (¢ = 115) out-of-sample returns
w3 for the monthly (daily) data.

ss The rolling window approach for the daily data works as follows: the first 7 return
ws observations are used to estimate 3, according to the shrinkage approach by Ledoit
us and Wolff (2004b). Then, 3 is used as the input to compute the optimal weight
w7 vector wy. The resulting portfolio is assumed to be held for the following 21 days.
wms At t + 1, the k constituents’ returns over this monthly period, R, i, are used to
w9 compute the out-of-sample portfolio return as: R, ;{1 = w;R;1. In the next step,
o we roll the data window forward, dropping the last and adding the most recent
i1 21 observations to our training set. We then estimate a new weight vector, which
s2  determines our portfolio holdings and the out-of-sample return for the next month.
»s3 This process is repeated until the end of the data set is reached. The same procedure
s is applied to the Industry and Fama French portfolios, though the window is rolled
»ss  forward by one monthly observation instead of 21 daily observations.

s Finally, and given that each data set consists of a different number of assets, we keep
ss7 for our trading strategy, SLOPE-EW, and depending on the respective data set the
s following first G groups active: 10Ind - the first 4 groups; 30Ind - the first 2 groups;
o 100Ind - the first 5 groups; SP500 - the first 5 groups.!?

1o test the robustness of our results, we account for different window sizes of 7 = 250,750
and 1000 daily observations, and make the results available upon request. The obtained results are
qualitative similar.

12Note: The stated number of active groups G for each data set are selected, such that we always
obtain the portfolios with the lowest out-of-sample variance, given a = 0.1 and when compared
to portfolios that would include more or less groups, respectively. Results for different number of
included groups G, as well as different significance levels, i.e. a = 0.05 or 0.01, are available from
the author upon request.

26



Journal Pre-proof

wo For all portfolios, the optimal weights vector, w;, depends on the choice of the op-

w1 timal A\ parameter value. To select the optimal tuning parameter, we consider a

w2 grid of 100 log-spaced values of A\ between 10~7® and 10!, from which we choose
_ 001

43 ARIDGE = Apasso = A = ad®™! (1 o ) The remaining elements ¢ = 2, ...,k of

e the A sequence for SLOPE are as before, equal to A; = a®~! (1 — 201)

2k

s Among the 100 lambda values, we select the optimal tuning parameter for the
ws RIDGE, the LASSO and the SLOPE, such that we obtain a portfolio with approx-
w7 imately 10% of the GMV’s short positions. Note that for SLOPE, as we increase
w8 the tuning parameter, beyond the GMV-LO solution, we would move along the no-
a0 short sale area towards the EW portfolio (see Figure 5). Therefore, we also compute
w0 SLOPE-LO to explicitly exploit the grouping feature that predominates in the long-
an only area, and select the lambda value, which provides us with a portfolio that has
a2 the largest number of groups. To guarantee that all our portfolios can also be imple-
a3 mented in practice, all weights that are smaller in absolute value than the threshold
as 0f 0.05% are set to zero. Furthermore, we incorporate a transaction cost (TC) regime
w5 of TC = 10bps'®, whereas the costs are proportional to the turnover and considered
w6 to be the same for selling and buying securities.*

an Given the optimal portfolio vector w; at time ¢, we compute the out-of-sample mean

131 bps = 0.01% = 0.0001

MFor the robustness of our results, we also consider regimes of no (TC = Obps) and high trans-
action costs (TC = 50bps). They show that naturally, high turnover strategies like the GMV suffer
with regard to returns and the SR in the higher cost regimes. On the other hand, SLOPE portfolios
show a nearly steady performance for all data sets and when considering the different TC regimes.
All results are available upon request from the authors.
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s and the out-of-sample standard deviation, defined as:

. 1 .
Hp = n Z wi Rt (13)
i=1
1 t
Op=\771 > (W Ryy — i) (14)

w0 from which we construct the out-of-sample Sharpe Ratio (SR) as:

~

Sk="r (15)

~

Op

s To evaluate whether the SR and &g of any portfolio is statistically different from our
s SLOPE procedure, we use the tests developed by Ledoit and Wolf (2008) and Ledoit
s2 and Wolf (2011), respectively.

i3 As frequent re-balancing of a portfolio is costly, we complement our analysis by

s computing the turnover of each portfolio, defined as:

SRR R
TO = ;;Hwtﬂ —w/ |, (16)

ws whereas W, is the weight vector right before rebalancing at t 4+ 1 and considering
s the changes in the assets prices. Consequently, the TO for the EW can be non-zero,
@ as w, # W = 1/k (DeMiguel et al., 2009a).

w8 Furthermore, we include the following diversification measures: the Diversification
0 Ratio (DR), the weight (WDiv) and the risk diversification (RDiv) measures. The
wo DR is defined as the ratio of the weighted asset volatility to the overall portfolio
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a1 volatility:

DR = Lt 001 i
Op
w2 where g; is the i-th asset’s estimated volatility, 7, is the estimated portfolio volatility,
43 for which the investor typically prefers a higher value (Choueifaty and Coignard,
a4 2008).
s Finally, both the WDiv and RDiv measure the concentration of the portfolio in terms
a6 of weights and risk (Maillard et al., 2010; Roncalli, 2013). The WDiv ranges from %
w7 for a perfectly concentrated portfolio up to 1 for the equally weighted portfolio. It

w8 is computed according to:

1
PRV
XY iy W

w9 On the other hand, we obtain the RDiv by substituting the weights for the risk

WDiv = (18)

s0  contribution, defined as RC = 1i); X Ow,;0(w;), where 0,,0(w;), defines the marginal
s contribution to risk (MRC) of asset ¢, that is the first derivative of the portfolio
sz variance with respect to portfolio weight w;. The MRC measures the sensitivity of
s03 the portfolio variance, given a change in the i-th asset. The RDiv takes a value of 1 for
soo  the equally-weighted risk contributions (ERC) portfolio, which is least concentrated
sos in terms of risk contributions and % for a portfolio which is fully concentrated on one

506 asset:

1

Rﬁ:—/\z
k x Zf:l RC;

(19)
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s7  Summing up, we prefer values close to one for the WDiv and the RDiv (Cazalet

s et al., 2014).

so0  4.2. Empirical Results

510 Table 2 reports the annualized out-of-sample volatility, the annualized out-of-
su sample SR, the number of active positions, and the turnover for the 10Ind, 30Ind, the
sz 100FF, and the SP500, using a window size of 7 = 120 (7 = 500) observations with
si3 monthly re-balancing and T'C' = 10bps. We indicate portfolios that are statistically
suu  different from our SLOPE procedure at the 10%, 5% and 1% level, given the test
sis for the difference in the SR and the volatility, following Ledoit and Wolf (2008)
sis and Ledoit and Wolf (2011).

Table 2: Risk- and Return Measures

Vol. (in %) Sharpe Ratio AP Turnover

10Ind  30Ind 100FF SP500 10Ind ~ 30Ind 100FF SP500 10Ind 30Ind 100FF SP500 10Ind 30Ind 100FF SP500
EW 14.491 16.257 17.509 20.238  0.776"* 0.656*** 0.677*** 0.205 10.000 30.000 100.000 443.000  0.049  0.057 0.056  0.077
GMV 10.910  9.152  6.058 11.497  1.102° 1.283*** 3.124*** 0.057** 9.982 29.885 99.469 434.377 0.125 0.273 0.852 2.748
GMV-LO 11.473 11.214 13.134 10.825 . 1.012  0.998*** 0.954*** 0.389  5.371 8562 9.220 27.553 0.064 0.074 0.101 0.238
ERC 13.578 15.029 16.906 17.948  0.840* 0.730*** 0.714** 0.233 10.000 30.000 100.000 443.000  0.048 0.054 0.055 0.076
RIDGE 11.907 12241 13.219 11.393  0.978 0.955  1.069*** 0.490  9.989 29.824 98.171 408474 0.061 0.078 0.109 0.212
LASSO 11.364 10.781 10.853  9.505  1.028  1.046  1.421"* 0.572  6.755 12.301 18.371 130.211  0.079 0.104 0.184 0.434
SLOPE 11.352 10.822 10.977  9.643 ~ 1.024 1.047 1.382 0.534 7.027 13.231 22.598 145.552  0.078 0.101  0.172  0.409

SLOPE - LO  11.689 11.865 13.709 11.981  0.950" 0.946" 0.917** 0.344  7.299 18465 34.616 129.632 0.119 0.217 0.409  0.590
SLOPE - EW 12,539 12.904 14.390 11.017 0.908" 0.929* 0.858** 0.645 6.330 6.128 17.022 76.386 0.052 0.055 0.057 0.284

The table reports the out-of-sample Risk and Return Measures for the 10-, 30-, and 100-Portfolios (SP500), con-
sidering a windowsize of 7 = 120 monthly (7 = 500 daily) observations and re-balancing the portfolio every month
over the period from 01/1970 to 01/2017 (from 12/2004 to 01/2016). Furthermore, we consider a transaction cost
of 10bps, which is proportional to the turnover and is assumed to be the same for selling and buying securities.
Reported are: The annualized out-of-sample volatility, the annualized out-of-sample Sharpe Ratio, the number of
active positions (AP), and the average total turnover. Furthermore, we report the significance for the test of the
difference in the volatility and the SRs with regard to SLOPE, at the 10%, 5% and 1% level with *, ** and ***,
respectively.

517
si8 Looking at the values for the out-of-sample volatility in Table 2, we observe that no
si9  portfolio is statistically different from our new SLOPE procedure, across any of the

s0 data sets. Still, SLOPE yields consistently lower variance than any of the EW, ERC,
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s21. RIDGE or GMV-LO portfolios. Furthermore, for the SP500, SLOPE and LASSO
s22 perform best, reporting the smallest variance among all strategies. Especially for
s23 the SP500, the number of observations in the window size is only marginally bigger
s« than the size of our investment universe, the estimated covariance matrix is degen-
ss erated and our estimates are very prone to estimation error. Therefore, and even
26 using the shrunken covariance matrix, SLOPE and LASSO are still able to reduce
s7 extreme weight estimates. Simultaneously, we explicitly select for the LASSO and
s the SLOPE, a portfolio with a moderate amount of short sales, making it possible
s20  to still exploit diversification benefits. Hence, the resulting allocation has a smaller
s30 variance, as compared to the GMV-LO.

s Furthermore, the values for the out-of-sample SR, establish SLOPE among the best
s performing portfolios, across all datasets, with some results being statistically sig-
s13 nificant. For example, SLOPE is able to statistically significantly outperform the
s KW, challenging its widely reported characteristic of a tough benchmark to beat
s3 (DeMiguel et al., 2009Db).

s3 Beside reducing the overall portfolio variance, our goal is to construct sparse port-
s folios with a low turnover. For that, reconsider that the EW always invests naively
s in all constituents and thus has the highest possible number of active positions.
s39  Similar values are obtained for the ERC, which aims at equalizing the risk contribu-
se0  tion of each asset to the overall portfolio risk. The GMV, as being highly sensitive
sai to even small changes in the underlying data structure, typically resulting in ex-
s22 treme positions (see i.e. Michaud (1989)), has the highest turnover values among
ss3 the non-regularization strategies. The RIDGE, on the other hand, results in more
saa  stable asset allocations, despite not setting any asset weight exactly equal to zero.
sss  Although both strategies should invest in all assets, the reported number of active

sa6  positions are slightly reduced, due to our imposed threshold of 5%.
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ss7  Compared to the strategies above, our new SLOPE procedure is able to promote
sis sparse solutions and to reduce the overall portfolio turnover, consistently reporting
sa9 lower turnover values than the LASSO.

sso0  Of special interest is also the performance of SLOPE-EW. In general, our new SLOPE
551 procedure provides the investor with a large amount of flexibility, as with an increased
ss2 lambda value the penalty starts to form groups among assets, assigning to them the
53 same coefficient value. This is of special interest for investors, who want to move be-
s« yond the property of statistical shrinkage, and who want to include in their portfolio
55 construction process any form of financial indicator, like among others fundamen-
sss tal multiples (i.e. Price/Earnings, Dividends/Earnings), accounting values (i.e., Net
ss7 Income, Free Cash Flow) or other quantitative measures (i.e., Value-at-Risk or Ex-
sss. pected Shortfall). With SLOPE-EW, we construct a simple strategy that selects,
ss0 out of the formed groups, those which carry assets that are the most important with
soo  regard to minimizing the overall portfolio variance. Still, other strategies could be
se1  easily developed.

si2  Lable 2 shows that SLOPE-EW performs best in reducing the variance for large
63 asset universes, i.e. for the SP500, even outperforming the initial SLOPE-LO port-
sea  folio. This result provides two insights: First, using SLOPE-EW, we can eliminate
ss  assets from the portfolio that rather increase the portfolio variance, as opposed to
sso reducing it, and second, by eliminating the groups according to the weight mag-
ss7  nitude, we might conclude that SLOPE assigns assets to the groups according to
ses  their importance in reducing the overall variance. Finally, SLOPE-EW ranks among
seo  the portfolios with the smallest number of active positions, and reports the lowest
s turnover value, across all sparse portfolio methods.

571

sz 'Table 3 complements our risk and return analysis, reporting the DR, the WDiv, and
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Table 3: Diversification Measures

DR WDiv RDiv

10Ind  30Ind 100FF SP500 10Ind 30Ind 100FF SP500 10Ind 30Ind 100FF SP500
EW 1.270 1.343 1.212 1.675 1.000 1.000 1.000 1.000 0.933 0935 0.958 0.894
GMV 1.255  1.362 0958 3.147 0.197 0.078 0.013 0.012 0.197 0.078 0.013  0.012
GMV-LO 1.289 1414 1299 1944 0320 0.150 0.062 0.032 0.320 0.150 0.062  0.032
ERC 1.300 1.382 1.225 1.728 0935 0914 0963 0.880 1.000 1.000 1.000  1.000
RIDGE 1.330  1.457 1.256 1.920 0.540 0.430 0.262 0.248 0.577 0.440 0.188  0.120
LASSO 1.280 1415 1237 2221 0309 0.143 0.044 0.062 0.301 0.132 0.030 0.029
SLOPE 1.295 1426 1.247 2213 0319 0.155 0.0564 0.071 0.312 0.144 0.056 0.032

SLOPE - LO 1315  1.457 1.295 1.936 0417 0.287 0.209 0.206 0437 0319 0.221  0.219
SLOPE - EW  1.289 1314 1294 1808 0.403 0.181 0.118 0.170 0408 0.182 0.120 0.166

The table reports the diversification measures for the 10-, 30-, and 100- Portfolios (SP500 Portfolios), considering a
windowsize of 7 = 120 monthly (7 = 500 daily) observations and re-balancing the portfolio every month over the
period from 01/1970 to 01/2017 (from 12/2004 to 01/2016). Reported are: The Diversification Ratio (DR), the
Weight Diversification (WDiv) and the Risk Diversification (RDiv) measures:

s.3 the RDiv. As the EW invests equally in all assets, it achieves, by definition, the best
sz values for the WDiv, with similar values reported for the ERC. As the ERC aims to
sis  equalize the contribution to portfolio risk from each asset, it also reports the highest
st values for the RDiv. SLOPE-LO and SLOPE consistently outperform the LASSO
sz across all datasets for the WDiv and the RDiv. Except for the SP500, this is also
s, true for the DR, while a higher value for the LASSO only results due to the lower
s7o  variance, as reported in Table 2. It should be pointed out that SLOPE does not only
ss0  frequently outperform the LASSO, but also provides flexibility with regard to the
ss1  diversification measures. For that, Figure 7 plots the weight- and risk diversification
s22 measure against the attainable portfolio volatility for the LASSO and the SLOPE,
ss3 together with the other portfolio strategies and considering the first window size of
ssa T = 120 observations for the 10Ind.

sss  For both frontiers, the full grid of lambda parameters for the LASSO enables the
sss  investor to select only a combination between the GMV and the GMV-LO solution.
ss7 SLOPE, on the other hand, is able to span a much larger set of portfolios, beginning

33



Journal Pre-proof

Figure 7: Risk and Weight Diversification Frontier
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The figure shows on the left the weight diversification and on the right the risk diversification frontier, both reporting
on the x-axis the portfolio volatility and on the y-axis the risk and weight diversification measure, respectively.
Considered are the first window size of 7 = 120 months for the 10Ind. Plotted are the resulting combinations for
the GMV, the GMV-LO, the EW, the ERC, as well as the different combinations for the LASSO and the SLOPE
procedure, considering a range of lambda values from 10~7-% to 10%.

sss  from the GMV, via the GMV-LO up to the EW. The investor can thus control the
ss9 trade-off between diversification and volatility out of a much larger set of portfolios,
so0 to find the allocation that best suits her individual preferences.

591

s2 5. Conclusion

503 This paper extends the literature on financial regularization by introducing SLOPE
s to the Markowitz portfolio optimization, discussing its properties and testing its per-

sos formance with regard to risk and return on simulated and real world data.

so6 OLOPE relies on a sorted ¢;-Norm, whose intensity is controlled by a decreasing

so7 sequence of A parameters and which penalizes the assets by their rank, provid-

se¢ ing a natural interpretation of importance. To solve the penalized mean-variance

s00 Optimization, we propose a novel algorithm based on the Alternating Direction
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so Method of Multipliers (ADMM). When applied to the LASSO, which is a specific
sor case of SLOPE, this algorithm provides the same accuracy as the state-of-the-art
sz CyCoDe, but is superior with regard to computing time, especially when the as-
03 Set universe is large.

s« The simulated hidden risk factor analysis shows that SLOPE has the advantage of
o0s still being active in the no short sales area and given an imposed budget constraint.
o6 Furthermore, SLOPE can automatically identify assets with the same underlying risk
sor factor exposure and group them together, by assigning the same coefficient value to
s them. This property is especially desirable for investor planning to incorporate their
s00 individual views into the optimization, by selecting assets from these groups accord-
s ing to a specific financial characteristic or individual preferences. We exploit such
s property by building a simple investment strategy, SLOPE-EW.

sz Moreover, we investigate the performance of SLOPE for four major data sets to
13 other state-of-art portfolio methods in an eut-of-sample setting, considering a rolling
suu  window approach, and re-balancing the portfolio every month.

a5 Our results show that SLOPE is able to achieve equal and even better out-of-sample
a6 portfolio volatilities and SR, when compared to the LASSO. Although, only part of
sz the differences are statistically significant, SLOPE is able to construct sparse portfo-
s lios with reduced turnover. This especially applies to situations with a large amount
s19  of estimation error, for example when considering the SP500. Furthermore, our
s20 SLOPE-EW portfolio results in very sparse portfolios with even lower turnover than
e state-of-the-art methods and at the same time maintains a comparable performance.
22 Additionally, SLOPE reports improved values for the DR, the WDiv and the RDiv,
23 while the shape of the penalty extends the frontier of attainable portfolios, ranging
2« from the GMV via the GMV-LO, up to the EW portfolio. This enables the investor

s to select among them the one that provides her with the desired volatility- and di-
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e versification trade-off.

sz The results establish SLOPE as a valid alternative to state-of-art methods by creating
28 sparse portfolios with a reduced turnover rate, improved risk- and weight diversifi-
20 cation, and a high degree of flexibility in the portfolio construction process.

30 A natural extension to our study is to investigate, how different sequences of lambda
s31  parameters would impact the risk and portfolio allocation, and whether the investor
22 should choose them according to the underlying correlation regime of the stock mar-

633 ket or his own prior beliefs on the assets.

s« Appendix A. Derivation of the ADMM Algorithm

35 In order to facilitate the application of proximal operators involving py, we first

s reformulate (2) - (3) into the following form:

k
, ¢ /
min = —w'Xw — pw + pr(v) s.t. w=w, w; =1, Al
weRh weRk 2 I8 pa(v) ; (A1)
e where py(w) := 3% \i|wly is the sorted ¢,-Norm corresponding to the sequence

633 Aspope = (A1,..., ) satisfying Ay > Aoy > ... A\ > 0. To solve (A.1), we design an
s0 ADMM (for details, see e.g. Boyd et al. (2011)) algorithm, which is based on using
s0 the augmented Lagrangian function of (A.1) and on partial updates for the primal

sa1 variables. In our case the associated augmented Lagrangian is given as:

£ (w,v: 00, 5) = S0/ Sw — pw + pa(v) + o w — v) + flew — 1) o)
+ 2w - of* + (ew = 1)*}, |

so where a € R¥, 8 € R, epy; = (1,...,1), Iy is the identity matrix, and 7 > 0 is
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s3 a penalty parameter. Compared to the Lagrangian L, without the penalty term,
s the augmented Lagrangian £, with n > 0 brings the benefit that the dual objective
s gn(oy, B) = infy,, Ly (w,v; o, ) becomes differentiable without requiring further
sss assumptions on the primal objective (e.g., strict convexity).

s7 The ADMM algorithm consists of the updates:

wtt = argmin,, L,(w,v’;ad, () = (¢Z +n(l +e€e)) (p—al — fe+n(v’ +e))

v"fl = argmin, .ﬁn(wjﬂ’v; o, f7) = prox, , (w’** + (1/n)a’) (A.3)

a1+1 =of + n(w1+1 _ /U]+1)

gL = ew’ T — 1)
s Where prox, ,,(z) := argmin, v — 2|3 + pajn(v) is the proximal operator of the
sa0  Sorted ¢1-Norm, corresponding to the sequence A/n, provided e.g. in Bogdan et al.
ss0 (2013,2015). The updates regarding o and /3 are due to the gradient ascent applied to
e the dual objective g,(c, 8) := infy, 4 Ly (w. v; e, B), where Vg, (a, 8) = wi™ —vi ™!

2 and Vg, (a, 8) = ewi™ — 1. The first iterates w, v°, a®, 5% of the procedure (4)

es3 are typically initialized as the zero vectors.

s« Appendix B. Primal-Dual Gap

55 1The stopping criterion for our algorithm is based on the Primal-Dual Gap, which we
ess  estimate as follows. First, taking the infimum over (w, v) of the Lagrangian, we get

ss7 the dual objective,

g(a, f) = inf %w’zw —(p—a—pBe)w — - pyla). (B.1)

w
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58 From the optimality condition for the infimum over w, we have

w'=¢ ' (u—a— Pe). (B.2)

659 AlSO,

0 if a € Cy

B.3
+o00 o.w. ( )

pi(@) = sup{a’v — pA(v)} = {

0 where Cy := {v : R¥ : pP(v) < 1} is the unit sphere defitied in the dual norm p%(-)

1 Of px(+). Plugging-in these, we get the dual problem

mex —%(u—a—ﬁe)’E_l(u—a—ﬁe)—ﬁ s.t. a € Cy. (B.4)

62 Then we can estimate the primal-dual gap as follows using (B.2),

Gl 0,0, ) = 0w ) B < plw’ + pa(a’) + 5l — 0’ = €S (u—a’ = )+

— _(a*+5*e)/w*+/6* +p)\('l)*)

(B.5)

*

e given the dual feasibility of a*, ie., p¥(a*) < 1. Here, w*, v*, a*, 3* can be
ses generated from the procedure (4), and, due to strong duality, the duality gap becomes
e6s zero when these iterates are optimal to the problem (A.1). Therefore we can stop our

s algorithms when the duality gap of the current iterates becomes sufficiently small.

ss7 Appendix C. ADMM vs. Cyclic Coordinate Descend

s In this section, we use the ADMM algorithm to solve the minimum-variance opti-

60 mization with an ¢; Norm (which is a specific instance of our new SLOPE penalty)
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s and compare its performance to the the Cyclic Coordinate Descend algorithm (Cy-
e CoDe).

ez 'The CyCoDe algorithm is considered state-of-art and has found various applications
63 in solving norm constrained optimization problems (see i.e. Fastrich et al. (2014),
e Yen (2015)). The algorithm works by optimizing the weights along one coordinate
s direction, while holding all other weights constant. Although there is no general
s7s rule on how the CyCoDe updates the weight vector, we follow the procedure of Yen
e7 (2015) and update the weights cyclical, that is we first fix w;, i = 2,...,k and find a
ss  new solution for w; that is closer to its optimal solution w*. In a next step, we fix
sro w;, ¢ =1,3,...,k and find a value for w, that is again closer to the optimal one w*.
0 Given a starting criteria w® for the weight vector, the Lagrange parameter, v, for
1 the budget constraint and a trade-off parameter, ¢, for 4 and o2, Algorithm 2 shows

2 the pseudo code for the CyCoDe.

Algorithm 2 Cyclic Coordinate Descend

1: Initialize w" and j =0
2: while convergence criteria is not met do

3: fori=1tok do

4: w; = ST(y—2;,A) x (2x a?)7!
5: where ST is the soft-thresholding function and z; = 2 Zf 4 WO — 011
6: end for
7 j=j+1
8: end while
683 To evaluate the performance of the two algorithms, we first draw a random sample
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s+ Of size n for k assets from a multivariate normal X ~ MV N(0, ), where X:

L, v=17,
’ {p, i # J,

s and for which we choose p = 0.2 and 0.8, respectively. Then, we solve the minimum
sss variance problem given in (2) and subject to the ¢;- Norm on the weight vector,
7 using as an input for 3 the shrunken covariance matrix, introduced by Ledoit and
ess WOl (2004b).

1

s  We initialize both algorithms with a soft starting point w”, that is (1) w) = ¢ Vi =

o0 1,...k and (2) w? = %,Wfﬁh a; ~ U(0,1) ¥V i = 1,...,k, and repeat the above
eo1  procedure 100 times, using for both algorithms a tolerance stopping point of 1077,
2 All computations are performed in Matlab 2016a on a Lenovo T430, with Windows
3 7, an Intel i7-3520M with 2.90 GHZ and 8 GB of RAM.

sa  Table C.4 and C.5 display the minimum and the median of the objective function
s values, together with the median amount of shorting, the median time in seconds
s used for each algorithm to solve the 100 simulations and the median absolute weight

sor difference!®

, considering as soft starting criteria an equally weighted and a random
s0s portfolio weight vector, respectively.!

so The tables show that both algorithms reach the same global minimum and median
70 objective function value and the same amount of shorting for the low correlation

7o environment, regardless of the chosen lambda value and whether we consider the

15The difference in the weights is computed as: 3 |wAPMM _ 4pCyCoDe|  where wAPMM and
wYCoPe are the optimal weights obtained with the ADMM and the CyCoDe algorithm, respec-
tively.

Due to space limitations, we have restricted ourselves to report the above mentioned measures.
Further results, including the standard deviation of the objective function value and the median
number of active positions are available upon request to the authors.
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Table C.4: Simulation Results - Equal Weights

\ A=4.03 %1076 \ A =05.65x1074 \ A=791x%1072
p n P Algo ‘Min Med Short Time W.Diff. ‘Min Med Short Time W.Diff. ‘Min Med Short Time W.Diff.
CyCoDe | 0.14 0.16 051  0.66 014 016 049 0.62 1023 025 000 018 B
5000100 ypaiv |04 016 051 001 2 X107 014 016 049 oo 0¥ 023 025 000 o001 <10
CyCoDe | 0.00 0.11 213  13.63 o000 011 202 12.87 o021 024 000 004 L
0.2 990 20wy (009 001 213 009 SX7 Lo o1 202 000 97021 024 000 o003 SX10
1000 500 C¥CoDe [009 010 346 117.69 5 105|009 011 323 11629 o ;05 022 024 000 538 | 07
ADMM | 0.09 0.10 346  0.66 0.09 011 323 0.64 022 024 000 017
500 100 CvCoDe|055 064 339 1167 o 055|055 0.65 330 1123 o 05[073 08 000 137 o 07
ADMM | 055 0.64 3.39 0.6 055 0.65 330  0.05 0.73 083 0.00 0.03
CyCoDe | 0.34 042 1098 3533 1035 043 1046 3475 067 082 000 603 »
08 500250 Wpaiv 034 042 1094 058 S0 035 043 1047 056 S [oer 0s2 000 om PO
CyCoDe | 0.36 042 16.49 109.37 038 044 1544 107.64 0.75 083 0.00 37.20 »
1000500 ApAM | 036 042 1634 3.96 211038 043 1533 3.76 L8 o5 083 o000 o061 2X10

The table reports, for the Cyclic Coordinate Descend (CyCoDe) and the Alternating Direction Method of Multipliers
(ADMM), the simulation results to the penalized minimum variance problem given in (2), considering six data sets
drawn from a multivariate normal distribution, with p = 0.2 and p = 0.8, respectively, and using the equally weighted
portfolio as a soft starting point. Stated are across all 100 simulations: the minimum (Min) and the median (Med)
value of the objective function, the median value of the total amount of shorting (Short) the median time in seconds
needed to compute the solution (Time) and the average weight difference (W.Difl.).

2 equally weighted or the random weight vector as the soft starting point. This also
703 applies to the low dimensional data set, when the correlation is set to p = 0.8. When
704 p = 500 for p = 0.8, the ADMM reports a lower amount of shorting for the first two
70s lambda values. This holds regardless of how we choose the soft starting point. This
76 difference might also explain the discrepancy in the weight vectors, which is reported
77 to be the highest for these two data sets. Still, the difference in the resulting weight
s vectors is modest and amounts to an average of 107¢ for both low correlation envi-
20 ronments, and to 104, for the first two high correlation environments and regardless
70 on how we chioose the soft starting point.

m Most notably, the ADMM outperforms the CyCoDe, with regard to the median time
712 in seconds used to compute the solution for all six data sets. This difference is not
73 negligible: the ADMM uses on average 0.265 seconds in the low correlation environ-
72 ment across all lambdas and all starting criteria, while the CyCoDe is slower by a

ns  factor of more than 100, using on average 28.88 seconds. This also applies to the high
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716 correlation environment, with the ADMM finding the solution, by taking on average
77 2.65 seconds and the CyCoDe using 38.98 second. Finally, and for both algorithms,
ns  selecting the random weight vector as a starting point results in longer computing
79 times, as opposed to using the equally weighted solution.

Figure C.8 plots the computing times needed for the CyCoDe and the ADMM for

Table C.5: Simulation Results - Random Weights

\ A=4.03x 1076 \ A=1565x1074 \ A=791x1072
p n P Algo ‘Min Med Short Time  W.Diff | Min Med Short Time  W.Diff ‘Min Med Short Time W.Diff

500 100 C¥CoDe[0.13 016 049 046 o yoor[043 016 047 044 4 o6 [022 025 000 043 o

E ADMM | 0.13 016 049 0.0l 013 016 047 001 023 025 000 001
CyCoDe | 0.08 010 212  10.26 6008 010 202 10.02 o019 023 000 074 -
) 8 10 6 8
02 990 20 oy [o0s 010 211 007 008 010 202 o007 ©XM 7019 023 o000 o002 $X10
CyCoDe | 0.08 010 350 111.66 1009 010 328 11250 o022 024 000 531 =
1000500 ‘mving [0.08 010 350 052 SX107 009 010 328 051 27 022 024 000 015 X0
CyCoDe | 055 0.64 330  8.02 1056 064 321 7.86 |02 082 000 089 N
5000100 w055 063 330 003 2X107 loss 06e 320 003 2XM7 072 o0s2 000 o002 SX10
CyCoDe | 0.33 041 1077 3154 1035 042 1034 32,05 068 081 000 535 »
0.8 990 20 .pai 033 041 1075 055 XM o35 042 1033 053 S0 |o6s o8t 000 010 X0

CyCoDe | 036 0.40 16.42 111.10 037 042 1538 11170 0.76 0.82 0.00 38.7

5 3 2.193

10000500 ‘hnint | 036 040 1637 3.8 037 042 1536 360 % o7 os2 o000 ogo S

The table reports, for the Cyclic Coordinate Descend (CyCoDe) and the Alternating Direction Method of Multipliers
(ADMM), the simulation results to the penalized minimum variance problem given in (2), considering six data sets
drawn from a multivariate normal distribution, with p = 0.2'and p = 0.8, respectively, and using the equally weighted
portfolio as a soft starting point. Stated are across all 100 simulations: the minimum (Min) and median (Med) value
of the objective function, the median value of the total amount of shorting (Short) the median time in seconds needed
to compute the solution (Time) and the average weight difference (W.Diff.).

720

721 both the EW and Random weight vector initialization, considering the two corre-
72 lation regimes and varying the number of parameters that have to be estimated.
723 Clearly the ADMM consistently shows a superior performance, by only using a frac-
72« tion of the time of the CyCoDe. Furthermore, we can observe that both algorithms
75 are also invariant to the selection of the soft starting point. Only the CyCoDe shows
76 a slight difference for parameter values above k = 450, signaling that for the CyCoDe

7z an EW portfolio results in finding the optimal solution faster.
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Figure C.8: Computation Times for CyCoDe and ADMM
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The figure shows the average computation times needed for the CyCoDe and ADMM algorithm, depending on the
correlation regime, the number of parameters and the soft start criterion. All values are based on 100 simulations,
considering a constant correlation set-up.

s Appendix D. Portfolio Selection Models

Equally Weighted Portfolio. The equally weighted portfolio is considered as one
of the toughest benchmarks to beat (see, i.e. DeMiguel et al. (2009b)), and naively
distributes the wealth equally among all constituents, such that with k assets:

1

V= {1k (D.1)

w; =

729 where w; is the weight of asset ¢. The EW ignores both the variances, the covari-
720 ances and the return of the assets, and is the optimal portfolio on the mean-variance
71 efficient frontier, when we assume that all three are the same.
732

Norm-Constrained Minimum Variance Portfolio. Reconsider the formulation

of the mean-variance problem in (1). By disregarding the mean in the optimization,
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we obtain the Global Minimum Variance Portfolio (GMV), given by:

k
: 2 _ 1 _ -
Iin o, = w'Xw s.t.;wi— 1, Vi=A{l,..,k}, (D.2)
However, this formulation is prone to estimation errors, and unstable portfolio weights.
To circumvent these problems, we extend the framework in (D.2) by adding a penalty
function py(w) on the weight vector. For LASSO, we add a ¢; - Norm to the formu-
lation in (D.2), such that:

pr(w) = A x Z |wi| (D.3)

where A\ is a regularization parameter that controls the intensity of the penalty.
Besides LASSO, we also consider the RIDGE penalty, which adds an ¢>-Norm on the

weight vector to the formulation in (D.2), and that takes the form of:

pa(w) = A x wa (D.4)

73 As opposed to the LASSO, the RIDGE is not singular at the origin and thus does
7¢ not promote sparse solutions. Still, imposing the ¢ - Norm on the portfolio problem
735 1S equal to adding an identity matrix, weighted by the regularization parameter A
76 to the inverse of the variance-covariance matrix, i.e. (37! + M), where I is the
7wk X k identity matrix. This leads to more numerical stability and makes the RIDGE
733 penalty especially appealing in environments that suffer from multicollinearity (Zou
730 and Hastie, 2005).

740

Equal Risk Contribution Portfolio. Finally, we consider the Equal Risk Con-
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tribution (ERC) portfolio, which aims to equalize the marginal risk contributions of
the assets to the overall portfolio risk. That is, given that portfolio variance can be

decomposed as:

kK k k

k
UIQ) = ZZwiwjaij = Z’U}l ZU}]’UZ‘J’ (D5)

i=1 j=1 i=1  j=1

the marginal contribution to the portfolio risk for asset 7 is given as:

k k
' = w; Z wjo;; = w; (Bw); with Z e, = az (D.6)
j=1 i=1
where (Xw); denotes the i row of the product of 3 and w (Roncalli, 2013). As
the marginal risk is dependent on the portfolio weight magnitude, the ERC portfolio

has no analytically solution and must be obtained numerically,by solving:

k
(Sw) 1
min S (LWL g S wi=1 0<w <1 Vie{l,2..k} (D7)

N 2
weR im1 O'p k

m  The ERC favors assets with lower volatility, lower correlation with other assets, or
2 both, and is less sensitive to small changes in the covariance matrix as compared to
73 the GMV portfolio (Kremer et al., 2018). Furthermore, (Maillard et al., 2010) show
724 that the volatility of the ERC is between that of the EW and the GMV, and that it
s coincides with the latter, when both, correlations and SRs, are assumed to be equal

76 (Maillard et al., 2010).
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