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Abstract

We introduce a financial portfolio optimization framework that allows to automat-

ically select the relevant assets and estimate their weights by relying on a sorted

ℓ1-Norm penalization, henceforth SLOPE. To solve the optimization problem, we

develop a new efficient algorithm, based on the Alternating Direction Method of

Multipliers. SLOPE is able to group constituents with similar correlation proper-

ties, and with the same underlying risk factor exposures. Depending on the choice

of the penalty sequence, our approach can span the entire set of optimal portfolios

on the risk-diversification frontier, from minimum variance to the equally weighted.

Our empirical analysis shows that SLOPE yields optimal portfolios with good out-

of-sample risk and return performance properties, by reducing the overall turnover,

through more stable asset weight estimates. Moreover, using the automatic group-

ing property of SLOPE, new portfolio strategies, such as sparse equally weighted

portfolios, can be developed to exploit the data-driven detected similarities across
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assets.

Keywords: Portfolio Management, Markowitz Model, Sorted ℓ1-Norm

Regularization, Alternating Direction Method of Multipliers

1. Introduction1

The development of successful asset allocation strategies requires the construction2

of portfolios that perform well out-of-sample, provide diversification benefits, and are3

cheap to maintain and monitor. The problem is then one of statistical model selec-4

tion and estimation, i.e. the identification of the assets in which to invest and the5

determination of the optimal weight for each asset.2 In 1952, Harry Markowitz laid6

the foundation for the modern portfolio theory by introducing the mean-variance7

optimization framework. Assuming that asset returns are normally distributed, such8

model requires only two input estimates: the vector of expected returns and the9

expected covariance matrix of the assets. Solving the quadratic optimization prob-10

lem, by minimizing the portfolio expected risk, for a given level of expected return,11

the investor can then find the optimal portfolio allocation. Although Markowitz’s12

model has been widely criticized, it is the backbone of the vast majority of portfolio13

optimization frameworks and is still largely used in practice, especially in fintech14

companies as part of their robo-advisory (see e.g. Kolm et al. (2014)).15

One of the major shortcomings of the mean-variance approach is the fact that opti-16

2Another stream of literature investigates the utilization of norm penalties in portfolio selection
from a behavioral perspective, in which the investor tries to model a simplified version of a complex
investment processes. In such context, sparsity allows to simplify the model at hand by focusing the
attention on the relevant variables and thereby taking into account the mental cost of processing
data. Using the LASSO or the SLOPE penalty still results in tractable models, not NP-Hard ones,
which allow a natural way to model investors preference for simpler representation of the world, in
which many features are eliminated and sparsity can model dynamic attention to features of the
environment. For the behavioral perspective, we refer the interested reader to Gabaix (2014) and
references therein.
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mized weights are highly sensitive to estimation errors and to the presence of mul-17

ticollinearity in the inputs. In particular, it is acknowledged that estimating the18

expected returns is more challenging, than just focusing on risk minimization and19

thereby looking for the portfolios with minimum risk, i.e. the so-called global min-20

imum variance portfolios (GMV) (Merton, 1980; Chopra and Ziemba, 1993; Jagan-21

nathan and Ma, 2003). But even in the GMV set-up, the sample covariance matrix22

might exhibit estimation error that can easily accumulate, especially when dealing23

with a large number of assets (Michaud, 1989; Ledoit and Wolff, 2003; DeMiguel and24

Nogales, 2009; Fan et al., 2012). Furthermore, multicollinearity and extreme obser-25

vations often leads to undesirable and unrealistic extreme long and short positions,26

which can hardly be implemented in practice, due to regulatory and short selling27

constraints (Shefrin and Statman, 2000; DeMiguel et al., 2009b; Boyle et al., 2012;28

Roncalli, 2013). An ideal portfolio then has: a) conservative asset weights, which are29

stable in time, to avoid high turnover and transaction costs, and b) still promotes30

the right amount of diversification, while being able to control the total amount of31

shorting.32

A natural approach to solve this problem is to extend the Markowitz optimization33

framework, by using a penalty function on the weight vector, typically given by the34

norm, and whose intensity is controlled by a tuning parameter λ. Probably, the35

most recent successful approach, using convex penalty functions, is the Least Abso-36

lute Shrinkage and Selection Operator (LASSO) introduced by Tibshirani (1996).37

The LASSO framework typically relies on adding to the Markowitz formulation a38

penalty proportional to the ℓ1-Norm3 on the asset weight vector (Brodie et al., 2009;39

3Letw = [w1, w2, ...., wk]
′ be the portfolio weight vector, then the ℓq-Norm is defined as: ||w||q =

(
∑k

i=1
|wi|

q)
1

q , with 0 < q < ∞. If q = 1, then ℓ1 =
∑k

i=1
|wi| (LASSO), while for q = 2 we have

||w||2 = (
∑k

i=1
w2

i )
1/2 (RIDGE). Note that ℓq with 0 < q < 1 is not a norm but a quasi norm.
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DeMiguel et al., 2009a; Carrasco and Noumon, 2012; Fan et al., 2012). DeMiguel40

et al. (2009a) provide a general framework that nests regularized portfolio strategies41

based on the ℓ1-Norm with the approaches introduced by Ledoit and Wolff (2003)42

and Jagannathan and Ma (2003). Furthermore, the authors advocate their superior43

performance in an out-of-sample setting. Brodie et al. (2009) and Fan et al. (2012)44

show that the LASSO (a) results in constraining the gross exposures, (b) can be45

used to implicitly account for transaction costs, and (c) sets an upper bound on the46

portfolio risk depending just on the maximum estimation error of the covariance ma-47

trix. Moreover, the shrinkage covariance estimation of Jagannathan and Ma (2003),48

obtained by adding a no-short sale constraint (the so-called GMV long-only (GMV-49

LO)), can be considered a special case of the LASSO.50

Despite its appealing properties, the LASSO has reported shortcomings of (a) large51

biased coefficient values (Gasso et al., 2010; Fastrich et al., 2015), of (b) reduced52

recovery of sparse signals when applied to highly dependent data, like crisis periods53

(Giuzio and Paterlini, 2016), and of (c) randomly selecting among equally correlated54

coefficients (Bondell and Reich, 2008). Moreover, it is ineffective in the presence of55

no short selling (i.e. wi ≥ 0) and an imposed budget constraint (i.e.,
∑k

i=1 wi = 1),56

as the ℓ1-Norm is then just equal to 1.57

To overcome these limitations, we extend the literature on convex regularization58

methods in various ways: First, we introduce the Sorted ℓ1 Penalized Estimator59

(SLOPE), as a new penalty function within the mean-variance portfolio optimiza-60

tion framework. The SLOPE penalty takes the form of a sorted ℓ1 - Norm, in61

which each asset weight is penalized individually using a vector of tuning parame-62

ters, λSLOPE = (λ1, λ2, . . . , λk), with λ1 ≥ λ2 ≥ ... ≥ λk ≥ 0 and whereas λSLOPE63

is decreasing, attributing the largest weight to the highest regularization parameter,64

such that SLOPE penalizes the weights according to their rank magnitude. This65
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leads to an octagonal shape of the penalty in a 2-dimensional setting (see Figure 1)66

that combines the two favorable properties of the ℓ∞-Norm and the ℓ1-Norm4, which67

is the grouping of variables (i.e. some asset weights are assigned the same coefficient68

value), and the singularity at the origin, respectively. Our work shows that, opposed69

to the LASSO, in portfolio optimization and together with an added budget con-70

straint (i.e.
∑k

i=1 wi = 1), SLOPE continues to shrink the active weights, even when71

short sales are restricted (i.e. wi ≥ 0, ∀ i = 1, ..., k). Consequently, it spans the72

diversification frontier from the GMV-LO up to the equally weighted (EW) portfolio,73

as λSLOPE goes to infinity. Together with the feature of grouping equally correlated74

assets, the penalty provides an increased flexibility for the investor in creating indi-75

vidual trading strategies, as opposed to state-of-the-art shrinkage methods.76

Second, we introduce a new optimization algorithm to solve the mean-variance port-77

folio problem with the sorted ℓ1 regularization and linear constraints on the asset78

weights. The algorithm uses the ideas of variable splitting and the Alternating Direc-79

tion Method of Multipliers (ADMM) framework (Powell, 1969; Hestenes, 1969; Boyd80

et al., 2011). Using a mathematically equivalent reformulation of the original prob-81

lem, the algorithm can use existing implementations of proximal operators (Parikh82

and Boyd, 2014), associated with the ℓ1, the sorted ℓ1, and even other regularizers.83

Furthermore, Appendix C shows that the ADMM provides a more efficient alter-84

native for solving the LASSO optimization problem, than the state-of-art Cyclic85

Coordinate Descend (CyCoDe) algorithm.86

Third, we are, to our knowledge, the first to investigate the properties of SLOPE un-87

der a realistic factor model, which assumes that all assets can be represented as linear88

combination of a small number of hidden risk factors, as e.g. in Fan et al. (2008).89

4Given a weight vector w with k elements, the ℓ∞ = ||w||∞ = max(w1, ....., wk).
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In the set-up of classical multiple regression, in which the explanatory variables are90

assumed independent, Bogdan et al. (2013, 2015) and Su and Candès (2016) provide91

extensive evidence of SLOPE’s superior model selection and estimation properties.92

Further evidence for these properties are provided by the results of Bellec et al.93

(2016a) and Bellec et al. (2016b), which show that contrary to LASSO, SLOPE is94

asymptotically optimal for the general class of design matrices satisfying the modi-95

fied Restricted Eigenvalue condition.96

Moreover, Bondell and Reich (2008) and Figueiredo and Nowak (2014) investigate97

the properties of SLOPE and its predecessor OSCAR (Octagonal Shrinkage and Se-98

lection Operator, Bondell and Reich (2008)) in the situation, when regressors are99

strongly correlated. Bondell and Reich (2008) apply OSCAR to agricultural data,100

showing that the method successfully forms predictive clusters, which can then be101

analyzed according to their individual characteristics. Figueiredo and Nowak (2014)102

illustrate the “clustering” properties of the ordered weighted ℓ1 - Norm (OWL) in103

the linear regression framework with strongly correlated predictors, providing fur-104

ther simulation and theoretical results. However, none of these works addresses the105

interesting situation, in which the correlation structure results from the dependency106

of the explanatory variables on a few hidden factors and on financial real-world data.107

Recently, Xing et al. (2014) applied the OSCAR to the mean-variance portfolio op-108

timization, together with a linear combination of the ℓ1- and the ℓ∞-Norms. They109

advocate the method for its ability to identify portfolios that attain higher Sharpe Ra-110

tios and lower turnovers compared to those resulting from traditional approaches like111

the GMV and the GMV-LO portfolios. However, they do not point out the clumping112

property of the OSCAR. With SLOPE, we consider a generalized framework that113

nests the GMV, the GMV-LO, the LASSO, the ℓ∞ - Norm and the approach of Xing114

et al. (2014).115
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In this paper, we analyze the properties of SLOPE, with both simulated and real116

world data. The simulations show that SLOPE reduces the estimation errors in the117

portfolio weights and groups assets depending on the same risk factors together. This118

grouping behavior then allows the investor to select individual constituents from the119

clusters, for example based on her preferences and asset-specific properties, enabling120

her to develop new investment strategies such as SLOPE-EW, which we introduce121

in Section 4.1.122

For the real world data analysis, we use monthly returns of the 10- and 30-Industry123

portfolios (Ind), as well as the 100 Fama French (FF) portfolios formed on Size and124

Book-to-Market, covering the period from 1970 to 2017. Furthermore, we consider125

daily returns of the S&P 500 (SP500) from 2004 to 2016. Our results show that the126

risk of the SLOPE portfolio is comparable to or smaller than the risk of the LASSO127

portfolio. Also, we observe that SLOPE outperforms the LASSO, yielding better128

risk- and weight diversification measures. In fact, the sorted ℓ1- Norm is able to span129

the entire risk-diversification frontier, starting from the GMV, via the GMV-LO up130

to the EW. The investor can then select the portfolio with the risk-diversification131

trade-off that best fits her preferences.132

The above mentioned characteristics establish SLOPE as a new attractive portfolio133

construction alternative, capable of controlling short sales and identifying groups of134

assets. It thereby offers the possibility to implement individual views, which goes135

beyond the standard statistical shrinkage or regularization approaches.136

The paper is structured as follows: Section 2 introduces our methodology and dis-137

cusses the properties of SLOPE. Section 3 analyses the behavior of SLOPE in simu-138

lated environments, while Section 4 focuses on the empirical results. Section 5 con-139

cludes.140
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2. Sparse Portfolio Selection via the Sorted ℓ1-Norm141

Given k jointly normally distributed asset returns R1, . . . , Rk, with expected value142

vector µ = [µ1, ..., µk]′ and covariance matrix Σ, a generalization to the Markowitz143

(1952) portfolio selection problem can be stated as the following optimization:144

min
w∈Rk

φ

2
w′Σw − µ′w, subject to

k∑

i=1

wi = 1 (1)

where σ2
p = w′Σw is the portfolio risk, µ′w is the portfolio return and φ > 0 is the145

coefficient of relative risk aversion (Markowitz, 1952; Fan et al., 2012; Li, 2015).146

Despite the advantage of being a quadratic optimization problem, the generalized147

Markowitz model is often criticized, as it leads to extreme and unstable optimal148

portfolio weights.149

One approach to circumvent instability and extreme estimates is to modify the opti-150

mization problem (1), by adding a penalty function, ρλ(w).5 In typical applications,151

the penalty is a non-decreasing function of w and leads to shrinking an estimate of152

the weight vector towards zero. The shrinkage stabilizes the weight estimates and, in153

case when ρλ(w) has a singularity at zero, promotes the sparsity by shrinking some154

coordinates of the estimated vector to 0. An additional parameter λ controls the155

impact of the penalty and thereby the amount of shrinkage applied to the weights156

vector and the level of sparsity. Additionally, the penalty function allows to take157

into account a prior knowledge of an investor, who can assign smaller penalty terms158

5Another stream of literature focusses on directly shrinking the moments of the distribution, as
opposed to adding a norm penalty on the weight vector to the model in (1). However, as have been
shown by DeMiguel et al. (2009a), adding a norm constraint on the weight vector to the portfolio
optimization is equal to shrinking the extreme estimates in the covariance matrix. For elaborations
on directly improving the inputs to the Markowitz optimization, the interested reader is referred
to Ledoit and Wolff (2003, 2004a), Jorion (1986) and references therein.
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to selected important assets. The optimization problem can be stated as:159

min
w∈Rk

φ

2
w′Σw − µ′w + ρλ(w) s.t.

k∑

i=1

wi = 1 (2)

The simplest approach is the LASSO, which considers as a penalty function the ℓ1-160

Norm of the asset weights vector (ρλ(w) = λ ×
∑k

i=1 |wi|, with λ being a scalar).161

The resulting optimization problem is still convex, while promoting model selection162

and estimation in a single step. From a financial perspective, LASSO is interpreted163

as a gross exposure constraint (i.e. a constraint on the total amount of shorting)164

or a way to account for transaction costs (Brodie et al., 2009). However, it is not165

effective in the presence of both a budget (
∑k

i=1 wi = 1), and a no-short selling (i.e.,166

wi ≥ 0) constraint, as the ℓ1-norm is then simply equal to 1.167

Following, we propose a more general approach that within a single optimization168

algorithm allows us to encompass the original LASSO, the OSCAR of Bondell and169

Reich (2008), and the combination of ℓ1 and ℓ∞ penalties, as proposed in Xing et al.170

(2014).171

In fact, we penalize the weights vector by considering as ρλ(w) the sorted ℓ1-Norm,172

defined as:173

ρλ(w) :=
k∑

i=1

λi|w|(i) = λ1|w|(1) + λ2|w|(2) + ... + λk|w|(k) (3)

s.t. λ1 ≥ λ2 ≥ . . . λk ≥ 0 and |w|(1) ≥ |w|(2) ≥ . . . |w|(k) ,

where |w|(i) denotes the ith largest element in absolute value of the vector w. The174

sorted ℓ1-Norm was originally introduced in Bogdan et al. (2013, 2015) to con-175

struct the Sorted ℓ1 Penalized Estimator for the selection of explanatory variables176
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in the multiple regression model. It was also developed independently by Zeng and177

Figueiredo (2014) as Ordered Weighted ℓ1 Norm (OWL). To our knowledge, this is178

the first work in financial portfolio selection that applies SLOPE and discusses its179

grouping properties, while also introducing a new optimization algorithm.180

2.1. Geometric Interpretation181

Compared to most of the other regularization methods, SLOPE does not rely182

on a single tuning parameter λ, but rather on a non-increasing sequence λSLOPE =183

(λ1, λ2, . . . , λk), with λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 0. This sequence is aligned to the sorted184

weight vector, such that the largest absolute weight is penalized with the largest185

tuning parameter. Consequently, the sequence of λ parameters gives a natural in-186

terpretation of importance to the asset weights, besides providing full flexibility in187

recapturing the profiles of the ℓ1- and ℓ∞- Norms, as well as of their linear combina-188

tions. Figure 1 shows a simple set-up with two assets and the respective shapes of189

spheres (i.e. the set points for which ρλ(w) = c) that we obtain, depending on how190

the sequence λSLOPE = (λ1, λ2) is chosen. As shown in Panel (a), if λ1 = λ2 > 0 the191

SLOPE sphere coincides with the well studied diamond shape of the LASSO penalty.192

Through its singularity at the origin, the LASSO promotes sparse solutions that set193

one of the two assets’ weights exactly equal to zero. On the other hand, choosing194

λ2 = 0 and λ1 > 0, yields the regularization term of the ℓ∞-Norm. The respective195

shape, as shown in Panel (b), takes the form of a square and promotes the grouping196

of variables, i.e. it encourages solutions under which both asset weights are assigned197

exactly the same value.198

Given these two extreme cases, Panel (c) of Figure 1 shows the octagonal shape of199

SLOPE, obtained by using a decreasing sequence of lambda values, with λ1 > λ2 > 0.200

By choosing different tuning parameter sequences, the penalty allows to approximate201
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a variety of norms between the ℓ1 and the ℓ∞, combining the properties of the Lasso202

and the ℓ∞ penalties and due to its singularity, is either able to set some weights203

exactly equal to zero, and/or to assign the same value to some of the other weights.204

Furthermore, it approximates the shape of the already well studied RIDGE penalty,205

which corresponds to a circle in the 2-dimensional set-up, and is even able to reach206

one of RIDGE’s special solutions, i.e. the equally weighted portfolio, which is ob-207

tained, when RIDGE’s penalty parameter approaches infinity. Although RIDGE208

is still convex, the shape of the penalty does not promote sparsity among the co-209

efficients, leading to undesirable portfolios with a large number of active positions210

(Carrasco and Noumon, 2012; DeMiguel et al., 2009a). Thus, the choice of the211

lambda sequence for SLOPE provides the investor with the flexibility to choose any212

of these shapes of the unit sphere and of the corresponding mode of shrinking the213

dimension of the weight vector.214

Figure 1: Geometric Representation of Penalty Functions

λ1 = λ2 > 0 λ1 > λ2 = 0 λ1 > λ2 > 0

w1

w2

w1

w2

w1

w2

(a) (b) (c)
For two asset weights w = [w1 w2]′, the figure shows the unit spheres for different SLOPE sequences: (a) the LASSO
ℓ1 sphere, when λ1 = λ2 > 0, (b) the ℓ∞ sphere, when λ1 > λ2 = 0 and (c) the SLOPE sphere, when λ1 > λ2 > 0.
The dashed lines in (c) represent the diamond shape of the LASSO and the RIDGE ℓ2-balls, respectively.

215

In portfolio optimization, a budget constraint that requires the weights of the port-216
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folio to sum to one, is imposed. Consequently, we discuss how the penalties behave217

in the presence of such an additional constraint. Figure 2 plots the SLOPE penalty,218

together with the LASSO and the RIDGE penalty for a universe of two assets and219

under the condition that w1 + w2 = 1. Furthermore, we consider the penalty func-220

tions in the presence of short sales (gray area) and no short sales (white area).221

In Figure 2, we can see that the LASSO (shown in black) is only effective when222

short sales are permitted, while the presence of the budget constraint makes it in-223

effective in the long-only area. In contrast, the RIDGE attains its minimum for an224

equally weighted portfolio, and when short sales are restricted. Similarly, the SLOPE225

penalty (shown in red) also reaches its minimum at the equally weighted solution226

(i.e., w1 = w2 = 0.5). Still, to control for monitoring and transaction costs of fi-227

nancial assets, we prefer SLOPE over the RIDGE estimator, because it can promote228

sparsity by exploiting the singularities.229

230

Figure 3 plots the contours of the objective function, together with those of the231

SLOPE spheres for the two asset case, and when we do not impose a budget con-232

straint (i.e.
∑k

i=1 wi = 1), as well as considering orthogonal and correlated designs.233

As noted before, if only λ2 > 0, SLOPE always has singular points when one of the234

asset weights is equal to zero, thereby promoting sparsity. When λ1 > λ2 > 0, that235

is, the sequence is monotonically decreasing, then SLOPE has additional singular236

points, which correspond to |w1| = |w2|. This is an appealing property in the pres-237

ence of correlated data. Specifically, as Panel (b) shows, strong correlation between238

assets lead to the same weights and thereby grouping. This is consistent with port-239

folio theory, as it is known that, if assets have all the same correlation coefficients,240

as well as identical means and variances, the EW is the unique optimal portfolio.241

SLOPE then allows us to automatically group assets with similar correlation.242
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Figure 2: Penalty Functions in a Two Asset Universe with Budget Constraint
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The figure plots the SLOPE coefficient alongside the LASSO (ℓ1 − Norm)
and the RIDGE penalty (ℓ2 − Norm), for a two asset case and under the
condition that w1 + w2 = 1.

243

For our simulation analysis and empirical investigations, SLOPE requires us to define244

a specific form of the sequence of λSLOPE = (λ1, λ2, . . . , λk). For that, we use the245

decreasing sequence of quantiles of the standard normal distribution, as in Bogdan246

et al. (2013) and Bogdan et al. (2015), with λi = αΦ−1(1 − qi), ∀i = 1, ..., k, where247

Φ is the cumulative distribution function of the standard normal distribution and248

qi = i × θ/2k, and in which θ = 0.01, regulates how fast the sequence of lambda249

parameters is decreasing. Bogdan et al. (2013) and Bogdan et al. (2015) have shown250

that in orthogonal design this sequence controls the False Discovery Rate in a multiple251

testing framework.6252

6We investigated different sequences of lambda parameters, including changing values of θ, as
well as a linear decreasing sequence and obtained qualitative similar results. Consequently, we
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Figure 3: Sorted ℓ1-Norm Penalty without Budget Constraint
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The figure plots in Panel (a) and (b), the Sorted ℓ1-Norm Penalty (SLOPE) in a 2-dimensional setting, considering
orthogonal design and correlated design, respectively.

2.2. Optimization Algorithm253

In this section, we describe our solution algorithm, which is based on equivalent254

reformulations of the Alternating Direction Method of Multipliers (ADMM) approach255

(see Appendix A for details).256

choose the exponentially decreasing sequence, as proposed by Bogdan et al. (2013) and Bogdan
et al. (2015). Still, future research on how to choose the sequence of lambda parameters is currently
high on our agenda.
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Algorithm 1 ADMM Algorithm

1: Input: Expected value vector µ ∈ Rk, covariance matrix Σ ∈ Rk×k.

2: Initialize w0 ∈ Rk, v0 ∈ Rk, α0 ∈ Rk, β0 ∈ R and j = 0.

3: Given a stopping threshold value τ > 0.

4: while G(wj,vj,αj, βj) > τ do

5: Update wj, vj, αj, and βj as follows,





wj+1 = arg min
w

Lη(w,vj;αj, βj) = (φΣ + η(I + ee′))−1(µ−αj − βje + η(vj + e))

vj+1 = arg min
v
Lη(w

j+1,v;αj, βj) = proxλ/η(w
j+1 + (1/η)αj)

αj+1 = αj + η(wj+1 − vj+1)

βj+1 = βj + η(e′wj+1 − 1) ,

(4)

6: j = j + 1

7: end while

In Algorithm 1, the quantity G(wj,vj,αj, βj) represents the primal-dual gap which257

converges to the zero value when the iterates wj,vj,αj, βj approaches the optimal258

quantities (see Appendix B for details). In the presence of the no-short selling con-259

straint, we consider a slightly different formulation to (2) with an extra constraint260

that w ≥ 0. In this case, we can use the Algorithm 1 almost as it is, except that the261

w update in (4) is modified as follows,262

wj+1 = arg min
w≥0 Lη(w,vj;αj, βj) = max {(φΣ + η(I + ee′))−1(µ−αj − βje + η(vj + e)), 0} ,

(5)

where the minimizer is obtained by adding a simple clipping operation, since Lη(w,vj;263

αj, βj) is a convex function in w.264

Our algorithm can also be used to solve the LASSO optimization problem, which265
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is a specific instance of SLOPE. In Appendix C, we provide a direct comparison of266

our algorithm to the state-of-art Cyclic Coordinate Descent (CyCoDe) for LASSO,267

considering a simulated constant correlation model.268

269

Bounds on the Objective Function. To solve the mean-variance problem, as270

stated in (2), the investor needs to provide an estimate of the true covariance matrix271

of asset returns Σ and of the true mean µ, which are in the most simplest form given272

by the sample covariance matrix Σ̂ and the sample mean µ̂, respectively. However, Σ̂273

and µ̂ might be prone to substantial estimation errors and highly sensitive to outliers.274

Let us define M(Σ,µ) = φ
2
w′Σw −w′µ, where w is the vector of weights returned275

by SLOPE. Now, observe that the Sorted ℓ1-Norm satisfies ρλ(w) ≥ λk||w||1. Thus,276

as λk > 0, we have ||w||1 ≤ c, with c = ρλ(w)
λk

, and simple calculations following the277

results of Fan et al. (2012) for LASSO, yield:278

|M(Σ̂, µ̂) −M(Σ,µ)| ≤
φ

2
||Σ̂−Σ||∞ρ2λ(w)/λ2

k + ||µ̂− µ||∞ρλ(w)/λk (6)

where ||Σ̂−Σ||∞ and ||µ̂−µ||∞ are the maximum component-wise estimation errors279

for the covariance matrix and the expected return.280

This result implies that the difference between the objective functions for the esti-281

mated and true vector of parameters decreases, as we restrict the Sorted ℓ1-Norm of282

the weight vector. It is also important to observe that, due to the budget constraint,283

a higher weight on the penalty sets an upper bound on the total amount of short284

sales in the portfolio, as ρλ(w) ≥ λk||w||1 = λk(w++w−), with w+−w− = 1, where285

w+ =
∑
wi≥0

wi and w− =
∑
wi<0

wi are the gross amount of long and short positions,286

respectively.287
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3. Simulation Analysis288

This section investigates the effect of SLOPE on the model risk, the sparsity and289

the grouping properties, by considering simulated data. The purpose of the simula-290

tions is to investigate the properties of our new penalty, when the data generating291

mechanism is completely known, so that the results can be compared to the so-called292

oracle solution. Furthermore, and as is it widely acknowledged that the estimation293

errors in µ are much larger than in Σ, we focus on a risk minimization framework.294

Assuming Σ to be known, we can use the alternative formulation of SLOPE and295

define:296

wopt = arg min
w:

∑
k

i=1 wi=1, ρλ(w)≤c

w′Σw and ŵopt = arg min
w:

∑
k

i=1 wi=1, ρλ(w)≤c

w′Σ̂w (7)

whereas wopt and ŵopt are the theoretical optimal and the empirical optimal weights297

vector, respectively. We then define the empirical portfolio risk as R̂isk(ŵopt) =298

ŵ′
optΣ̂ŵopt, the actual portfolio risk as Risk(ŵopt) = ŵ′

optΣŵopt and the oracle299

portfolio risk as Risk(wopt) = w′
optΣwopt, respectively. Following the proof of Theo-300

rem 1 of Fan et al. (2012), we can easily show that when λk > 0, the pair differences301

between the three measures are upper bounded by:302

|Risk(ŵopt) −Risk(wopt)| ≤ 2c2||Σ̂−Σ||∞, (8)

|Risk(ŵopt) − R̂isk(ŵopt)| ≤ c2||Σ̂−Σ||∞, (9)

|Risk(wopt) − R̂isk(ŵopt)| ≤ c2||Σ̂−Σ||∞ (10)

The three risk measures then allow us to extract different information: The empirical303

risk is the only one that is known, as it is estimated from our in-sample data. The304

actual risk is the one, to which the investor is truly exposed to, when using the305
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estimated optimal weights (ŵopt). Finally, the oracle risk is the risk the investor306

could only obtain, if Σ is known. As the SLOPE penalty becomes more binding,307

when λ ”increases”, the three risk measures align. In the following section, we308

investigate how increasing the SLOPE penalty allows to reduce the estimation error309

and to avoid its accumulation in the portfolio risk.310

Assume that the return of an asset is represented by a linear combination of r risk311

factors. Furthermore, let t be the number of observations, k be the number of assets,312

and F t×r = [f 1 f 2 ... f r], where f i is the t × 1 vector of returns of the ith risk313

factor. Moreover, let Br×k be the loading matrix for the individual risk factors.314

Then, the t × k matrix of asset returns from the Hidden Factor Model (i.e. RHF )315

can be represented as:316

RHF = F ×B + ǫ (11)

where ǫ is a t× k matrix of error terms.317

For our first illustration of the performance of SLOPE, we generate the data using318

the following simplified scenario:319

• t = 50, k = 12, r = 3,320

• the risk factors f1, . . . , f3 are independent from the multivariate standard321

normal N(0, Ir×r) distribution, with Ir×r being an identity matrix,322

• the vectors of error terms ǫi, i = 1, . . . , k, for each asset are independent323

from each other, as well as from each of the risk factors and come from the324

multivariate normal distribution N(0, 0.05 × Ir×r)325

• the loadings matrix Br×k is made of exactly four copies of each of the following326
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columns: [0.77 0.64 0]′, [0.9 0 − 0.42]′ and [0 0.31 0.64]′.327

In this way, we generate three different groups that have the same exposure to the328

same two risk factors and are thus strongly correlated.7329

Finally, given (11), the covariance matrix of the assets ΣHF is given by:330

ΣHF = B′B + 0.05 × Ik×k. (12)

After generating our t×k matrix RHF of asset returns from (11), we can then estimate331

ΣHF , using the sample covariance estimate Σ̂HF .8 Figure 4 shows the correlation332

matrix resulting from (12), illustrating that our simulation scenario explicitly models333

a block correlation environment, with strong correlation among each of the assets334

having the same underlying risk factor exposures, and low to negative correlations335

between the assets with a different underlying factor structure. Following, we inves-336

tigate the behavior of SLOPE and the LASSO with respect to portfolio risk, and337

when we increase the value of the tuning parameter.338

Unlike the LASSO, SLOPE requires us to define a decreasing sequence of λSLOPE =339

(λ1, λ2, . . . , λk). As pointed out in Section 2.1, we use the decreasing sequence of340

quantiles of the standard normal distribution, as in Bogdan et al. (2013) and Bog-341

dan et al. (2015), with λi = αΦ−1(1 − qi), ∀i = 1, ..., k, where Φ is the cumulative342

distribution function of the standard normal distribution and qi = i × θ/2k, and in343

which θ = 0.01, regulates how fast the sequence of lambda parameters is decreasing.344

7For the robustness of our results, we tested SLOPE in various set-ups, with qualitatively similar
results. Due to space limitations, we report only the most interesting one. The results of the
remaining simulations are available from the authors upon request.

8We explicitly restrict us to use the sample covariance estimate, as opposed to an alternative
shrinkage or factor based estimate, to investigate SLOPE’s ability to account for estimation errors
in the optimization.
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Figure 4: Hidden Factors Correlation Matrix
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The figure plots the correlation matrix, based on the mod-
eled Hidden Factor Structure, considering a universe of 12
assets, of which 4 are always exposed to exactly two out of
the three risk factors in the market.

In our simulations, we vary the scaling parameter α so that the first element of the345

sequence λ1 = αΦ−1(1− q1) is equal to a grid of 100 log-spaced values between 10−5
346

and 102. Note that in the case of the LASSO, we only choose one lambda param-347

eter, which then remains constant for all assets. Throughout the paper, we always348

choose λLASSO = λ1. This choice favors sparser solutions for the LASSO, since for349

the remaining k − 1 assets its penalty is larger than that of SLOPE.350

Figure 5 plots the resulting risk and weight profile for the minimum variance opti-351

mization, when we solve (2) separately with the LASSO and the SLOPE penalties for352

the grid of 100 lambda parameters, and considering ΣHF and the sample covariance353

estimate Σ̂HF , respectively. In particular, Panels (a) and (b) show the risk profile of354

the LASSO and SLOPE, i.e. the actual, the oracle, and the empirical risk, together355

with the results of the GMV, the GMV-LO and the EW portfolios. For both, the356

oracle and the actual solution, Panels (c) and (d) display on top the number of active357

weights together with the number of groups, that is the number of distinct coeffi-358
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Figure 5: Hidden Factors Minimum-Variance Profile
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The figure shows the Hidden Factor minimum-variance risk profile for the LASSO and the SLOPE, including in Panel
(a) and (b) their actual, empirical and oracle risk profiles, together with that of the GMV, the GMV-LO and the EW
solutions. Furthermore, Panel (c) and (d) display the number of active weights, together with the grouping profile
(top) and the total amount of shorting (bottom). All values are computed based on a Hidden Factor Structure, with
three risk factors and considering for the exponentially decreasing sequence of lambda parameters, a grid of 100 log
spaced starting points for λ1 from 10−5 (i.e. x-value = 1) to 102 (i.e. x-value = 100).

cients, while on the bottom, it shows the amount of shorting (i.e. w−). The grey359

surface indicates the no-short-sale-area (i.e. wi ≥ 0 ∀ i = 1, .., k). Figure 5 shows360

that for a tuning parameter equal to zero, which corresponds to the GMV solution,361

the empirical risk is about 1.3 times lower than the actual risk (Panels (a) and (b)),362
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with 12 active positions (Panel (c)) and slightly under 100% short sales (Panel (d)).363

This can be interpreted as evidence that in over-fitted models the estimation error in364

Σ̂HF strongly affects the estimation of the asset weights. As here neither the LASSO365

nor the SLOPE penalty are binding, estimation errors can enter unhindered into the366

optimization. Michaud (1989) describes this phenomenon as “error maximization”,367

in which the ill-conditioned covariance estimates are amplified through the optimiza-368

tion, leading to extreme long and short portfolio weights. Moving along the grid of λ369

parameters from the left to the right, Panels (c) and (d) show that the two penalties370

reduce the total amount of shorting in the oracle and the actual portfolio.371

As we move from the GMV towards the GMV-LO, the actual, oracle, and empirical372

risk of the LASSO and the SLOPE align. This effect was first observed and theo-373

retically motivated by Fan et al. (2012), showing that the portfolio risk evolves in374

a U-shape, in which risk first decreases before increasing again, due to the restric-375

tion of short sales. With the observations above, we extend the results of Fan et al.376

(2012), showing that the U-shaped behavior of the portfolio risk is not the only pos-377

sible one. Especially when the dependence among the assets is positive, the tighter378

constraint in terms of short sales shrinks the optimization search space of feasible379

solutions, making it impossible to exploit the optimal diversification benefits. This380

leads to a higher portfolio risk when reaching the GMV-LO. The investor also reaches381

the maximum sparsity, that is the maximum number of coefficients equal to zero, at382

this point. For the LASSO, increasing the tuning parameter beyond this point does383

not alter the allocation any further, as the regularization penalty is constant and384

equal to 1.385

This is different for SLOPE: in fact, Figure 6 shows the evolution of the portfolio386

weights for both the oracle and the actual solution, considering both the LASSO and387

the SLOPE penalty. As before, the grey surface indicates the no-short-sale-area.388
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From Figure 6, we can observe two important characteristics of SLOPE: First,

Figure 6: Hidden Factors Minimum-Variance Weight Profiles
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The figure shows the weight profile of the oracle (top) and actual (bottom) solution of the LASSO and the SLOPE
penalty, considering a minimum variance setup. All values are computed based on a Hidden Factor Structure, with
three risk factors and considering for the exponentially decreasing sequence of lambda parameters, a grid of 100 log
spaced starting points for λ1 from 10−5 (i.e. x-value = 1) to 102 (i.e. x-value = 100). Equally colored weights
characterize assets with the same underlying factor exposure.

389

while the LASSO shrinks the weights up until the no short sale area, all non-zero390

coefficients still receive a different weight, independent of their underlying factor ex-391

posures. SLOPE, on the other hand, is able to identify the three distinct types of392

securities, consistent with the true model, and groups them together, by assigning393

the same coefficient values to them. This provides information about the dependence394

structure among the assets, and gives the investor the flexibility to select from the395

groups the assets, which best fit her individual preferences. Not surprisingly, the396

oracle risk starts to form groups among the securities even before entering into the397

no short sale area, while the actual weights can only capture the underlying structure398

much later, and when we already impose a larger tuning parameter value. Second,399

and different to the LASSO, increasing the lambda parameters past the point of400

the GMV-LO, the octagonal shape of the penalty pushes the solution towards the401
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equally weighted portfolio. That is, the aforementioned grouping effect increases,402

and all weights - even those that were shrunken towards zero - are assigned the403

same coefficient value of 1
k
. Given that the equally weighted portfolio is only optimal404

when all assets have the same risk and return characteristics, in our example, this405

allocation results in higher portfolio risk when compared to the GMV-LO or GMV406

portfolios.407

Summing up, SLOPEs properties allows investors to set up sophisticated asset alloca-408

tion strategies, exploiting its grouping property, like SLOPE-EW, which we introduce409

in Section 4.410

4. Empirical Analysis411

4.1. Set up and Data412

This section studies the out-of-sample performance of the SLOPE procedure in413

a minimum variance framework (see i.e. Jagannathan and Ma (2003); Brodie et al.414

(2009); DeMiguel et al. (2009a); Giuzio and Paterlini (2016)) and compare it with415

state-of-the-art portfolio selection methods, such as the EW, the GMV, the GMV-416

LO, the equal risk contribution (ERC), the RIDGE and the LASSO portfolio. Fur-417

thermore, we examine two extensions to our standard SLOPE procedure: (1) SLOPE418

with an added long-only constraint (SLOPE-LO) and (2) a portfolio in which we uti-419

lize SLOPE-LO’s selection and grouping ability (SLOPE-EW). For the latter, the420

portfolio is initialized in t = 1, keeping for each data set only the first G groups with421

the largest estimated parameter values active, while setting the remaining weights422

equal to zero. Afterwards, the portfolio is re-scaled, such that the weights sum again423

to one. At each subsequent t, we then rebalance the portfolio, if there is a statistically424

significant difference in the covariance matrices, at α = 0.1, to the last re-balance425
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date.9426

In the following analysis, we consider four data sets, including the monthly log-return427

observations for the 10- and 30 Industry Portfolios (Ind), the 100 Fama French (FF)428

portfolios, formed on Size and Book-to-Market, as well as the daily returns of the429

SP500. The monthly portfolio values are taken from Kenneth French’s Homepage10430

and span the period from January 1970 to January 2017 (T = 565 monthly obser-431

vations). The daily return data are obtained from Datastream, covering the period432

from 31.12.2004 to 31.01.2016 (T = 2890 daily observations). Table 1 reports the433

descriptive statistics. As shown by the skewness and the kurtosis values, all of them434

exhibit the typical return time series characteristics, including fat tails and slight435

asymmetry.436

Table 1: Descriptive Statistics of the Dataset

Dataset T k µ̂ σ̂ m̂ed m̂in m̂ax ŝkew k̂urt period freq.

10Ind 565 10 0.099 0.043 0.012 -0.211 0.156 -0.476 5.077 01/1970 - 01/2017 Monthly
30Ind 565 30 0.010 0.048 0.012 -0.255 0.179 -0.507 5.749 01/1970 - 01/2017 Monthly
100FF 565 100 0.011 0.052 0.015 -0.262 0.241 -0.551 5.600 01/1970 - 01/2017 Monthly
SP500 2890 443 0.000 0.014 0.000 -0.107 0.109 -0.418 13.234 12/2004 - 01/2016 Daily

The table reports descriptive summary statistics for the 10 Industry Portfolios, the 30 Industry Portfolios, the 100
Fama French Portfolios and the S&P 500, respectively. Reported are for the daily (monthly) data: the number of

observations (T ), the number of constituents(k), the mean (µ̂), the standard deviation (σ̂), the median (m̂ed), the

minimum (m̂in), the maximum (m̂ax), the skewness (ŝkew), the kurtosis (k̂urt), the period that the data set covers
(period) and the frequency (freq.).

437

To evaluate the portfolios in an out-of-sampling setting, we rely on a rolling window438

approach with a window size of τ = 120 monthly observations for the 10Ind, the439

9We use the MBox test (see e.g. Stevens (1992)) to test, if there is a significant difference in
the covariance matrices. Furthermore, we perform robustness tests for α = 0.01, 0.05, which are
available from the authors upon request.

10http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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30Ind, and the 100FF, as well as τ = 500 daily observations for the SP500.11 All440

portfolios are re-balanced monthly, discarding the oldest and including the most441

recent observations, allowing for a total of t = 445 (t = 115) out-of-sample returns442

for the monthly (daily) data.443

The rolling window approach for the daily data works as follows: the first τ return444

observations are used to estimate Σ̂t, according to the shrinkage approach by Ledoit445

and Wolff (2004b). Then, Σ̂ is used as the input to compute the optimal weight446

vector ŵt. The resulting portfolio is assumed to be held for the following 21 days.447

At t + 1, the k constituents’ returns over this monthly period, Rt+1, are used to448

compute the out-of-sample portfolio return as: Rp,t+1 = ŵtRt+1. In the next step,449

we roll the data window forward, dropping the last and adding the most recent450

21 observations to our training set. We then estimate a new weight vector, which451

determines our portfolio holdings and the out-of-sample return for the next month.452

This process is repeated until the end of the data set is reached. The same procedure453

is applied to the Industry and Fama French portfolios, though the window is rolled454

forward by one monthly observation instead of 21 daily observations.455

Finally, and given that each data set consists of a different number of assets, we keep456

for our trading strategy, SLOPE-EW, and depending on the respective data set the457

following first G groups active: 10Ind - the first 4 groups; 30Ind - the first 2 groups;458

100Ind - the first 5 groups; SP500 - the first 5 groups.12459

11To test the robustness of our results, we account for different window sizes of τ = 250, 750
and 1000 daily observations, and make the results available upon request. The obtained results are
qualitative similar.

12Note: The stated number of active groups G for each data set are selected, such that we always
obtain the portfolios with the lowest out-of-sample variance, given α = 0.1 and when compared
to portfolios that would include more or less groups, respectively. Results for different number of
included groups G, as well as different significance levels, i.e. α = 0.05 or 0.01, are available from
the author upon request.
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For all portfolios, the optimal weights vector, ŵt, depends on the choice of the op-460

timal λ parameter value. To select the optimal tuning parameter, we consider a461

grid of 100 log-spaced values of λ between 10−7.5 and 101, from which we choose462

λRIDGE = λLASSO = λ1 = αΦ−1
(
1 − 0.01

2k

)
. The remaining elements i = 2, ..., k of463

the λ sequence for SLOPE are as before, equal to λi = αΦ−1
(
1 − 0.01i

2k

)
.464

Among the 100 lambda values, we select the optimal tuning parameter for the465

RIDGE, the LASSO and the SLOPE, such that we obtain a portfolio with approx-466

imately 10% of the GMV’s short positions. Note that for SLOPE, as we increase467

the tuning parameter, beyond the GMV-LO solution, we would move along the no-468

short sale area towards the EW portfolio (see Figure 5). Therefore, we also compute469

SLOPE-LO to explicitly exploit the grouping feature that predominates in the long-470

only area, and select the lambda value, which provides us with a portfolio that has471

the largest number of groups. To guarantee that all our portfolios can also be imple-472

mented in practice, all weights that are smaller in absolute value than the threshold473

of 0.05% are set to zero. Furthermore, we incorporate a transaction cost (TC) regime474

of TC = 10bps13, whereas the costs are proportional to the turnover and considered475

to be the same for selling and buying securities.14476

Given the optimal portfolio vector ŵt at time t, we compute the out-of-sample mean477

131 bps = 0.01% = 0.0001
14For the robustness of our results, we also consider regimes of no (TC = 0bps) and high trans-

action costs (TC = 50bps). They show that naturally, high turnover strategies like the GMV suffer
with regard to returns and the SR in the higher cost regimes. On the other hand, SLOPE portfolios
show a nearly steady performance for all data sets and when considering the different TC regimes.
All results are available upon request from the authors.
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and the out-of-sample standard deviation, defined as:478

µ̂p =
1

t

t∑

i=1

ŵtRt+1 (13)

σ̂p =

√√√√ 1

t− 1

t∑

i=1

(ŵtRt+1 − µ̂p)2 (14)

from which we construct the out-of-sample Sharpe Ratio (SR) as:479

ŜR =
µ̂p

σ̂p

(15)

To evaluate whether the ŜR and σ̂2
p of any portfolio is statistically different from our480

SLOPE procedure, we use the tests developed by Ledoit and Wolf (2008) and Ledoit481

and Wolf (2011), respectively.482

As frequent re-balancing of a portfolio is costly, we complement our analysis by483

computing the turnover of each portfolio, defined as:484

T̂O =
1

t

t∑

i=1

||ŵt+1 − ŵ+
t ||1, (16)

whereas ŵ+
t is the weight vector right before rebalancing at t + 1 and considering485

the changes in the assets prices. Consequently, the TO for the EW can be non-zero,486

as ŵ+
t 6= ŵt+1 = 1/k (DeMiguel et al., 2009a).487

Furthermore, we include the following diversification measures: the Diversification488

Ratio (DR), the weight (WDiv) and the risk diversification (RDiv) measures. The489

DR is defined as the ratio of the weighted asset volatility to the overall portfolio490
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volatility:491

D̂R =

∑k
i=1 ŵiσ̂i

σ̂p

, (17)

where σ̂i is the i-th asset’s estimated volatility, σ̂p is the estimated portfolio volatility,492

for which the investor typically prefers a higher value (Choueifaty and Coignard,493

2008).494

Finally, both the WDiv and RDiv measure the concentration of the portfolio in terms495

of weights and risk (Maillard et al., 2010; Roncalli, 2013). The WDiv ranges from 1
k

496

for a perfectly concentrated portfolio up to 1 for the equally weighted portfolio. It497

is computed according to:498

ŴDiv =
1

k ×
∑k

i=1 ŵ
2
i

(18)

On the other hand, we obtain the RDiv by substituting the weights for the risk499

contribution, defined as R̂C i = ŵi × ∂wi
σ(ŵi), where ∂wi

σ(ŵi), defines the marginal500

contribution to risk (MRC) of asset i, that is the first derivative of the portfolio501

variance with respect to portfolio weight wi. The MRC measures the sensitivity of502

the portfolio variance, given a change in the i-th asset. The RDiv takes a value of 1 for503

the equally-weighted risk contributions (ERC) portfolio, which is least concentrated504

in terms of risk contributions and 1
k

for a portfolio which is fully concentrated on one505

asset:506

R̂Div =
1

k ×
∑k

i=1 R̂C
2

i

(19)
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Summing up, we prefer values close to one for the WDiv and the RDiv (Cazalet507

et al., 2014).508

4.2. Empirical Results509

Table 2 reports the annualized out-of-sample volatility, the annualized out-of-510

sample SR, the number of active positions, and the turnover for the 10Ind, 30Ind, the511

100FF, and the SP500, using a window size of τ = 120 (τ = 500) observations with512

monthly re-balancing and TC = 10bps. We indicate portfolios that are statistically513

different from our SLOPE procedure at the 10%, 5% and 1% level, given the test514

for the difference in the SR and the volatility, following Ledoit and Wolf (2008)515

and Ledoit and Wolf (2011).516

Table 2: Risk- and Return Measures

Vol. (in %) Sharpe Ratio AP Turnover

10Ind 30Ind 100FF SP500 10Ind 30Ind 100FF SP500 10Ind 30Ind 100FF SP500 10Ind 30Ind 100FF SP500

EW 14.491 16.257 17.509 20.238 0.776∗∗ 0.656∗∗∗ 0.677∗∗∗ 0.205 10.000 30.000 100.000 443.000 0.049 0.057 0.056 0.077
GMV 10.910 9.152 6.058 11.497 1.102∗ 1.283∗∗∗ 3.124∗∗∗ 0.057∗∗ 9.982 29.885 99.469 434.377 0.125 0.273 0.852 2.748
GMV-LO 11.473 11.214 13.134 10.825 1.012 0.998∗∗∗ 0.954∗∗∗ 0.389 5.371 8.562 9.220 27.553 0.064 0.074 0.101 0.238
ERC 13.578 15.029 16.906 17.948 0.840∗ 0.730∗∗∗ 0.714∗∗∗ 0.233 10.000 30.000 100.000 443.000 0.048 0.054 0.055 0.076
RIDGE 11.907 12.241 13.219 11.393 0.978 0.955 1.069∗∗∗ 0.490 9.989 29.824 98.171 408.474 0.061 0.078 0.109 0.212
LASSO 11.364 10.781 10.853 9.505 1.028 1.046 1.421∗∗∗ 0.572 6.755 12.301 18.371 130.211 0.079 0.104 0.184 0.434
SLOPE 11.352 10.822 10.977 9.643 1.024 1.047 1.382 0.534 7.027 13.231 22.598 145.552 0.078 0.101 0.172 0.409
SLOPE - LO 11.689 11.865 13.709 11.981 0.950∗∗ 0.946∗∗ 0.917∗∗∗ 0.344 7.299 18.465 34.616 129.632 0.119 0.217 0.409 0.590
SLOPE - EW 12.539 12.904 14.390 11.017 0.908∗∗ 0.929∗ 0.858∗∗∗ 0.645 6.330 6.128 17.022 76.386 0.052 0.055 0.057 0.284

The table reports the out-of-sample Risk and Return Measures for the 10-, 30-, and 100-Portfolios (SP500), con-
sidering a windowsize of τ = 120 monthly (τ = 500 daily) observations and re-balancing the portfolio every month
over the period from 01/1970 to 01/2017 (from 12/2004 to 01/2016). Furthermore, we consider a transaction cost
of 10bps, which is proportional to the turnover and is assumed to be the same for selling and buying securities.
Reported are: The annualized out-of-sample volatility, the annualized out-of-sample Sharpe Ratio, the number of
active positions (AP), and the average total turnover. Furthermore, we report the significance for the test of the
difference in the volatility and the SRs with regard to SLOPE, at the 10%, 5% and 1% level with ∗, ∗∗ and ∗∗∗,
respectively.

517

Looking at the values for the out-of-sample volatility in Table 2, we observe that no518

portfolio is statistically different from our new SLOPE procedure, across any of the519

data sets. Still, SLOPE yields consistently lower variance than any of the EW, ERC,520
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RIDGE or GMV-LO portfolios. Furthermore, for the SP500, SLOPE and LASSO521

perform best, reporting the smallest variance among all strategies. Especially for522

the SP500, the number of observations in the window size is only marginally bigger523

than the size of our investment universe, the estimated covariance matrix is degen-524

erated and our estimates are very prone to estimation error. Therefore, and even525

using the shrunken covariance matrix, SLOPE and LASSO are still able to reduce526

extreme weight estimates. Simultaneously, we explicitly select for the LASSO and527

the SLOPE, a portfolio with a moderate amount of short sales, making it possible528

to still exploit diversification benefits. Hence, the resulting allocation has a smaller529

variance, as compared to the GMV-LO.530

Furthermore, the values for the out-of-sample SR, establish SLOPE among the best531

performing portfolios, across all datasets, with some results being statistically sig-532

nificant. For example, SLOPE is able to statistically significantly outperform the533

EW, challenging its widely reported characteristic of a tough benchmark to beat534

(DeMiguel et al., 2009b).535

Beside reducing the overall portfolio variance, our goal is to construct sparse port-536

folios with a low turnover. For that, reconsider that the EW always invests naively537

in all constituents and thus has the highest possible number of active positions.538

Similar values are obtained for the ERC, which aims at equalizing the risk contribu-539

tion of each asset to the overall portfolio risk. The GMV, as being highly sensitive540

to even small changes in the underlying data structure, typically resulting in ex-541

treme positions (see i.e. Michaud (1989)), has the highest turnover values among542

the non-regularization strategies. The RIDGE, on the other hand, results in more543

stable asset allocations, despite not setting any asset weight exactly equal to zero.544

Although both strategies should invest in all assets, the reported number of active545

positions are slightly reduced, due to our imposed threshold of 5%.546
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Compared to the strategies above, our new SLOPE procedure is able to promote547

sparse solutions and to reduce the overall portfolio turnover, consistently reporting548

lower turnover values than the LASSO.549

Of special interest is also the performance of SLOPE-EW. In general, our new SLOPE550

procedure provides the investor with a large amount of flexibility, as with an increased551

lambda value the penalty starts to form groups among assets, assigning to them the552

same coefficient value. This is of special interest for investors, who want to move be-553

yond the property of statistical shrinkage, and who want to include in their portfolio554

construction process any form of financial indicator, like among others fundamen-555

tal multiples (i.e. Price/Earnings, Dividends/Earnings), accounting values (i.e., Net556

Income, Free Cash Flow) or other quantitative measures (i.e., Value-at-Risk or Ex-557

pected Shortfall). With SLOPE-EW, we construct a simple strategy that selects,558

out of the formed groups, those which carry assets that are the most important with559

regard to minimizing the overall portfolio variance. Still, other strategies could be560

easily developed.561

Table 2 shows that SLOPE-EW performs best in reducing the variance for large562

asset universes, i.e. for the SP500, even outperforming the initial SLOPE-LO port-563

folio. This result provides two insights: First, using SLOPE-EW, we can eliminate564

assets from the portfolio that rather increase the portfolio variance, as opposed to565

reducing it, and second, by eliminating the groups according to the weight mag-566

nitude, we might conclude that SLOPE assigns assets to the groups according to567

their importance in reducing the overall variance. Finally, SLOPE-EW ranks among568

the portfolios with the smallest number of active positions, and reports the lowest569

turnover value, across all sparse portfolio methods.570

571

Table 3 complements our risk and return analysis, reporting the DR, the WDiv, and572
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Table 3: Diversification Measures

DR WDiv RDiv

10Ind 30Ind 100FF SP500 10Ind 30Ind 100FF SP500 10Ind 30Ind 100FF SP500

EW 1.270 1.343 1.212 1.675 1.000 1.000 1.000 1.000 0.933 0.935 0.958 0.894
GMV 1.255 1.362 0.958 3.147 0.197 0.078 0.013 0.012 0.197 0.078 0.013 0.012
GMV-LO 1.289 1.414 1.299 1.944 0.320 0.150 0.062 0.032 0.320 0.150 0.062 0.032
ERC 1.300 1.382 1.225 1.728 0.935 0.914 0.963 0.880 1.000 1.000 1.000 1.000
RIDGE 1.330 1.457 1.256 1.920 0.540 0.430 0.262 0.248 0.577 0.440 0.188 0.120
LASSO 1.289 1.415 1.237 2.221 0.309 0.143 0.044 0.062 0.301 0.132 0.030 0.029
SLOPE 1.295 1.426 1.247 2.213 0.319 0.155 0.054 0.071 0.312 0.144 0.056 0.032
SLOPE - LO 1.315 1.457 1.295 1.936 0.417 0.287 0.209 0.206 0.437 0.319 0.221 0.219
SLOPE - EW 1.289 1.314 1.294 1.808 0.403 0.181 0.118 0.170 0.408 0.182 0.120 0.166

The table reports the diversification measures for the 10-, 30-, and 100- Portfolios (SP500 Portfolios), considering a
windowsize of τ = 120 monthly (τ = 500 daily) observations and re-balancing the portfolio every month over the
period from 01/1970 to 01/2017 (from 12/2004 to 01/2016). Reported are: The Diversification Ratio (DR), the
Weight Diversification (WDiv) and the Risk Diversification (RDiv) measures.

the RDiv. As the EW invests equally in all assets, it achieves, by definition, the best573

values for the WDiv, with similar values reported for the ERC. As the ERC aims to574

equalize the contribution to portfolio risk from each asset, it also reports the highest575

values for the RDiv. SLOPE-LO and SLOPE consistently outperform the LASSO576

across all datasets for the WDiv and the RDiv. Except for the SP500, this is also577

true for the DR, while a higher value for the LASSO only results due to the lower578

variance, as reported in Table 2. It should be pointed out that SLOPE does not only579

frequently outperform the LASSO, but also provides flexibility with regard to the580

diversification measures. For that, Figure 7 plots the weight- and risk diversification581

measure against the attainable portfolio volatility for the LASSO and the SLOPE,582

together with the other portfolio strategies and considering the first window size of583

τ = 120 observations for the 10Ind.584

For both frontiers, the full grid of lambda parameters for the LASSO enables the585

investor to select only a combination between the GMV and the GMV-LO solution.586

SLOPE, on the other hand, is able to span a much larger set of portfolios, beginning587
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Figure 7: Risk and Weight Diversification Frontier
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The figure shows on the left the weight diversification and on the right the risk diversification frontier, both reporting
on the x-axis the portfolio volatility and on the y-axis the risk and weight diversification measure, respectively.
Considered are the first window size of τ = 120 months for the 10Ind. Plotted are the resulting combinations for
the GMV, the GMV-LO, the EW, the ERC, as well as the different combinations for the LASSO and the SLOPE
procedure, considering a range of lambda values from 10−7.5 to 101.

from the GMV, via the GMV-LO up to the EW. The investor can thus control the588

trade-off between diversification and volatility out of a much larger set of portfolios,589

to find the allocation that best suits her individual preferences.590

591

5. Conclusion592

This paper extends the literature on financial regularization by introducing SLOPE593

to the Markowitz portfolio optimization, discussing its properties and testing its per-594

formance with regard to risk and return on simulated and real world data.595

SLOPE relies on a sorted ℓ1-Norm, whose intensity is controlled by a decreasing596

sequence of λ parameters and which penalizes the assets by their rank, provid-597

ing a natural interpretation of importance. To solve the penalized mean-variance598

optimization, we propose a novel algorithm based on the Alternating Direction599
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Method of Multipliers (ADMM). When applied to the LASSO, which is a specific600

case of SLOPE, this algorithm provides the same accuracy as the state-of-the-art601

CyCoDe, but is superior with regard to computing time, especially when the as-602

set universe is large.603

The simulated hidden risk factor analysis shows that SLOPE has the advantage of604

still being active in the no short sales area and given an imposed budget constraint.605

Furthermore, SLOPE can automatically identify assets with the same underlying risk606

factor exposure and group them together, by assigning the same coefficient value to607

them. This property is especially desirable for investor planning to incorporate their608

individual views into the optimization, by selecting assets from these groups accord-609

ing to a specific financial characteristic or individual preferences. We exploit such610

property by building a simple investment strategy, SLOPE-EW.611

Moreover, we investigate the performance of SLOPE for four major data sets to612

other state-of-art portfolio methods in an out-of-sample setting, considering a rolling613

window approach, and re-balancing the portfolio every month.614

Our results show that SLOPE is able to achieve equal and even better out-of-sample615

portfolio volatilities and SR, when compared to the LASSO. Although, only part of616

the differences are statistically significant, SLOPE is able to construct sparse portfo-617

lios with reduced turnover. This especially applies to situations with a large amount618

of estimation error, for example when considering the SP500. Furthermore, our619

SLOPE-EW portfolio results in very sparse portfolios with even lower turnover than620

state-of-the-art methods and at the same time maintains a comparable performance.621

Additionally, SLOPE reports improved values for the DR, the WDiv and the RDiv,622

while the shape of the penalty extends the frontier of attainable portfolios, ranging623

from the GMV via the GMV-LO, up to the EW portfolio. This enables the investor624

to select among them the one that provides her with the desired volatility- and di-625
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versification trade-off.626

The results establish SLOPE as a valid alternative to state-of-art methods by creating627

sparse portfolios with a reduced turnover rate, improved risk- and weight diversifi-628

cation, and a high degree of flexibility in the portfolio construction process.629

A natural extension to our study is to investigate, how different sequences of lambda630

parameters would impact the risk and portfolio allocation, and whether the investor631

should choose them according to the underlying correlation regime of the stock mar-632

ket or his own prior beliefs on the assets.633

Appendix A. Derivation of the ADMM Algorithm634

In order to facilitate the application of proximal operators involving ρλ, we first635

reformulate (2) - (3) into the following form:636

min
w∈Rk,v∈Rk

φ

2
w′Σw − µ′w + ρλ(v) s.t. w = v,

k∑

i=1

wi = 1 , (A.1)

where ρλ(w) :=
∑k

i=1 λi|w|(i) is the sorted ℓ1-Norm corresponding to the sequence637

λSLOPE = (λ1, . . . , λk)′ satisfying λ1 ≥ λ2 ≥ . . . λk ≥ 0. To solve (A.1), we design an638

ADMM (for details, see e.g. Boyd et al. (2011)) algorithm, which is based on using639

the augmented Lagrangian function of (A.1) and on partial updates for the primal640

variables. In our case the associated augmented Lagrangian is given as:641

Lη(w,v;α, β) =
φ

2
w′Σw − µ′w + ρλ(v) + α′(w − v) + β(e′w − 1)

+
η

2

{
‖w − v‖2 + (e′w − 1)2

}
,

(A.2)

where α ∈ Rk, β ∈ R, ek×1 = (1, ..., 1)′, Ik×k is the identity matrix, and η > 0 is642
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a penalty parameter. Compared to the Lagrangian L0 without the penalty term,643

the augmented Lagrangian Lη with η > 0 brings the benefit that the dual objective644

gη(α, β) := infw,v Lη(w,v;α, β) becomes differentiable without requiring further645

assumptions on the primal objective (e.g., strict convexity).646

The ADMM algorithm consists of the updates:647





wj+1 = arg min
w

Lη(w,vj;αj, βj) = (φΣ + η(I + ee′))−1(µ−αj − βje + η(vj + e))

vj+1 = arg min
v
Lη(w

j+1,v;αj, βj) = proxλ/η(w
j+1 + (1/η)αj)

αj+1 = αj + η(wj+1 − vj+1)

βj+1 = βj + η(e′wj+1 − 1) ,

(A.3)

where proxλ/η(z) := arg min
v

1
2
‖v − z‖22 + ρλ/η(v) is the proximal operator of the648

Sorted ℓ1-Norm, corresponding to the sequence λ/η, provided e.g. in Bogdan et al.649

(2013, 2015). The updates regarding α and β are due to the gradient ascent applied to650

the dual objective gη(α, β) := infw,v Lη(w,v;α, β), where ∇αgη(α, β) = wj+1−vj+1
651

and ∇βgη(α, β) = e′wj+1 − 1. The first iterates w0, v0, α0, β0 of the procedure (4)652

are typically initialized as the zero vectors.653

Appendix B. Primal-Dual Gap654

The stopping criterion for our algorithm is based on the Primal-Dual Gap, which we655

estimate as follows. First, taking the infimum over (w,v) of the Lagrangian, we get656

the dual objective,657

g(α, β) = inf
w

φ

2
w′Σw − (µ−α− βe)′w − β − ρ∗

λ
(α). (B.1)
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From the optimality condition for the infimum over w, we have658

w∗ = φ−1Σ−1(µ−α− βe). (B.2)

Also,659

ρ∗
λ
(α) = sup

v

{αTv − ρλ(v)} =

{
0 if α ∈ Cλ

+∞ o.w.
(B.3)

where Cλ := {v : Rk : ρD
λ

(v) ≤ 1} is the unit sphere defined in the dual norm ρD
λ

(·)660

of ρλ(·). Plugging-in these, we get the dual problem661

max
α,β

−
1

2φ
(µ−α− βe)′Σ−1(µ−α− βe) − β s.t. α ∈ Cλ. (B.4)

Then we can estimate the primal-dual gap as follows using (B.2),662

G(w∗,v∗,α∗, β∗) =
1

2
φ(w∗)Σw∗ − µ′w∗ + ρλ(w∗) +

1

2φ
(µ−α∗ − β∗e)′Σ−1(µ−α∗ − β∗e) + β∗

= −(α∗ + β∗e)′w∗ + β∗ + ρλ(v∗)

(B.5)

given the dual feasibility of α∗, i.e., ρD
λ

(α∗) ≤ 1. Here, w∗, v∗, α∗, β∗ can be663

generated from the procedure (4), and, due to strong duality, the duality gap becomes664

zero when these iterates are optimal to the problem (A.1). Therefore we can stop our665

algorithms when the duality gap of the current iterates becomes sufficiently small.666

Appendix C. ADMM vs. Cyclic Coordinate Descend667

In this section, we use the ADMM algorithm to solve the minimum-variance opti-668

mization with an ℓ1 Norm (which is a specific instance of our new SLOPE penalty)669
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and compare its performance to the the Cyclic Coordinate Descend algorithm (Cy-670

CoDe).671

The CyCoDe algorithm is considered state-of-art and has found various applications672

in solving norm constrained optimization problems (see i.e. Fastrich et al. (2014),673

Yen (2015)). The algorithm works by optimizing the weights along one coordinate674

direction, while holding all other weights constant. Although there is no general675

rule on how the CyCoDe updates the weight vector, we follow the procedure of Yen676

(2015) and update the weights cyclical, that is we first fix wi, i = 2, ..., k and find a677

new solution for w1 that is closer to its optimal solution w∗. In a next step, we fix678

wi, i = 1, 3, ..., k and find a value for w2 that is again closer to the optimal one w∗.679

Given a starting criteria w0 for the weight vector, the Lagrange parameter, γ, for680

the budget constraint and a trade-off parameter, θ, for µ and σ2, Algorithm 2 shows681

the pseudo code for the CyCoDe.682

Algorithm 2 Cyclic Coordinate Descend

1: Initialize w0 and j = 0

2: while convergence criteria is not met do

3: for i = 1 to k do

4: wi = ST (γ − zi, λ) × (2 × σ2
i )−1

5: where ST is the soft-thresholding function and zi = 2
∑k

j 6=i wjσij − θµi

6: end for

7: j = j + 1

8: end while

To evaluate the performance of the two algorithms, we first draw a random sample683
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of size n for k assets from a multivariate normal X ∼ MVN(0,Σ), where Σ:684

Σij =

{
1, i = j,

ρ, i 6= j,
(C.1)

and for which we choose ρ = 0.2 and 0.8, respectively. Then, we solve the minimum685

variance problem given in (2) and subject to the ℓ1- Norm on the weight vector,686

using as an input for Σ the shrunken covariance matrix, introduced by Ledoit and687

Wolff (2004b).688

We initialize both algorithms with a soft starting point w0, that is (1) w0
i = 1

k
∀ i =689

1, ..., k, and (2) w0
i = ai∑

k

i=1 ai
,with ai ∼ U(0, 1) ∀ i = 1, ..., k, and repeat the above690

procedure 100 times, using for both algorithms a tolerance stopping point of 10−7.691

All computations are performed in Matlab 2016a on a Lenovo T430, with Windows692

7, an Intel i7-3520M with 2.90 GHZ and 8 GB of RAM.693

Table C.4 and C.5 display the minimum and the median of the objective function694

values, together with the median amount of shorting, the median time in seconds695

used for each algorithm to solve the 100 simulations and the median absolute weight696

difference15, considering as soft starting criteria an equally weighted and a random697

portfolio weight vector, respectively.16698

The tables show that both algorithms reach the same global minimum and median699

objective function value and the same amount of shorting for the low correlation700

environment, regardless of the chosen lambda value and whether we consider the701

15The difference in the weights is computed as:
∑

|wADMM − wCyCoDe|, where wADMM and
wCyCoDe are the optimal weights obtained with the ADMM and the CyCoDe algorithm, respec-
tively.

16Due to space limitations, we have restricted ourselves to report the above mentioned measures.
Further results, including the standard deviation of the objective function value and the median
number of active positions are available upon request to the authors.
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Table C.4: Simulation Results - Equal Weights

λ = 4.03 × 10−6 λ = 5.65 × 10−4 λ = 7.91 × 10−2

ρ n p Algo Min Med Short Time W.Diff. Min Med Short Time W.Diff. Min Med Short Time W.Diff.

0.2

500 100
CyCoDe 0.14 0.16 0.51 0.66

5 × 10−7 0.14 0.16 0.49 0.62
5 × 10−7 0.23 0.25 0.00 0.18

7 × 10−8

ADMM 0.14 0.16 0.51 0.01 0.14 0.16 0.49 0.01 0.23 0.25 0.00 0.01

500 250
CyCoDe 0.09 0.11 2.13 13.63

8 × 10−6 0.09 0.11 2.02 12.87
6 × 10−6 0.21 0.24 0.00 0.94

8 × 10−8

ADMM 0.09 0.11 2.13 0.09 0.09 0.11 2.02 0.09 0.21 0.24 0.00 0.03

1000 500 CyCoDe 0.09 0.10 3.46 117.69 3 × 10−5 0.09 0.11 3.23 116.29 2 × 10−5 0.22 0.24 0.00 5.58 1 × 10−7

ADMM 0.09 0.10 3.46 0.66 0.09 0.11 3.23 0.64 0.22 0.24 0.00 0.17

0.8

500 100 CyCoDe 0.55 0.64 3.39 11.67 2 × 10−3 0.55 0.65 3.30 11.23 2 × 10−3 0.73 0.83 0.00 1.37 8 × 10−7

ADMM 0.55 0.64 3.39 0.06 0.55 0.65 3.30 0.05 0.73 0.83 0.00 0.03

500 250
CyCoDe 0.34 0.42 10.98 35.33

8 × 10−1 0.35 0.43 10.46 34.75
8 × 10−1 0.67 0.82 0.00 6.03

1 × 10−6

ADMM 0.34 0.42 10.94 0.58 0.35 0.43 10.47 0.56 0.67 0.82 0.00 0.11

1000 500
CyCoDe 0.36 0.42 16.49 109.37

2.1
0.38 0.44 15.44 107.64

1.8
0.75 0.83 0.00 37.20

2 × 10−6

ADMM 0.36 0.42 16.34 3.96 0.38 0.43 15.33 3.76 0.75 0.83 0.00 0.61

The table reports, for the Cyclic Coordinate Descend (CyCoDe) and the Alternating Direction Method of Multipliers
(ADMM), the simulation results to the penalized minimum variance problem given in (2), considering six data sets
drawn from a multivariate normal distribution, with ρ = 0.2 and ρ = 0.8, respectively, and using the equally weighted
portfolio as a soft starting point. Stated are across all 100 simulations: the minimum (Min) and the median (Med)
value of the objective function, the median value of the total amount of shorting (Short) the median time in seconds
needed to compute the solution (Time) and the average weight difference (W.Diff.).

equally weighted or the random weight vector as the soft starting point. This also702

applies to the low dimensional data set, when the correlation is set to ρ = 0.8. When703

p = 500 for ρ = 0.8, the ADMM reports a lower amount of shorting for the first two704

lambda values. This holds regardless of how we choose the soft starting point. This705

difference might also explain the discrepancy in the weight vectors, which is reported706

to be the highest for these two data sets. Still, the difference in the resulting weight707

vectors is modest and amounts to an average of 10−6 for both low correlation envi-708

ronments, and to 10−4, for the first two high correlation environments and regardless709

on how we choose the soft starting point.710

Most notably, the ADMM outperforms the CyCoDe, with regard to the median time711

in seconds used to compute the solution for all six data sets. This difference is not712

negligible: the ADMM uses on average 0.265 seconds in the low correlation environ-713

ment across all lambdas and all starting criteria, while the CyCoDe is slower by a714

factor of more than 100, using on average 28.88 seconds. This also applies to the high715
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correlation environment, with the ADMM finding the solution, by taking on average716

2.65 seconds and the CyCoDe using 38.98 second. Finally, and for both algorithms,717

selecting the random weight vector as a starting point results in longer computing718

times, as opposed to using the equally weighted solution.719

Figure C.8 plots the computing times needed for the CyCoDe and the ADMM for

Table C.5: Simulation Results - Random Weights

λ = 4.03 × 10−6 λ = 5.65 × 10−4 λ = 7.91 × 10−2

ρ n p Algo Min Med Short Time W.Diff Min Med Short Time W.Diff Min Med Short Time W.Diff

0.2

500 100
CyCoDe 0.13 0.16 0.49 0.46 5 × 10−7 0.13 0.16 0.47 0.44 4 × 10−6 0.22 0.25 0.00 0.13

7 × 10−8

ADMM 0.13 0.16 0.49 0.01 0.13 0.16 0.47 0.01 0.23 0.25 0.00 0.01

500 250
CyCoDe 0.08 0.10 2.12 10.26 8 × 10−6 0.08 0.10 2.02 10.02

6 × 10−6 0.19 0.23 0.00 0.74
8 × 10−8

ADMM 0.08 0.10 2.11 0.07 0.08 0.10 2.02 0.07 0.19 0.23 0.00 0.02

1000 500
CyCoDe 0.08 0.10 3.50 111.66

3 × 10−5 0.09 0.10 3.28 112.50
2 × 10−5 0.22 0.24 0.00 5.31

1 × 10−7

ADMM 0.08 0.10 3.50 0.52 0.09 0.10 3.28 0.51 0.22 0.24 0.00 0.15

0.8

500 100
CyCoDe 0.55 0.64 3.30 8.02

2 × 10−3 0.56 0.64 3.21 7.86
2 × 10−3 0.72 0.82 0.00 0.89

8 × 10−7

ADMM 0.55 0.63 3.30 0.03 0.55 0.64 3.21 0.03 0.72 0.82 0.00 0.02

500 250
CyCoDe 0.33 0.41 10.77 31.54

8 × 10−1 0.35 0.42 10.34 32.05
8 × 10−1 0.68 0.81 0.00 5.35

1 × 10−6

ADMM 0.33 0.41 10.75 0.55 0.35 0.42 10.33 0.53 0.68 0.81 0.00 0.10

1000 500
CyCoDe 0.36 0.40 16.42 111.10 2.193 0.37 0.42 15.38 111.70

1.99
0.76 0.82 0.00 38.7

1.81
ADMM 0.36 0.40 16.37 3.89 0.37 0.42 15.36 3.69 0.76 0.82 0.00 0.60

The table reports, for the Cyclic Coordinate Descend (CyCoDe) and the Alternating Direction Method of Multipliers
(ADMM), the simulation results to the penalized minimum variance problem given in (2), considering six data sets
drawn from a multivariate normal distribution, with ρ = 0.2 and ρ = 0.8, respectively, and using the equally weighted
portfolio as a soft starting point. Stated are across all 100 simulations: the minimum (Min) and median (Med) value
of the objective function, the median value of the total amount of shorting (Short) the median time in seconds needed
to compute the solution (Time) and the average weight difference (W.Diff.).

720

both the EW and Random weight vector initialization, considering the two corre-721

lation regimes and varying the number of parameters that have to be estimated.722

Clearly the ADMM consistently shows a superior performance, by only using a frac-723

tion of the time of the CyCoDe. Furthermore, we can observe that both algorithms724

are also invariant to the selection of the soft starting point. Only the CyCoDe shows725

a slight difference for parameter values above k = 450, signaling that for the CyCoDe726

an EW portfolio results in finding the optimal solution faster.727
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Figure C.8: Computation Times for CyCoDe and ADMM
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The figure shows the average computation times needed for the CyCoDe and ADMM algorithm, depending on the
correlation regime, the number of parameters and the soft start criterion. All values are based on 100 simulations,
considering a constant correlation set-up.

Appendix D. Portfolio Selection Models728

Equally Weighted Portfolio. The equally weighted portfolio is considered as one

of the toughest benchmarks to beat (see, i.e. DeMiguel et al. (2009b)), and naively

distributes the wealth equally among all constituents, such that with k assets:

wi =
1

k
∀ i = {1, ..., k}, (D.1)

where wi is the weight of asset i. The EW ignores both the variances, the covari-729

ances and the return of the assets, and is the optimal portfolio on the mean-variance730

efficient frontier, when we assume that all three are the same.731

732

Norm-Constrained Minimum Variance Portfolio. Reconsider the formulation

of the mean-variance problem in (1). By disregarding the mean in the optimization,
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we obtain the Global Minimum Variance Portfolio (GMV), given by:

min
w∈Rk

σ2
p = w′Σw s.t.

k∑

i=1

wi = 1, ∀ i = {1, ..., k}, (D.2)

However, this formulation is prone to estimation errors, and unstable portfolio weights.

To circumvent these problems, we extend the framework in (D.2) by adding a penalty

function ρλ(w) on the weight vector. For LASSO, we add a ℓ1 - Norm to the formu-

lation in (D.2), such that:

ρλ(w) = λ×
k∑

i=1

|wi| (D.3)

where λ is a regularization parameter that controls the intensity of the penalty.

Besides LASSO, we also consider the RIDGE penalty, which adds an ℓ2-Norm on the

weight vector to the formulation in (D.2), and that takes the form of:

ρλ(w) = λ×
k∑

i=1

w2
i (D.4)

As opposed to the LASSO, the RIDGE is not singular at the origin and thus does733

not promote sparse solutions. Still, imposing the ℓ2 - Norm on the portfolio problem734

is equal to adding an identity matrix, weighted by the regularization parameter λ735

to the inverse of the variance-covariance matrix, i.e. (Σ−1 + λI), where I is the736

k× k identity matrix. This leads to more numerical stability and makes the RIDGE737

penalty especially appealing in environments that suffer from multicollinearity (Zou738

and Hastie, 2005).739

740

Equal Risk Contribution Portfolio. Finally, we consider the Equal Risk Con-
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tribution (ERC) portfolio, which aims to equalize the marginal risk contributions of

the assets to the overall portfolio risk. That is, given that portfolio variance can be

decomposed as:

σ2
p =

k∑

i=1

k∑

j=1

wiwjσij =
k∑

i=1

wi

k∑

j=1

wjσij (D.5)

the marginal contribution to the portfolio risk for asset i is given as:

cvari = wi

k∑

j=1

wjσij = wi (Σw)i with
k∑

i=1

cvari = σ2
p (D.6)

where (Σw)i denotes the ith row of the product of Σ and w (Roncalli, 2013). As

the marginal risk is dependent on the portfolio weight magnitude, the ERC portfolio

has no analytically solution and must be obtained numerically,by solving:

min
w∈RN

k∑

i=1

(
wi (Σw)i

σ2
p

−
1

k
)2 s.t.

k∑

i=1

wi = 1, 0 ≤ wi ≤ 1 ∀ i ∈ {1, 2, ..., k} (D.7)

The ERC favors assets with lower volatility, lower correlation with other assets, or741

both, and is less sensitive to small changes in the covariance matrix as compared to742

the GMV portfolio (Kremer et al., 2018). Furthermore, (Maillard et al., 2010) show743

that the volatility of the ERC is between that of the EW and the GMV, and that it744

coincides with the latter, when both, correlations and SRs, are assumed to be equal745

(Maillard et al., 2010).746
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