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ABSTRACT

Finding sparse approximate solutions to large underdetermined lin-

ear systems of equations is a common problem in signal/image

processing and statistics. Basis pursuit, the least absolute shrinkage

and selection operator (LASSO), wavelet-based deconvolution and

reconstruction, and compressed sensing (CS) are a few well-known

areas in which problems of this type appear. One standard approach

is to minimize an objective function that includes a quadratic (ℓ2)

error term added to a sparsity-inducing (usually ℓ1) regularizer. We

present an algorithmic framework for the more general problem of

minimizing the sum of a smooth convex function and a nonsmooth,

possibly nonconvex, sparsity-inducing function. We propose iter-

ative methods in which each step is an optimization subproblem

involving a separable quadratic term (diagonal Hessian) plus the

original sparsity-inducing term. Our approach is suitable for cases

in which this subproblem can be solved much more rapidly than

the original problem. In addition to solving the standard ℓ2 − ℓ1
case, our approach handles other problems, e.g., ℓp regularizers with

p 6= 1, or group-separable (GS) regularizers. Experiments with CS

problems show that our approach provides state-of-the-art speed for

the standard ℓ2 − ℓ1 problem, and is also efficient on problems with

GS regularizers.

Index Terms— sparse approximation, compressed sensing, op-

timization, reconstruction.

1. INTRODUCTION

1.1. Problem Formulation

There is growing interest in finding fast algorithms for solving the

convex unconstrained optimization problem

min
x∈Rn

1

2
‖y −Ax‖22 + τ‖x‖1, (1)

where y ∈ R
k, A∈R

k×n (usually k < n) and τ ∈ R
+. Problems

of the form (1) can be used to identify a sparse approximate solution

to the underdetermined system y = Ax, and have become familiar

over the past three decades, particularly in signal processing. Several

algorithms have been proposed for solving (1) and its variants; see

[15] for a recent overview of the work in this domain.

In this paper we propose algorithms for solving the following

generalization of the problem (1):

min
x

φ(x) := f(x) + τ c(x), (2)

where f :Rn→ R is a smooth and convex function, and c : R
n→ R,

usually called the regularizer or regularization term, is finite for all

x ∈ R
n, but not necessarily smooth nor convex. We assume also for

much of the discussion that c is separable, that is,

c(x) =
nX

i=1

ci(xi). (3)

We also consider group (or block) separability, characterized by

c(x) =
mX

i=1

ci(x[i]), (4)

where x[1],x[2], . . . ,x[m] are m disjoint sub-vectors of x. We are

especially interested in cases in which∇f(x) is inexpensive to com-

pute, relative to the cost of computing/storing the Hessian of f .

This paper presents an approach to solving problems of the form

(2) that has two desirable properties: a) it is computationally com-

petitive with the state-of-the-art algorithms designed for the standard

ℓ2−ℓ1 problem (1); b) it is versatile enough to handle a broad class of

generalizations of (1), such as problems in which the ℓ1 regularizer

is replaced with an ℓp-norm or with a group-separable regularizer.

1.2. Proposed Approach

Our approach generates a sequence of iterates xk, k = 1, 2, . . . by

solving separable subproblems of the following form:

x
k+1 ∈ arg min

z

(z− x
k)T∇f(xk) +

αk

2
‖z− x

k‖22 + τ c(z),

(5)

where αk ∈ R
+. We refer to this approach as SpaRSA (for Sparse

Reconstruction by Separable Approximation).

Different variants of the approach are distinguished by different

choices of αk. We focus on variants based on the formula proposed

by Barzilai and Borwein (BB) [1] in the context of smooth nonlinear

minimization; see also [8, 16]. BB methods have also been applied

to constrained problems [2], especially bound-constrained quadratic

programs [7, 15, 22]. To our knowledge, BB methods have not been

previously used for problems involving nonsmooth terms, though

this usage is a natural extension of the basic idea. We also consider

monotone variants, in which αk is increased as necessary to force a

decrease in the objective function at every step.

1.3. Related Work

SpaRSA is closely related to iterative shrinkage/thresholding (IST)

(a.k.a. iterative denoising, thresholded Landweber, forward-

backward splitting) algorithms [6, 9, 11, 13, 14, 17]. The form of the

subproblem is the same, but IST methods use a more conservative
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choice of αk. In fact, it can be argued that SpaRSA is a speeded-up

IST with better performance resulting from variation of αk .

SpaRSA is also related to the GPSR (gradient projection for

sparse reconstruction) method recently presented by the authors of

this manuscript [15]. While matching the speed of GPSR on the

ℓ2 − ℓ1 case, SpaRSA can be generalized beyond that case.

2. THE PROPOSED APPROACH

2.1. The SpaRSA Framework

The SpaRSA framework for problem (2) is as follows.

Algorithm SpaRSA

1. choose factor η > 1 and constants αmin, αmax (0 < αmin < αmax);

2. set iteration counter k ← 0;

3. choose initial guess x0;

4. repeat

5. choose αk ∈ [αmin, αmax];
6. repeat

7. xk+1 ← solution of sub-problem (5);

8. αk ← η αk;

9. until xk+1 satisfies an acceptance criterion

10. k ← k + 1;

11. until stopping criterion is satisfied.

The several variants of SpaRSA are defined by two key steps of

the algorithm: the choice of αk (line 5) and the acceptance criterion

(line 9). It is worth noting here that IST algorithms belong to the

SpaRSA class. If c is convex, if the acceptance criterion accepts any

xk+1, and if we use a constant αk satisfying the conditions given,

e.g., in [6], we have a convergent IST algorithm. SpaRSA allows

less conservative choices of αk, often leading to faster convergence.

2.2. Solving the Subproblems

By dropping irrelevant additive terms independent of z, the subprob-

lem (5) at line 7 of the algorithm can be rewritten as

x
k+1 ∈ arg min

z

1

2




z− u
k



2

2
+

τ

αk

c(z), (6)

where uk = xk − ∇f(xk)/αk . Since the term ‖z − uk‖22 is a

strictly convex function of z, (6) has a unique solution when c is

convex. (For nonconvex c, there may exist several local minimizers.)

In signal processing terms, (6) is called a denoising problem [13].

If c has the separable form (3), the subproblem (6) is also sepa-

rable and can be written as

xk+1
i ∈ arg min

z

(z − uk
i )2

2
+

τ

αk

ci(z), i = 1, 2, . . . , n. (7)

Separability is key to the efficiency of SpaRSA and IST algorithms.

For some choices of ci, the minimization in (7) has a unique closed

form solution. When c(z) = ‖z‖1 (thus ci(z) = |z|), we have

arg min
z

(z − uk
i )2

2
+

τ |z|

αk

= soft

�
uk

i ,
τ

αk

�
, (8)

where soft(u, a) ≡ sign(u) max{|u|−a, 0} is the well-known soft-

threshold function.

Another notable case is the so-called ℓ0 quasi-norm c(z) =
‖z‖0 =

P
i 1xi 6=0. In this case, we have

arg min
z

(z − uk
i )2

2
+

τ

αk

1xi 6=0 = hard

 
uk

i ,

r
2 τ

αk

!
, (9)

where hard(u, a) ≡ u 1|u|>a is the hard-threshold function.

When ci(z) = |z|p, i.e., c(z) = ‖z‖pp , the closed form solution

of (7) is known for p = 1 (see (8)), p = 4/3, p = 3/2, and p = 2.

See [5, 6], for further details and theory about problems (6) and (7).

2.3. Choosing αk: The Barzilai-Borwein Method.

In the most basic variant of the Barzilai-Borwein (BB) approach, we

choose αk such that αk I mimics the true Hessian ∇2f(x) over the

most recent step. Defining

s
k = x

k − x
k−1, and r

k = ∇f(xk)−∇f(xk−1),

we require that αk sk ≈ rk in the least-squares sense, leading to

αk = arg min
α
‖α s

k − r
k‖22 = (sk)T

r
k/[(sk)T

s
k]. (10)

When f(x) = (1/2)‖Ax − y‖22, the previous expression becomes

αk = ‖Ask‖22/‖s
k‖22. These formulas can be safeguarded appro-

priately to ensure that αk remains in the range [αmin, αmax].

2.4. The Acceptance Criterion

In the simplest variant of the SpaRSA scheme, the acceptance cri-

terion is trivial: accept whatever z solves the subproblem (5) as the

new iterate xk+1, even if it yields an increase in the objective func-

tion φ. We consider also a variant in which αk is viewed as a damp-

ing parameter in the subproblem (6), which is increased until the so-

lution of this subproblem yields a decrease in φ. In this scheme, the

acceptance criterion may be φ(xk+1) < φ(xk), or we may enforce

a more stringent variant that requires the margin of decrease to be at

least some (positive constant) multiple of the decrease promised by

the subproblem (5). The initial choice of αk can be given by (10),

or by modifying the value αk−1 from the previous iteration. We call

the former variant of the algorithm SpaRSA-monotone.

The existence of a value of αk sufficiently large to ensure a de-

crease in the objective at each iteration can be inferred from the con-

nection between (6) and the following trust-region subproblem:

min
z

∇f(xk)T (z− x
k) + τc(z) subject to ‖z− x

k‖2 ≤ ∆k.

It also follows from the known fact, which underlies the monotonic-

ity of IST algorithms [14], that there is a constant ᾱ > 0 such that

descent is assured whenever αk ≥ ᾱ.

2.5. Warm Starting and Continuation

The SpaRSA approach benefits from a good starting point x0, which

suggests that we can use the solution of (2), for a given value of τ ,

to initialize SpaRSA in solving (2) for a nearby value of τ . The

second run will typically be significantly faster than the first one. An

important application of warm-starting is continuation, as recently

suggested in [17]. The speed of SpaRSA algorithms may degrade

considerably for smaller values of the regularization parameter τ .

However, if we use SpaRSA to solve (2) for a larger value of τ ,

then decrease τ in steps toward its desired value, running SpaRSA

with warm-start for each successive value of τ , we are often able

to identify the solution much more efficiently than if we just ran

SpaRSA once for the desired value of τ from a “cold start.”
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3. GROUP-SEPARABLE REGULARIZERS

In this section we consider group-separable (GS) regularizers of the

form (4). In this case, the minimization (6), instead of decoupling

into a set of one-dimensional minimizations (7), decouples into a set

of m independent multi-dimensional minimizations, of the form

min
w∈Rl

1

2
‖w − b‖22 + β Φ(w), (11)

where l is the dimension of x[i], b = uk
[i], Φ = ci, and β = τ/αk.

GS regularizers are desirable when there exists a group structure

in x, which arises naturally in many applications.

• In brain imaging, the voxels associated with different func-

tional regions (e.g., motor or visual cortices) may be grouped

together in order to identify a sparse set of regional events. In

[3, 4], an EM algorithm (equivalent to IST) was proposed for

solving problems of this type.

• A GS-ℓ2 penalty (Φ(w) = ci(w) = ‖w‖2) was proposed for

source localization in sensor arrays [20]; second-order cone

programming was used to solve the optimization problem.

• In gene expression analysis, some genes are organized in

functional groups. This has motivated an approach called

CAP (composite absolute penalty) [25], which has the form

(4), and uses a greedy optimization scheme [26].

GS regularizers have also been proposed for ANOVA regression

models [19, 21, 24], and Newton-type optimization methods have

been proposed in that context. An interior-point method for the GS-

ℓ∞ case (Φ(w) = ci(w) = ‖w‖∞) was proposed in [23]. The

SpaRSA framework is versatile enough to handle the GS regularizes

arising all in the applications described above.

As in [5, 6], convex analysis can be used to obtain the solution of

(11). If Φ is a norm, it is proper, convex (maybe not strictly so), and

homogenous. Since the quadratic term in (11) is proper and strictly

convex, this problem has a unique solution, which can be written

explicitly as follows:

w = b− PβCΦ
(b), (12)

where PB denotes the orthogonal projector onto set B, and CΦ is a

1-ball in the dual norm Φ⋆, that is, CΦ = {w ∈ R
l : Φ⋆(w) ≤ 1}.

For Φ(w) = ‖w‖2, the dual norm is also Φ⋆(w) = ‖w‖2, thus

βC‖·‖2
= {w ∈ R

l : ‖w‖2 ≤ β}. Clearly, if ‖b‖2 ≤ β, then

PβC‖·‖2
(b) = b, thus b − PβC‖·‖2

(b) = 0. If ‖b‖2 > β, then

PβC‖·‖2
(b) = β b/‖b‖2. These two cases are written compactly as

w =
b

‖b‖2
max {‖b‖2 − β, 0} . (13)

Naturally, if l = 1, (13) reduces to the scalar soft-threshold (8).

For Φ(w) = ‖w‖∞, the dual norm is Φ⋆(w) = ‖w‖1, thus

βC‖·‖∞ = {w ∈ R
n : ‖w‖1 ≤ β}. In this case, the solution of

(11) is the residual of the orthogonal projection of b onto the ℓ1 β-

ball. This projection (thus also the residual) can be computed with

O(l log l) cost, as recently shown in [3, 4, 10].

4. EXPERIMENTS

4.1. Speed Comparisons for the ℓ2 − ℓ1 Problem

The purpose of our first experiment is to compare SpaRSA with

the state-of-the-art algorithms IST and GPSR (see Subsection 1.3),

and the l1_ls method [18], in a typical CS scenario (as in [15, 18]):

f(x) = ‖Ax− y‖22, with A a 210 × 212 random matrix; y is gen-

erated as y = Axtrue + e, where e is a Gaussian white vector with

variance 10−4, and xtrue is a vector with 160 randomly placed ±1
spikes and zeros elsewhere. We use the ℓ1 regularizer c(x) = ‖x‖1,

and τ = 0.1 ‖AT y‖∞, as in [15, 18]. In this (and all other) experi-

ments, αmax= 1/αmin = 1030 and η = 2 (for SpaRSA-monotone). To

perform the comparison, independently of the adopted stopping rule,

we first run l1_ls and then the other algorithms until each reaches the

same value of the objective function reached by l1_ls. Table 1 re-

ports the CPU times required by SpaRSA, two variants of GPSR,

l1_ls, and IST, as well as the final mean squared error (MSE) of the

reconstructions with respect to xtrue. These results show that, for this

ℓ2 − ℓ1 problem, SpaRSA is slightly faster than GPSR and clearly

faster than l1_ls and IST, while achieving a similar value of MSE.

Table 1. CPU times (average over 10 runs) of several algorithms on

the CS experiment described in the text.

Algorithm CPU time (secs.) MSE

SpaRSA 0.44 2.42e-3

SpaRSA-monotone 0.45 2.49e-3

GPSR-BB 0.55 2.81e-3

GPSR-Basic 0.69 2.59e-3

l1_ls 6.56 2.51e-3

IST 2.76 2.51e-3

An indirect comparison with other codes can be made via [18,

Table 1], which shows that l1_ls outperforms the method from [12]

(6.9 vs 11.3 secs.), as well as ℓ1-magic by about two orders of mag-

nitude and pdco from SparseLab by about one order of magnitude.

The second experiment assesses how the computational cost of

SpaRSA grows with the size of matrix A, using a setup similar to

the one in [15, 18]. Assuming that the computational cost is O(nγ),

we obtain empirical estimates of γ. SpaRSA and SpaRSA-monotone

have empirical exponents of .88 and .87, respectively, similar to the

values .86 and .87 of GPSR and GPSR-Basic. IST has a similar

exponent .89, but a worse constant. For l1_ls, we found γ = 1.21,

in agreement with the value 1.2 reported in [18].

4.2. Group-Separable Regularizers

Here we illustrate the use of SpaRSA with the GS regularizers con-

sidered in Section 3. In our example, xtrue is a 212-dimensional

vector, divided into m = 64 groups of length li = 64. As above, A

a 210 × 212 random matrix and y is generated as y = Axtrue + e,

where e is Gaussian white noise with variance 10−4. To generate

xtrue, we randomly choose 8 groups and fill them with zero-mean

Gaussian random samples of unit variance; all other groups are filled

with zeros. Finally we run SpaRSA, with f(x) = ‖Ax− y‖22 and

c(x) as given by (4), where ci(x[i]) = ‖x[i]‖2. The value of τ
is hand-tuned for optimal performance. Fig. 1 shows the result ob-

tained by SpaRSA, based on the GS-ℓ2 regularizer, which success-

fully recoverers the group structure of xtrue, as well as the result

obtained with the classical ℓ1 regularizer, for the best choice of τ .

In the second experiment, we consider a similar scenario, with

a single difference. Each active group, instead of being filled with

Gaussian random samples, is filled with ones. This case is clearly

more adequate for a GS-ℓ∞ regularizer, as illustrated in Fig. 2, which

achieves an almost perfect reconstruction, with an MSE 2 orders of

magnitude smaller than what is obtained with a GS-ℓ2 regularizer.
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Original (n = 4096, number groups = 64, active groups = 8)

0 500 1000 1500 2000 2500 3000 3500 4000

−2

0

2

Block−L2 (k = 1024, tau = 0.279, MSE = 0.00745)
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Standard L1 (k = 1024, tau = 0.186, MSE = 0.04621)

Fig. 1. Comparison of GS-ℓ2 regularizer with conventional ℓ1 regu-

larizer. Exploiting known group structure provides a dramatic gain.
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Original (n = 4096, number groups = 64, active groups = 8)

0 500 1000 1500 2000 2500 3000 3500 4000
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Group−L−infinity (k = 1024, tau =0.35, MSE = 8.387e−005)

0 500 1000 1500 2000 2500 3000 3500 4000

0

0.5

1

Group−L2  (k = 1024, tau = 0.186, MSE = 1.0474e−002)

Fig. 2. Comparison of GS-ℓ2 and GS-ℓ∞ regularizers. Signals with

uniform behavior within groups benefit from the GS-ℓ∞ regularizer.

5. CONCLUDING REMARKS

In this paper, we have introduced the SpaRSA algorithmic frame-

work for solving large-scale optimization problems involving the

sum of a smooth error term and a possibly nonsmooth regularizer.

We give experimental evidence that SpaRSA matches the speed of

the state-of-the-art method when applied to the ℓ2 − ℓ1 problem,

and show that SpaRSA can be generalized to other regularizers such

as those with group-separable structure. Ongoing work includes a

more thorough experimental evaluation involving wider classes of

regularizers, and theoretical analysis of the convergence properties.
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