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Abstract— Underground imaging involving RF Tomography is 

generally severely ill-posed posed. Tikhonov Regularization is 

perhaps the most common method to address this ill-posedness. 

The proposed methods are based upon the realistic assumptions 

that targets (e.g. tunnels) are sparse and clustered in the scene, 

and have known electrical properties. Therefore, we explore the 

use of alternative regularization strategies leveraging sparsity of 

the signal and its spatial gradient, while also imposing 

physically-derived amplitude constraints. By leveraging this 

prior knowledge, cleaner scene reconstructions are obtained. 

I. INTRODUCTION 

The response to calamities, relief activities and asymmetric 

threats for both civilian and military bodies has increased the 

demand for close-in and distributed sensing of underground 

scenes. The situational awareness needed by decision makers 

is supplied by delivering timely, persistent, and actionable 

images of the area of interest, regardless of the complexity of 

the background and the disposition of sensors. To achieve 

this goal, imaging using RF Tomography may be a suitable 

choice. This imaging technique arises from classical 

diffraction tomography and inverse scattering theories [1-3]. 

RF Tomography is a method for the imaging of high-contrast 

dielectric / conducting extended targets under highly 

attenuated, highly cluttered, complex environments, based 

upon an arbitrarily distributed network of low-cost, 

narrowband, configurable and automated RF sensors. These 

sensors are placed on top, above, or into the ground at 

arbitrary positions. In a preliminary stage, sensors accurately 

identify their position, orientation and time reference. Once 

the calibration phase is concluded, a pre-determined set of 

transmitters radiates a known waveform using a suitable 

polarization. The probing wave impinges upon dielectric / 

conducting targets, thus generating a scattered wave-field. 

The distributed receivers collect samples of the electric field, 

mitigate clutter and the direct path, and store the information 

concerning only the scattered field. In the next iteration, a 

different set of transmitters is activated, or different 

waveforms / polarizations are used. Subsequently, the 

collected data is relayed to the command and control post for 

processing and imaging. The system operates using ultra-

narrowband, adaptive waveforms, thus ensuring low noise, 

low frequency dispersion, and an economic architecture. 
RF Tomography for underground imaging has been 

introduced mathematically in [4-5]. In these works, a linear 
forward model of the scattering process is constructed, and 
data is collected to form a matrix equation. The image of the 
scene is generally retrieved by matrix inversion, with 
acceptable results. However, in most cases underground 
targets, such as tunnels, weapon caches, or UGFs, can be 
assumed to be sparse (in terms of voxels), clustered, and 
having predictable electrical properties. For instance, a typical 
UGF can be described as the interconnection of few (i.e., 
sparse) hollow (i.e. having relative dielectric permittivity 
equal to unity) cylinders (i.e. having some minimal spatial 
extension). This accrued knowledge is generally not exploited 
in classical inversion schemes. In this work, we propose the 
adaptation of recent sparse regularization techniques to the 
particular case of RF tomography for belowground imaging. 
In particular, we formulate two suitable inversion algorithms 
based upon the assumption of sparse, clustered and bounded 
data, and we compare the results with classical inversion 
algorithms, which rely on Tikhonov regularization. 

II. FORWARD MODEL 

RF tomography can be described by considering the 3D 

transmitter-receiver geometry depicted in Fig. 1. For 

simplicity, a set of N  electrically small tunable dipoles 

(length l ) acting as transmitters, and a set of M  electrically 

small tunable dipoles acting as receivers represent the 

distributed sensor network in RF tomography. The extension 

to more complicated radiator (corresponding to more 

directive radiation patterns) can be constructed as 

superposition of elementary small dipoles, but it will not be 

shown in this brief description. The n-th transmitting dipole, 

of length l, is located at position a

nr  , and has current 

amplitude, phase and direction described by the 3D complex 

vector na . The m-th receiving dipole is located at position 

b

mr , and directed along the unit-norm vector ˆ
mb . Each 

transmitter emits a monochromatic signal with frequency f . 
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We assume the air-earth interface to be flat; however, the 

problem of non-flat surfaces can be solved as well (at 

additional complexity [7]). In this context, the air half-space 

is modeled as free-space medium, while the ground half-

space is modeled as an homogeneous medium with 

background relative dielectric permittivity D  , background 

conductivity D , and magnetic permeability 0 . The 

dielectric/conducting targets are assumed to reside in a pre-

determined investigation domain D, which lies in the interior 

of the gorund half-space. A scattering body located at 

position 'r  inside D  is described by a deviation in the 

relative dielectric permittivity  'r r  and the conductivity 

 ' r . Unlike other applications, the detection of targets 

does not require the discrimination between dielectric and 

conducting bodies. Hence, for convenience, we can define a 

complex-valued contrast function: 

        0' ' ' / 2r D DV j f        r r r  (1) 

where 0  is the dielectric permittivity of free space. Rather 

than using a single transmitter, we prefer to irradiate the 

scene using a set of s  simultaneously activated transmitters, 

represented by the index set S . Following the derivations 

reported in [4], the contrast function  'V r  can be related to 

the measured total field at the receiver side, due to 

simultaneous transmission of s  transmitters operating at 

angular frequency  ,  , , ,b

m S mE fr b , via the relation: 
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The 3 3 matrix G is the Green’s dyadic for the half-

space geometry, and it is assumed known: explicit formulas 

are provided in [2-5]. The vector Z  represents noise and the 

superposition of effects that are not accounted for by the Born 

approximation, which has been used to derive (2): We will 

neglect these terms in order to arrive at a tractable linear 

model. This approximated formula represents the Forward 

Model in RF Tomography in its simplest form. 

 
Figure 1: Geometry of RF tomography. 

III. DISCRETIZATION 

The continuous equation in (2) can be discretized using the 

method of moments. For simplicity we will use both 

weighting functions and testing functions to be  Dirac. 

Therefore, we collect a discrete set of measurements by 

varying ˆ, ,b

m m sr b , f  to form a measurement vector e . 

Moreover, the domain D  is discretized into K voxels, each 

one represented by a  -Dirac located at 'kr  , so that we can 

define a contrast vector   'kVv r (see Fig. 1). 

According to the classical Riemann summation, the integral 

operation on V can be discretized into a matrix L , provided 

that the field inside each voxel k is relatively constant. The 

contribution in (2) representing the direct path can be also 

discretized in vector p . Therefore, the forward model can be 

approximated in discrete form by  e Lv p . By denoting 

the scattered field data as  s e p , the forward model of 

RF Tomography can be written in matrix equation: 

 s Lv  (3) 

Generally, each entry of s  has extremely low value; 

therefore, slight errors on both e or p  dramatically change 

the value of s . One strategy to mitigate the error in s is to 

remove the direct-path coupling before the measurements are 

taken, i.e. p 0 . This task is accomplished by either 

rotating Tx and Rx pairs [5], or by using simultaneously 

activated transmitters [6]. Regardless of how the direct path is 

mitigated, residual errors will inevitably remain. We shall 

approximate these residual errors with an unknown additive 

perturbation n  to the scattered field measurements s . 

IV. INVERSION PROCEDURES 

In principle, the estimation of v can be performed as: 

 
†ˆ v L s  (4) 

where 
†

L  represents a suitable pseudoinverse of L . In RF 

Tomography, estimating v  is generally a hard task for the 

following reasons: 

 The number of collected samples is generally much 

smaller than the number of voxels of the scene. 

Therefore, the matrix equation (3) is severely 
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underdetermined, implying that there exist infinite 

solutions. 

 The matrix L is also very ill-conditioned and may 

include modeling errors. 

 Both vectors e  and p are affected by noise and clutter, 

and their difference s  may be extremely low, since in 

some cases the direct path is 50-60 dB higher than the 

scattered field itself. Therefore, the per-sample SNR for 

s may be as low as zero dB. 

To properly retrieve v one needs to use regularized solutions. 

Classical regularization methods belong to the so-called class 

of 2L  norm minimization [2]. For example, the ridge 

regression, or Tikhonov regularization method in its simplest 

form can be written as [2]: 

 
2 2

2 2
arg min  Lv s v  (5) 

The solution for this minimization problem can be given in 

closed form, and recovers a solution v with constrained 

energy. However, reconstructions based on 2L norm 

minimization are generally very smooth, present high side 

lobes, artifacts, and very low resolution, especially when the 

number of samples is low. To increase the image quality, one 

can exploit some prior knowledge on v such as: 

 In tunnel and UGF detection, the entries of v should be 

between 0 (i.e., no target) and the difference between the 

background and the air. 

 Since targets in the scene are sparse, the non-zero 

elements of v should be a few, although we cannot know 

a priori the exact number of non-zero elements. 

 Targets are generally spatially extended (i.e., clustered). 

V. CONSTRAINED L1 AND L2 NORMS 

One way to account for this prior knowledge of v is to solve 

the following minimization problem: 

 
2 1 2

2 1 2
arg min    Lv s v v  (6) 

  min maxsubject to:     1
i

i K   v   (7) 

where ,  are constant weights that need to be opportunely 

determined, min and max represent the minimum and 

maximum absolute value that each voxel can have (usually 

min 0  and max 1.5 D   ), and  
i

v denotes the i-th 

element of v . 

In fact, the 1L  penalty promotes solutions having a small 

number of non-zero elements, i.e., reduces the number of 

required samples, and decreases sidelobes and artifacts. 

Furthermore, the condition on the elements of v guarantees 

realistic values of the contrast functions, and distributes the 

energy of the image to weaker voxels. Finally, the small 

penalty for the 2L norm prevents the concentration of the 

energy to single pixels, thus favoring extended objects in the 

reconstruction. 

The problem could be solved using the interior point method 

[12], or other sparse regularization algorithms such as LARS 

[9]. However, by recasting (6) as 

 

2 1

12
arg min

,
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we can then use the Fast Iterative Shrinking Thresholding 

Algorithm (FISTA) [10-11], which is much faster with 

respect to other methods and shows quadratic convergence. 

The iterations in FISTA can be summarized as follows. At the 

first step, two variables are initialized, i.e. 
   0 0 v v 0  

and 
 0

1t  . The next step of the solution is computed using 

the following recursive formula: 
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where the shrinking parameter t  is given by: 

 
    2

1 1
1 1 4

2

n n
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, (10) 

the operator  T x is 

    HT S
    x x L s Lx  , (11) 

and the operator  S z is defined as 

         exp      

0     otherwise

i i i
j

S

      


z z z
z  (12) 

where the operator  returns the phase of the complex 

number, expressed in radiant. Finally, we modify the standard 

FISTA algorithm by projecting the estimated 
1n

v onto the 

set of v satisfying (7), thus giving the actual (feasible) value 

of 
 1n

v . The iteration is stopped when the residual is less 

that a pre-determined value.  

VI. CONSTRAINED L1 AND TV NORMS 

Another minimization procedure that accounts for the prior 

knowledge of the solution v can be formulated as follows: 

 

 

2

2 1

min max

arg min

subject to:     1

S TV

i
i K

 

 

  

  

Lv s v v

v 
 (13) 
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where 

     
1

22 2 2

1 1

,
S TV

K

i
i

 


   v v v v (14) 

represent the smoothed 1L norm (assuming   to be a small 

number), and the smoothed Total Variation norm. The use of 

differentiable penalty functionals allows us to take advantage 

of simple and fast-converging algorithms, such as the one 

described in this section. Note that the gradient operator can 

be opportunely defined as a matrix operator acting on v , i.e.

 v D v ; for details, see [13]. The minimization 

problem in (13) incorporates several advantages:  

 The TV penalty promotes solutions whose amplitudes vary 

minimally throughout the image. This penalization tends to 

promote connected solutions. The addition of  renders the 

penalty function differentiable. 

 The 1L  penalty promotes solutions having a small number 

of non-zero elements 

 The amplitude constraint on v guarantees realistic values 

of the contrast functions, and distributes the energy of the 

image to weaker voxels. 

To solve the optimization problem in (13), we can take 

advantage of an efficient iterative algorithm discussed in [13]. 

After initializing the search vector 
   0 0 v v 0 , the next 

iteration is found by solving the following matrix equation: 

 
           1

1 2
n n n n H    H v v H v v L s   (15) 

where 0 1   [14], although we will use 0.5  , and 

the hessian H is computed as follows: 

 
   2
n H H H  H v L L A F D BDF   (16) 

      1/2
2 2

idiag 
       

A v v  (17) 

      1/22
2

i
diag 

  
   

  
B v D v  (18) 

     exp
i

diag j    F v v  (19) 

where the operator  diag   denotes a diagonal matrix 

whose i-th diagonal element is given by the expression inside 

the brackets. The computation of (15) can be easily solved 

using a preconditioned conjugate gradient algorithm. Once 
 1n

v is found, a feasible value of 
 1n

v is chosen by 

projecting 
 1n

v onto the space of v satisfying the hard 

constraint. 

VII. SIMULATIONS AND RESULTS 

A simulated scene has been developed to benchmark the 

proposed algorithms with a classical Tikhonov regularization. 

A set of 6 transmitters and 6 receivers are encircling the area 

(see Fig. 2). Transmitters and receivers are electrically small 

dipoles with unitary dipole moment. However, the direction 

of each Tx-Rx pair is selected in such a way that the direct-

path coupling is mitigated, as described in [5]. Using this 

strategy, the collected field at the receiver is approximately 

composed of scattered fields only. The target is a L-shaped 

tunnel, of circular radius of 1m. The tunnel resides at the 

depth of 30m. The background dielectric permittivity is 

9D   and the background conductivity is 
45 10D
 

[S/m]. The frequency of operation varies from 4MHz to 

7MHz, with steps of 0.25MHZ. The forward scattering is 

computed using the FDTD simulator GPRMAX [8]. This 

simulator has been extensively tested and used as a 

benchmark in many scientific articles. Although no artificial 

noise is added to the collected data, we can assume that the 

nonlinear scattering, the finite discretization of the scene, and 

the imperfect direct-path cancellation represent a significant 

source of error in the measurements. To reduce the dimension 

of the matrix, we assume approximately known the depth of 

the tunnel location, so that the region D is confined in the 

space: 

  20 20, 20 20, 32 28D x y z            (20) 

Each voxel is 1m3. Therefore, matrix L has a reasonable size 

of 360 8405 . Slices of reconstructions at depth 30m are 

shown for three cases. In Fig 3, we plotted the reconstruction 

obtained by solving (5) the classical Tikhonov regularization. 

In Fig 4, we solved (8) using FISTA with / 50  . 

Finally, we solved (13) using the method described in Section 

VI with   . Note that the absolute values of the 

parameters  and   have been chosen empirically, since 

they change according to s  and L . 

 

 
Figure 2: Geometry of the problem 
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Figure 3: Reconstructed image using Tikhonov 

 
Figure 4: Reconstructed Image using L1 and L2 (FISTA) 

 
Figure 5: Reconstructed Image using L1 and TV 

VIII. CONCLUSION 

We expressed the problem of RF tomography for 

underground imaging in matrix form. The solution of the 

matrix equation, which represents the image of the 

underground scene, is sought using improved inversion 

procedures. The proposed procedures 1) promote sparsity, 

i.e., reduces sidelobes, artifacts and needs fewer 

measurements 2) impose energy constraints, i.e. privileges 

extended objects, such as tunnels, and confines the contrast 

function to more realistic values: resulting images are less 

spiky and more continuous 3) are computationally fast, easy 

to implement in routines, and inherently accept complex 

valued inputs. 
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