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Abstract: To solve the problem of sound field reconstruction with fewer measurement points, a sound
field reconstruction method based on Bayesian compressive sensing is proposed. In this method,
a sound field reconstruction model based on a combination of the equivalent source method and
sparse Bayesian compressive sensing is established. The MacKay iteration of the relevant vector
machine is used to infer the hyperparameters and estimate the maximum a posteriori probability of
both the sound source strength and noise variance. The optimal solution for sparse coefficients with
an equivalent sound source is determined to achieve the sparse reconstruction of the sound field. The
numerical simulation results demonstrate that the proposed method has higher accuracy over the
entire frequency range compared to the equivalent source method, indicating a better reconstruction
performance and wider frequency applicability with undersampling. Moreover, in environments
with low signal-to-noise ratios, the proposed method exhibits significantly lower reconstruction
errors than the equivalent source method, indicating a superior anti-noise performance and greater
robustness in sound field reconstruction. The experimental results further verify the superiority and
reliability of the proposed method for sound field reconstruction with limited measurement points.

Keywords: near-field acoustic holography; Bayesian compressive sensing; equivalent source method

1. Introduction

Near-field acoustic holography (NAH) is a robust technology that was first introduced
in the early 1980s and has been proven to be an effective tool for identifying sound sources
and reconstructing sound fields [1–3]. According to different principles of sound field
spatial transformation, various NAH algorithms have been developed, such as the spatial
Fourier transform method [4], the boundary element method [5], and the equivalent source
method (ESM) [6]. Among them, the ESM can be applied to sound sources of any shape
and has significant advantages in terms of calculation accuracy and efficiency. This method
uses a superimposed sound field generated by several equivalent sound sources to replace
the radiated sound field of the actual sound sources. The source strengths of the equivalent
sources can be determined by matching the acoustic pressures measured on the hologram
surface [7,8].

The solution of NAH is to treat the acoustic radiation problem as an inverse prob-
lem. By measuring the sound pressure data on the hologram surface, it is possible to
directly reconstruct the sound pressure and normal velocity of the sound source surface.
This information can then be used to predict the radiation characteristics of the entire
three-dimensional sound field. An inverse problem is considered ill-posed if its solution
fails to meet the criteria of existence, uniqueness, and stability. Currently, regularization
techniques are commonly employed to mitigate the influence of measurement errors and
stabilize the solution process for inverse sound field reconstruction problems. The Tikhonov
regularization method [9] is a commonly used technique for obtaining stable solutions
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to inverse problems. However, its reconstruction effectiveness is primarily limited to
low and medium frequencies and its performance can be significantly reduced at high
frequencies. Fortunately, the sound field reconstruction technology based on the Bayesian
regularization algorithm can provide stable solutions at low and medium frequencies, and
also demonstrates a good reconstruction performance at high frequencies.

However, all of the aforementioned conventional NAH algorithms require a large
number of measurement points to be arranged on the holographic surface in order to
satisfy the Nyquist sampling theorem, thus achieving relatively accurate sound source
localization and sound field reconstruction results. Increases in experimental costs hinder
the practical application and promotion of this technique in engineering. Recently, the
compressive sensing (CS) theory [10] has revealed that signals that were originally sparse or
sparse in certain transform domains can be represented by only a few nonzero coefficients,
and the original signal can be well reconstructed from a limited number of measurement
points using sparse reconstruction algorithms. The CS theory reduces the number of
required sampling sensors, thereby decreasing the experimental costs of the acoustic source
identification system, which effectively addresses the limitations of the Nyquist sampling
theorem and provides a novel approach for implementing the NAH technique [11]. The
field of CS theory primarily involves three essential components: the sparse representation
of a signal, the creation of a measurement matrix that meets the requirement for randomness,
and the development of a reconstruction algorithm that can effectively and accurately
recover the original signal.

The key to CS technology lies in the design of reconstruction algorithms. In recent
years, sparse regularization methods have gained attention as important tools for enhancing
resolution in various fields, especially in image processing. Sparse regularization methods
have also been applied in the field of sound source reconstruction. Currently, there are
several algorithms that are used for CS reconstruction, including greedy iterative algo-
rithms [12–14], convex optimization algorithms [15–17], iterative hard thresholding (IHT)
algorithms [18,19], and sparse Bayesian algorithms. Greedy algorithms do not prioritize
global optimization, instead focusing on optimizing the objective function incrementally
through iterations. Greedy iterative algorithms tend to produce locally optimal solutions.
The convex optimization algorithm employs the restricted isometry property (RIP) [20]
to transform the difficult task of minimizing the l0 norm into a more computationally
feasible problem, that is, minimizing the l1 norm by using the equivalence between the
measurement matrix of the l0 norm and l1 norm. The algorithm has the capability to achieve
a globally optimal solution with high accuracy, but its complexity results in slow operation
speed. Additionally, the measurement matrix must strictly adhere to the RIP constraint,
which can make it unsuitable for many practical engineering applications. The IHT al-
gorithm is not a convex optimization method and is similar to the orthogonal matching
pursuit (OMP) algorithm [21]. This algorithm is faster than the convex optimization algo-
rithm for signal recovery and its computational complexity is equivalent to that of the OMP
algorithm. In the sparse Bayesian algorithm, the unknown parameter vector that needs
to be estimated is treated as a random vector that conforms to a prior distribution. The
prior distribution is determined based on prior knowledge of the parameters. According to
the given sample data, the posterior probability distribution can be calculated using the
Bayesian rule. The unknown parameters can be deduced by integrating prior information
and posterior probabilities. Inferring unknown parameters is a fundamental problem in
algorithm design. With the development of sparse Bayesian theory, it has gained attention
and found applications in an increasing number of fields. Some scholars use a support
vector machine (SVM) [22] to select a kernel function for inferring unknown parameters.
However, the kernel function used in the SVM must satisfy Mercer’s condition. Despite
their effectiveness, some challenges must be faced when training SVM models, such as
high computational requirements and low sparsity. In 2001, Tipping proposed a sparse
probabilistic model, the relevance vector machine (RVM) [23], to address the deficiencies of
SVMs. In 2008, Ji et al. [24] proposed a Bayesian compressive sensing (BCS) framework for
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estimating the underlying signal based on compressive measurements. Babacan et al. [25]
used Laplace prior distribution to sparsify signals and implemented greedy algorithms for
the fast reconstruction of the sound field, thereby improving the reconstruction accuracy
through Bayesian compressive sensing. Ning et al. [26] enhanced the spatial resolution
of sound sources using a robust Bayesian super-resolution method that enforces strong
sparsity priors. Huang et al. [27] developed a robust Bayesian compressive sensing al-
gorithm for approximately sparse signals by combining the features from monitoring
data. Pereira et al. [28] employed Bayesian methods to address the difficulty of automati-
cally selecting appropriate regularization parameters to solve acoustic inverse problems.
Bush et al. [29] proposed a phenomenological model based on Bayesian inference for broad-
band coprime microphone array responses to broadband noise sources, which achieved
accurate estimation of the direction of arrival of the sound source and prediction of the
number of sound sources. Niu et al. [30] proposed a block sparse Bayesian learning method
using the dispersion relation to estimate multi-frequency horizontal wavenumbers. In their
work, they analyzed the horizontal wavenumbers within a specific frequency range using
data from a vertical line array and sound source localization was achieved without prior
knowledge of the bottom parameters or source information.

The purpose of this paper is to achieve the high-accuracy reconstruction (i.e., predic-
tion) of sound fields while significantly reducing the number of required measurement
points (undersampling). Conventional NAH is based on the Nyquist sampling theorem,
and its reconstruction performance depends on the number of sampling points. Achieving
high-accuracy sound field prediction requires expensive measurement costs. In the present
work, a robust sound field reconstruction model based on a combination of the equivalent
source method and sparse Bayesian compressive sensing is proposed to overcome the
limitations of the Nyquist sampling theorem. By utilizing a relevant vector machine to
estimate the maximum a posteriori probability of the source strength and noise variance,
an optimal solution for a sparse coefficient vector with equivalent source strength can
be obtained. Once the equivalent source strength has been determined, the prediction
of the sound field can be completed. In this method, the performance of signal recovery
is improved because the proposed Bayesian compressive sensing algorithm fully takes
into account the measurement noise in the model when reconstructing the sound field.
Additionally, incorporating a hierarchical prior model in an RVM to improve sparsity and
adjusting the function form of the prior distribution to align with the conjugate prior can
result in a highly efficient Bayesian inference process. Furthermore, since all the required
parameters in the BCS model are automatically estimated during the calculation process,
the proposed algorithm is fully automated. Compared with conventional NAH based
on the ESM using Tikhonov regularization [31], the proposed method can achieve higher
accuracy of sound field reconstruction with undersampling.

The outline of this paper is as follows: Firstly, the application of NAH technology and
CS in the field of sound source identification is briefly introduced. Section 2 introduces
the basic theories of ESM and BCS. In Section 3, numerical simulations are performed to
evaluate the proposed method by comparing it with conventional ESM. The effectiveness
of the proposed method is further validated through experiments in Section 4. Finally, the
conclusions are summarized in Section 5.

2. Theoretical Background
2.1. Equivalent Source Method-Based NAH

The sound pressure and particle velocity at any point in space can be approximated
by several equivalent sources placed inside the sound source [6]. As shown in Figure 1, the
hologram measurement surface Sh is placed near the outside of the sound source surface
S, and the equivalent source surface Sq is located on the other side of the sound source
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surface S. This means that the sound pressure and particle velocity at point r in space are,
respectively, expressed as

p(r) =
N

∑
i=1

iρckg(r, rqi)q(rqi) (1)

v(r) =
N

∑
i=1
−

∂g(r, rqi)

∂r
q(rqi) (2)

where p(r) and v(r) are the sound pressure and particle velocity at point r, while q(rqi) and
rqi are the source strength and position of the i-th equivalent source. k = ω/c is the wave
number, ω is the angular frequency, c is the sound velocity, N is the total number of equiv-
alent sources, and g(r, rqi) = exp(ik

∣∣r− rqi
∣∣)/(4π

∣∣r− rqi
∣∣) represents Green’s function in

free space.
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Figure 1. Schematic diagram of NAH based on ESM.

The sound pressures of M measurement points on the hologram measurement surface
Sh can be expressed in matrix form as

Ph = Gshq (3)

where Ph = [p(rh1), p(rh2), · · · , p(rhj), · · · , p(rhM)]T is the pressure column vector at M
measurement points on the hologram measurement surface Sh, rhj is the location vector
of the j-th microphone (j = 1, 2, · · · , M), Gsh(j, i) = iρckg(rhj, rqi) is the transfer matrix be-
tween the equivalent source strength on the surface Sq and the measured sound pressure on
the hologram measurement surface Sh, and g(rhj, rqi) = exp(ik

∣∣rhj − rqi
∣∣)/(4π

∣∣rhj − rqi
∣∣),

q = [q(rq1), q(rq2), · · · , q(rqi), · · · , q(rqN)]
T is the equivalent source strength column vector.

According to Equation (3), the equivalent source strength can be calculated as

q = G+
shPh (4)

where “+” represents the generalized inverse of the transfer matrix.
The solution for the equivalent source strength q is an acoustic inverse problem.

During the process of measuring sound pressure on the hologram measurement surface,
some amount of measurement noise is inevitably introduced. Meanwhile, the transfer
matrix Gsh in Equation (3) is usually an ill-condition matrix. Directly inverting it can lead
to excessive amplification of noise, which may result in an inaccurate solution.

The Tikhonov regularization method is commonly used to deal with such ill-posed
problems, which is one of the most effective methods to obtain a more stable solution. The
principle is to introduce the l2 norm of the solution into the objective function and obtain
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accurate results by balancing the residual norm of the solution and the norm of the solution as

arg min
q

(
‖Ph −Gshq‖2

2 + λ‖q‖2
2

)
(5)

where λ is the regularization parameter, which can be obtained via the generalized cross
validation (GCV) method.

Furthermore, in order to ensure that unique solutions are obtained, conventional NAH
generally requires that the number of measurement points M is larger than the number of
equivalent sources N, i.e., the problem is overdetermined.

The sound pressure and particle velocity on any reconstruction surface in the sound
field can be determined by obtaining the equivalent source strength as

Pr = Gsrq (6)

Vr = Gvrq (7)

where Gsr and Gvr represent the sound pressure transfer matrix and the particle velocity
transfer matrix from the sound source surface to the reconstructed surface, respectively.

2.2. Compressive Sensing Theory

The conventional NAH method is based on the Nyquist sampling theorem and has
limitations on its reconstruction accuracy due to the spatial sampling rate (i.e., the distance
between microphones). Therefore, conventional NAH usually requires a large number of
sensors to achieve a good reconstruction performance. Fortunately, the compressive sensing
theory overcomes the limitations of the Nyquist sampling law in signal reconstruction by
using the sparsity of signals in a certain transform domain and provides an innovative
idea for reconstructing sound fields using undersampling. It can achieve high-accuracy
signal reconstruction with a much lower sampling rate compared to the Nyquist sampling
method and can significantly reduce the number of required sensors and measurement
data, leading to a reduction in measurement costs and workload [10].

Let the original signal x ∈ RN on an orthonormal basis Ψ = [ψ1, ψ2, · · · , ψN ] be
represented as

x = Ψs + ε (8)

where the vector s ∈ RN has only K (K�N) non-zero values, ε is the noise, and s and Ψ are
the sparse coefficient vector and sparse basis matrix of signal x, respectively.

In compressive sensing theory, the measurement vector y is observed by linearly
measuring the original signal using a measurement matrix. The essence of this involves
completing the compressed mapping from high-dimensional signals to low-dimensional
space via linear measurements since the number of measurement points M is much smaller
than the signal dimension N. A stable and reliable measurement matrix ensures that the
measurement value y contains all the information from the original signal x without losing
any data due to the reduction in dimensions. Thus, a measurement matrix Φ ∈ RM×N

(M�N) independent of the sparse basis can be used to perform compression observations
of the original signal x, that is, the measured signal y is represented as

y = Φx + ε (9)

where y ∈ RM is the measurement vector.
Substituting Equation (10) into Equation (11) can be obtained by

y=ΦΨs + ε=Θs + ε (10)

where Θ is an M× N matrix.
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When x is compressible, the solution problem of Equation (10) is transformed into
an optimization problem of the minimum l0 norm. However, l0 norm optimization is
numerically difficult to calculate, so l1 norm optimization is used as an alternative:

arg min
s

(
‖y−Θs‖2

2 + λ‖s‖1

)
(11)

2.3. ESM Based on the CS Theory

The transfer matrix Gsr in Equation (6) can be decomposed by singular value decom-
position (SVD); then, Equation (6) can be rewritten as

Pr = USVHq (12)

where U and V are the left and right singular vectors of the transfer matrix Gsr, respectively,
and both are mutually orthogonal unitary matrices; S is a diagonal matrix composed of pos-
itive singular values; and the upper corner script “H” represents the conjugate transpose.

Take the right-singular vector of the transfer matrix as the basis matrix of sparse
reconstruction, i.e., Ψ = V [16]. Then, the equivalent source strength under the compressive
sensing framework can be sparsely represented as

q = Vw (13)

where w is the sparse coefficient vector with equivalent source strength.
By substituting Equation (13) into Equation (3), the hologram measurement signal can

be expressed as
Ph = GshVw + ε = Hw + ε (14)

where H = GshV is the sensing matrix.
When the number of measurement points M is smaller than the number of equivalent

sources N, the problem of solving the sound source becomes an underdetermined problem
and an accurate reconstructed signal cannot be obtained. Through CS theory, the problem of
minimizing the l2 norm in Equation (5) can be transformed into the problem of minimizing
the l1 norm [17]. The sparse coefficient vector with equivalent source strength w can be
equivalent to the following l1 norm minimization problem as

arg min
w

(
‖Ph −Hw‖2

2 + λ‖w‖1

)
(15)

2.4. Bayesian Model via RVM

The Bayesian learning process involves using prior probabilities of parameters and
posterior probabilities derived from sample information to obtain a full probability density
function. By assuming prior probabilities, the overall distribution can be inferred. The
specific expressions of prior probability and sample information in Bayesian learning
theory are joint probability and conditional probability, respectively. Bayesian theory is a
fundamental approach to statistical modelling, relying on the Bayesian formula to combine
priori information, population and sample to derive the posterior distribution of unknown
parameters. The process can be summarized as follows: First, the prior information and its
distribution are established, along with the corresponding conditional probability density
function. Secondly, the Bayesian formula is used to convert the prior distribution into the
posterior probability density function. Finally, a relevant statistical decision or inference
can be made based on the posterior probability.

In order to improve the computational efficiency of the Bayesian model, an RVM was
employed to estimate the maximum posterior probability of the original signal in this
paper. Recently, RVMs have been applied to text recognition [32], image classification [33],
timing analysis [34], and other fields. In an RVM, a type-II maximum-likelihood (ML)
procedure is considered with the objective of achieving highly efficient computations
while still maintaining accurate results. In addition, according to Equation (14), the prior
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density function of the signal with respect to parameters w and ε can be constructed.
The construction of the prior density function can be divided into the Laplace prior and
Gaussian prior. However, because the Laplace prior is not conjugate to the Gaussian
likelihood, the Bayesian inference cannot be iterated in closed form. In this paper, a
hierarchical prior model of the RVM is introduced, and the prior distribution of w is
assumed to follow a Gaussian distribution. In this way, the RVM not only has the prior
property of the Laplace, but it can also perform conjugate exponential analysis.

In the RVM framework, if the prior distributions and hyperparameters are known,
the mean and variance expressions can be obtained. Then, the marginal distribution of
the hyperparameters is maximized, and the update expression for the hyperparameters is
obtained using the MacKay iteration method. After repeated operations, specific conditions
are reached and then stopped. Figure 2 shows the process of iterative implementation for
the evaluation of the posterior density function of w and α0, where αi and α0 represent the
hyperparameters of the prior distribution of the sparse coefficient vector with equivalent
source strength w and measurement error ε, respectively, which can be obtained through
the Gamma prior distribution. Γ(αi|a, b) is the Gamma distribution, where a is the shape
parameter and b is the scale parameter of αi. Γ(α0|c, d) is the Gamma distribution, where c
is the shape parameter and d is the scale parameter of α0. N(wi

∣∣∣0, α−1
i ) and N(εi

∣∣∣0, α−1
0 )

are the zero-mean Gaussian distributions and their variances are α−1
i and α−1

0 , respectively.
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Figure 2. Graphical model of Bayesian compressive sensing.

When there is a lack of prior knowledge about the distribution of a certain parameter
and uncertainty about which form to choose, Gaussian distribution is a suitable default
option for two reasons. Firstly, most distributions, in reality, are actually rather close to a
Gaussian distribution. The central limit theorem demonstrates that the sum of numerous
independent random variables approximates a Gaussian distribution. Among all prob-
ability distributions with the same variance, the entropy of Gaussian distribution is the
largest. When the data distribution is unknown, the model with the maximum entropy
is usually chosen. Therefore, Gaussian distribution can be regarded as the distribution
that contributes minimum prior knowledge to the model. Additionally, the mathematical
properties of Gaussian distribution are excellent. Gaussian distribution has continuity, dif-
ferentiability, and monotonicity in its probability density function. It exhibits the property
of maximum likelihood estimation, which allows for the estimation of its parameters using
this method. In a sparse Bayesian model, the prior distribution for measurement error ε
and a sparse coefficient vector with equivalent source strength w are determined based on
the principle of maximum likelihood estimation. Considering its broad applicability and
exceptional mathematical properties, it is reasonable to use Gaussian distribution as the
probability distribution for both the measurement error and the sparse coefficient vector
with equivalent source strength in this paper.
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Note that choosing Gamma distribution as the prior distribution for the hyperparame-
ters αi and α0 is that Gamma distribution is the conjugate prior distribution of Gaussian
distribution, which can cause the posterior distribution to have the same functional form
as the prior distribution, but with different parameters. Since the prior distribution of
measurement error ε and the sparse coefficient vector with equivalent source strength w
were approximated as Gaussian distributions, it is possible to avoid the large number of
calculations required to update the posterior distribution, making the calculation process
highly efficient and convenient. In fact, assuming that the prior distribution of the hyperpa-
rameters αi and α0 follows an uninformative prior, which implies that all values are equally
likely, is equivalent to assuming a uniform distribution. However, in the work of Tipping
et al. [23], it was proven that assigning certain deterministic prior distributions to hyperpa-
rameters αi and α0 can promote sparse solutions. Gamma distribution was introduced due
to the convenience of probability derivation. It belongs to the same exponential distribution
family as Gaussian distribution and can maintain the same form in the derivation process,
depending only on the key parameters.

A zero-mean Gaussian prior [23] on each element of w can be defined as

P(w|α) =
N

∏
i=1

N
(

wi

∣∣∣0, α−1
i

)
(16)

where α represents the hyperparameter of the prior distribution of the sparse coefficient
vector with equivalent source strength.

Further, a Gamma prior is considered over α

P(α|a, b ) =
N

∏
i=1

Γ(αi|a, b) (17)

By marginalizing over hyperparameter α, the overall prior on w is then evaluated as

P(w|a, b ) =
N

∏
i=1

∞∫
0

N
(

wi

∣∣∣0, α−1
i

)
Γ(αi|a, b)dαi (18)

The density function Γ(αi|a, b) is the conjugate prior for αi, while wi plays the role of
observed data and N(wi

∣∣∣0, α−1
i ) is a likelihood function.

2.5. Sound Field Reconstruction Based on Bayesian Compressive Sensing

In traditional Bayesian compressive sensing theory, the sparse solution of Equation (14)
can be obtained directly through the sparse Bayesian learning algorithm. However, the
sparse Bayesian learning algorithm is based on a probability distribution solution for
signal processing, which is not applicable to complex signals, and cannot independently
calculate the real and imaginary parts of holographic complex sound pressure. Therefore,
the solutions for both the real and imaginary parts of each element in Equation (14) can be
rewritten as

P = GQ + d (19)

with P =

[
Re(Ph)
Im(Ph)

]
, G =

[
Re(H) −Im(H)
Im(H) Re(H)

]
, Q =

[
Re(w)
Im(w)

]
, d =

[
Re(ε)
Im(ε)

]
, P ∈ R2M,

G ∈ R2M×2N , Q ∈ R2N , d ∈ R2M

where Re(·) and Im(·) denote taking the real and imaginary parts of the corresponding
quantities, respectively. Both the real and imaginary parts of the measurement error can be
considered as following a zero-mean Gaussian distribution with homoscedasticity.
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According to the central limit theorem, assuming that both the real and imaginary
parts of the measurement error satisfy a zero-mean Gaussian distribution with the precision
(inverse-variance) of β2 = 1/α0, the likelihood function of P can be written as

P
(

P
∣∣∣Q, β2

)
=
(

2πβ2
)−M

exp
(
− 1

2β2 (P−GQ)T(P−GQ)

)
(20)

where β2 represents the hyperparameter of the prior distribution of the measurement error.
The sparse Bayesian learning algorithm controls the sparsity of the sparse coefficient

vector with equivalent source strength Q by setting its hyperparameter α and each element
Qi approximates as a zero-mean Gaussian prior distribution with the variance α−1

i

P(Q|α) =
N

∏
i=1

N
(

Qi

∣∣∣0, α−1
i

)
= (2π)−N |A|

1
2 exp

(
−1

2
QTAQ

)
(21)

where A = diag(α1, α2, · · · αN , α1, α2, · · · αN), α = [α1, α2, · · · αN ] determines the prior dis-
tribution of the sparse coefficient vector with equivalent source strength Q.

When α and β2 are unknown, solving the sparse coefficient vector with equivalent
source strength Q can transform into a problem of maximizing the joint posterior probability
P
(

Q, α, β2
∣∣P) by combining Equations (20) and (21).

Decompose the joint posterior probability P
(

Q, α, β2
∣∣P) into

P
(

Q, α, β2
∣∣∣P) = P

(
Q
∣∣∣P, α, β2

)
P
(

α, β2
∣∣∣P) (22)

where the posterior probability distribution P
(
Q
∣∣P, α, β2 ) of Q can be expressed by the

Bayesian theorem as

P
(

Q
∣∣∣P, α, β2

)
=

P
(
P
∣∣Q, β2 )P(Q|α)
P(P|α, β2 )

(23)

where the denominator P
(
P
∣∣α, β2 ) can obtained by performing marginal integration on the

sparse coefficient vector with equivalent source strength Q using the likelihood function

P
(

P
∣∣∣α, β2

)
=
∫

P
(

P
∣∣∣Q, β2

)
P(Q|α)dQ = (2π)−M|C|−

1
2 exp

(
−1

2
PT(C)−1P

)
(24)

with C = β2I + GA−1GT.
Substituting Equations (20), (21) and (24) into Equation (23) yields

P
(

Q
∣∣∣P, α, β2

)
= (2π)−N |Σ|−

1
2 exp

(
−1

2
(Q− µ)T

Σ−1(Q− µ)

)
(25)

where the posterior covariance and mean of the Gaussian distribution of Q [27] are, respectively,

Σ = (β−2GTG + A)
−1

(26)

µ = β−2ΣGTP (27)

According to the Bayesian theorem [26], if a known measurement data point P is given,
the corresponding posterior probability density function can be expressed as:

P
(

α, β2
∣∣P) =

P(P|α,β2 )P(α,β2)
P(P)

∝ P
(
P
∣∣α, β2 )P(α, β2)

∝ P
(
P
∣∣α, β2 )P(α)P

(
β2) (28)

where “∝“ stands for the “proportional” sign, while P(P) is the normalization constant,
which is usually not taken into consideration in the solving process to simplify the calcula-
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tion without affecting the parameter optimization performance. The process of Bayesian
inference focuses on the distribution of parameters within the interval range, rather than
on the specific parameter values.

Based on Equation (28), α and β2 can be predicted by maximizing P
(
P
∣∣α, β2 ). The

maximization problem P
(
P
∣∣α, β2 ) in Equation (24) can be converted into logarithmic form

log
(
P
(

P
∣∣∣α, β2

))
= −1

2

[
2M log(2π) + log|C|+ PT(C)−1P

]
(29)

Equation (29) is used to calculate the partial derivative of α and β2, respectively, and
make the derivative equal to zero. The updated formula can be obtained according to the
MacKay method [23] as

αnew
i =

γi

µ2
i

, i ∈ {1, 2, · · · , N} (30)

where γi = 1− [Σ]i,iαi, [Σ]i,i is the i-th diagonal element of Σ.

(
β2
)new

=
‖P−GΣ‖2

2

2N −
N
∑

i=1
γi

(31)

The initial values of α and β2 are set, respectively, and are substituted into
Equations (26) and (27) to update Σ and µ. Then, α and β2 are re-estimated with updated Σ

and µ values according to Equations (30) and (31). The above calculation is repeated until
α and β2 satisfy certain convergence conditions to complete the estimation of Σ and µ. In
the actual calculation process, most of αi tends to be infinite, and the corresponding sparse
coefficient vector with equivalent source strength Qi approaches zero, thus realizing the
sparse model. The algorithm flow chart is shown in Figure 3.
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The sparse vector w can be expressed as

w = µ(1 : N) + iµ(N + 1 : 2N) (32)

where i =
√
−1 is the imaginary unit.

This paper mainly focuses on the problem of solving the sparse coefficient vector
with equivalent source strength in a complex model. The specific steps of the BCS model
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proposed in this paper for the sparse reconstruction of the sound field are summarized
as follows:

1. Take a measurement of complex sound pressure on the hologram measurement
surface and then convert the complex model into a real model using Equation (19),
which can be processed using Bayesian theory;

2. Approximate the measured sound pressure of the real model as a Gaussian likelihood
distribution using Equation (20);

3. Initialize the values of hyperparameters α and β2 in the Bayesian learning process;
4. Calculate Σ and µ using Equations (26) and (27), where Σ and µ are the covariance

and mean of the posterior distribution of the sparse coefficient vector Q, respectively;
5. Use the MacKay algorithm to iteratively calculate the updated hyperparameters using

Equations (30) and (31);
6. Determine whether the iteration result satisfies the iteration stopping condition. If it

does not, repeat iteration update steps 4 and 5 until the condition is satisfied and the
iteration stops;

7. Obtain the final estimation of the sparse coefficient vector with equivalent source
strength Q = µ;

8. Convert the sparse coefficient vector Q from the real model into the sparse coefficient
vector with equivalent source strength w in the complex model using Equation (32);

9. Calculate the equivalent source strength q using Equation (13);
10. Determine the sound pressure and particle velocity of the reconstruction surface using

Equations (6) and (7), thereby allowing sound field reconstruction to be achieved.

3. Numerical Simulations

Numerical simulations were implemented to evaluate the performance of the proposed
method. A simple, supported steel plate with a thickness of 3 mm and a size of 50 × 50 cm2

was used as the sound source in the simulation. A harmonic force with an amplitude of
1 N was applied to excite the steel plate at its central position. The origin of the coordinates
was set at the central position of the plate, as shown in Figure 4. Poisson’s ratio of the steel
plate was 0.28, the density of steel plate was 7.85 × 103 kg/m3, and Young’s modulus was
2.1 × 1011 Pa. The measurement surface was placed parallel to the steel plate at a distance
of 5 cm, with a sampling interval of 2.5 cm and a size of 50 × 50 cm2. Simulated pressures
were measured via a square random planar array containing 64 microphones, as shown in
Figure 5. Gaussian white noise with a signal-to-noise ratio (SNR) of 30 dB was added to
the measured pressures. The reconstruction surface was the same size as the measurement
surface and located 2 cm away from the plate. The equivalent source surface was set to
be 5 cm away from the surface of the plate and the size of the equivalent source surface
was equal to that of the above surfaces. In the simulation, hyperparameters αi and β2 are
initialized as αinitial

i = 108 and
(

β2)initial
= 0.1× var(P), respectively, where var(·) denotes

the variance. The convergence criterion is considered to be satisfied during the updating
process when lg

(
αnew

i
)
− lg(αi) < 10−4 and lg

((
β2)new

)
− lg

(
β2) < 10−6.

To quantify the reconstruction accuracy of the sound pressure on the reconstruction
surface, the relative error of reconstruction is defined as

η =
‖Pr − Pth‖2
‖Pth‖2

× 100% (33)

where Pr and Pth are the reconstructed and theoretical sound pressure (or particle velocity),
respectively.
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The reconstruction was performed at 500 Hz, 1000 Hz, and 1500 Hz using 64 samplings,
which were randomly selected from 441 samplings on the measurement surface. The
theoretical and reconstructed pressure and particle velocity are compared in Figure 6. As
shown in Figure 6a, when the frequency is 500 Hz, both the ESM and BCS methods have
very small reconstruction errors. However, the reconstruction accuracy of the BCS method
is higher than that of the ESM method at low frequencies. It can be seen from Figure 6b
that when the frequency is 1000 Hz, the peak distribution and symmetrical distribution
characteristics on the reconstruction surface by the ESM method are not reconstructed, while
the BCS method accurately reconstructs the peak distribution and symmetrical distribution
characteristics, reflecting that the reconstruction effect of BCS is still better than that of
the ESM method at medium frequencies. In Figure 6c, when the frequency is increased to
1500 Hz, the ESM method cannot accurately reconstruct the distribution of sound pressure
and particle velocity due to the insufficient number of measurement points. In contrast, the
BCS method can reconstruct the overall details and peak positions, demonstrating high
consistency with the theoretical values. The reconstruction performance of BCS is still
much better than that of the ESM at high frequencies. Overall, it can be seen that good
reconstruction results can be obtained by BCS, whether at low or high frequencies, and all
reconstruction errors by BCS can be maintained at around 10%, indicating that the BCS
method can effectively achieve sound field reconstruction with fewer measurement points
in the whole frequency range.
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Figure 7 shows the reconstruction errors of sound pressure and particle velocity using
the ESM and BCS, respectively, over a frequency range between 100 and 2000 Hz. As
can be seen from Figure 7, the relative errors of sound pressure and particle velocity
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reconstructed by BCS fluctuate steadily throughout the frequency range. The error value
of the reconstructed sound pressure is mostly kept below 10%, and the error value of the
reconstructed particle velocity is around 10–20%. In contrast, the reconstruction errors of
sound pressure and particle velocity using the ESM method show an overall increasing
trend with increasing frequency. By comparing the errors at each frequency, it can be
seen that the error of BCS is lower than that of the ESM. Under the condition of reducing
the number of measurement points, BCS can not only effectively reconstruct sound field
information, but also improve the reconstruction accuracy compared with the sparse
reconstruction of the sound field by the ESM.
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Figure 7. Reconstruction errors of the two methods versus frequency with 64 sampling points.
(a) Pressure; (b) particle velocity.

The influence of the number of sampling points on the reconstructed results was
also investigated. Figure 8 shows the reconstruction errors of the two methods with the
variation in the number of sampling points at 600 Hz and 1600 Hz. As can be seen from
Figure 8, when the number of measurement points increases, the reconstruction errors
for both methods change slightly, indicating that increasing the number of samplings can
effectively improve the reconstruction accuracy of the sound field. At a low frequency, the
reconstruction accuracy of the two methods is relatively low, and the error is less than 10%.
However, at a high frequency, the error distribution obtained by the ESM method is not as
good as that obtained by the BCS method when there are few measurement points. When
the number of measurement points is small, the error results obtained by the ESM method
are mostly above 30%, while the reconstruction error obtained by the BCS method remains
at about 10%. It can be concluded that the BCS method has good reconstruction accuracy at
both low and high frequencies with sparse sampling points.

Furthermore, the effect of the SNR on the reconstruction results is also studied. Figure 9
shows the reconstruction errors of sound pressure and particle velocity for the two methods
at 600 Hz and 1600 Hz with 64 measurement points under different SNRs. As can be
seen from Figure 9, the reconstruction errors of the two methods gradually decrease with
the increase in the SNR, and the error of BCS is generally smaller than that of the ESM.
Although the reconstruction error of the ESM is not much different from that of BCS
at 600 Hz, the reconstruction error of BCS is obviously better than those of the ESM at
1600 Hz, indicating that BCS has better anti-noise performance and is more robust in sound
field reconstruction.
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Figure 8. Reconstruction errors of the two methods with an SNR of 30 dB under different numbers
of sampling points. (a) Pressure at 600 Hz; (b) particle velocity at 600 Hz; (c) pressure at 1600 Hz;
(d) particle velocity at 1600 Hz.
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Figure 9. Reconstruction errors of the two methods under different SNRs with 64 sampling points.
(a) Pressure at 600 Hz; (b) particle velocity at 600 Hz; (c) pressure at 1600 Hz; (d) particle velocity at
1600 Hz.
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4. Experiment

An experiment was carried out in a semi-anechoic chamber to further examine the
performance of the proposed method. The experimental setup is shown in Figure 10. The
experiment used a vibrating steel plate with dimensions of 0.65 × 0.8 m2 and a thickness
of 3 mm as the sound source. The plate was excited by a harmonic force applied by a
vibrator, and the excitation signal was composed of a series of sine signals with a frequency
range from 200 to 1000 Hz and a frequency interval of 100 Hz. The hologram surface and
reconstruction surface were located 0.1 m and 0.05 m away from the steel plate, respectively,
with the same dimensions of 0.6 × 0.75 m2 and a uniform spatial interval of 0.05 m. The
pressures were measured on the hologram surface using a linear array with a grid of 13 × 16
and a total of 208 sampling points. The pressures at 208 points on the reconstruction surface
were reconstructed using 81 sampling points, which were randomly selected from the
pressures at 208 original points on the hologram surface. The pressures at these 208 points
on the reconstruction surface were also measured to serve as the theoretical pressures for
comparing the reconstruction performance of various methods. The equivalent source
surface was arranged 0.05 m behind the surface of the steel plate.
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Figure 10. The experimental setup.

Figure 11 shows a comparison of the reconstructed and theoretical pressure at 500 Hz
and 900 Hz. It can be seen that when the frequency is 500 Hz, both the ESM and BCS can
achieve good agreement with the theoretical values, with a reconstruction error of 12.85%
for the ESM and 6.79% for BCS. However, when the frequency is 900 Hz, the ESM with
81 sampling points is not sufficient for accurate reconstruction, resulting in a reconstruction
error of 22.39%. On the other hand, BCS has a reconstruction error of only 14.57%, and
the reconstructed sound pressure distribution still has high consistency with the theoret-
ical values, indicating that the proposed method has a better sound field reconstruction
performance than the ESM when the number of measurement points is small.

Figure 12 shows a comparison of the pressure reconstruction errors for the two meth-
ods over a frequency range between 200 and 1000 Hz. It can be seen that when us-
ing 81 sampling points, the ESM obtains acceptable results at low frequencies, while it
has larger reconstruction errors at high frequencies, meaning that more sampling points
may be required to achieve greater reconstruction accuracy. In contrast, all reconstruc-
tion errors using BCS are mostly below 15%, especially the reconstruction error at low
frequencies—which is less than 10%—indicating a better reconstruction performance by
BCS across the whole frequency range.
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Figure 13 shows the pressure reconstruction errors of the two methods at 700 Hz using
different numbers of sampling points. It can be seen that the reconstruction errors of the
two methods gradually decrease with the increase in the number of measurement points.
When there are fewer measurement points, the pressure error reconstructed by the ESM
can even reach 50%. Under the same conditions, the reconstruction error of BCS is less
than 20%. Furthermore, the reconstruction error of BCS is lower than that of the ESM
and the change is very stable, indicating that BCS has better robustness than the ESM in
reconstructing the sound field.
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5. Conclusions

A sound field reconstruction method based on Bayesian compressive sensing is pro-
posed in this paper. The sound field reconstruction of near-field acoustic holography based
on the equivalent source method is transformed into a maximum a posteriori estimation
problem of source strength and noise variance under the Bayesian framework. By combin-
ing the Bayesian principle with compressive sensing theory, the MacKay iteration of an
RVM in the sparse Bayesian model was used to infer hyperparameters, the maximum a
posteriori of the original signal was estimated, and the solution of the sparse coefficient with
an equivalent source strength was obtained. The numerical simulation results demonstrate
that the reconstruction error of the BCS method is about 10% across the whole frequency
range, which is an improvement over the ESM, verifying that the proposed method has
a wider range of frequency applicability. When the number of measurement points is
limited, the BCS method exhibits a reconstruction error of approximately 10% at high
frequencies and less than 5% at low frequencies, indicating that the proposed method can
achieve higher accuracy compared to the ESM in undersampling conditions. The proposed
method shows promise in significantly reducing measurement costs while maintaining
high reconstruction accuracy in engineering applications. In addition, the BCS method
demonstrates significantly higher reconstruction accuracy than the ESM in a low-SNR
environment, indicating that the proposed method has a better anti-noise performance
and greater robustness in sound field reconstruction. The experimental results also show
that the BCS method outperforms the ESM in terms of its reconstruction performance. The
reconstruction error of the BCS method is mostly below 15%, especially at low frequencies,
where it is typically below 10%. Despite having fewer measurement points, the BCS method
still achieves higher reconstruction accuracy than the ESM. This further verifies the stability
and reliability of the proposed method in the sound field.

In future work, NAH based on a hierarchical block sparse Bayesian compressive
sensing algorithm will be investigated to improve the efficiency and accuracy of sound field
reconstruction. Moreover, we will explore the potential of utilizing Bayesian compressive
sensing for active noise control. This will involve optimizing the update mechanism of the
filter group, developing an improved cluster control method, and applying these techniques
to reduce noise in various settings, such as in active soundproof windows and vehicle
cabins, thereby expanding the scope of applications for Bayesian compressive sensing.
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