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Matrix uncertainty (MU) model

Consider the model

y = Xθ∗ + ξ,

Z = X + Ξ.

The random vector y ∈ Rn and the random n × p matrix Z
are observed

The n × p matrix X is unknown

Ξ is an n × p random noise matrix, ξ ∈ Rn is a noise
independent of Ξ

θ∗ = (θ∗1, . . . , θ
∗
p) is an unknown vector of parameters.

Possibly p � n and θ∗ is s-sparse.
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Assumptions on the model

We assume that ξ and Ξ are deterministic and satisfy the
assumptions: ∣∣∣∣1nZT ξ

∣∣∣∣
∞

≤ ε, (1)

|Ξ|∞ ≤ δ (2)

for some ε ≥ 0, δ ≥ 0. Here |·|∞ stands for the maximum of
components norm.

If ξ and Ξ are random, these assumptions are satisfied with a
probability close to 1 in many interesting cases.
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Noise levels ε and δ

ξ ∼ N (0, σ2I ) =⇒ take ε = Aσ
√

log p
n for some A >

√
2.

Then condition (1) holds with probability at least 1− p1−A2/2.
Similar choice of ε for subgaussian ξ.

The components ξi of ξ are with E (ξi ) = 0, E (ξ2i ) ≤ σ2 <∞;

1

n

n∑
i=1

max
j=1,...,p

|Xij |2 ≤ c <∞

where Xij are entries of X . Then condition (1) holds with

ε = A

√
(log p)1+γ

n
,

with probability at least 1− O ((log p)−γ) (Lounici, 2008).
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Noise levels ε and δ

Noise level δ. Models with repeated measurements: Z is
either an average of several observed matrices with mean X ,
or Z an empirical covariance matrix, with X as a population
covariance matrix (in the latter case p = n). Then the
threshold δ is defined in similar terms as ε.

Noise level δ. Models with missing data.
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Example 1. Models with missing data

Assume that the elements Zij of matrix Z satisfy

Zij = Xijηij (3)

where Xij are the elements of X and ηij are i.i.d. Bernoulli random
variables taking value 1 with probability 1− π and 0 with
probability π, 0 < π < 1.

The data Xij is missing if ηij = 0, which happens with
probability π. We are mainly interested in the case of small π.

In practice it is easy to estimate π by the empirical probability
of occurrences of zeros in the sample of Zij , so it is realistic to
assume that π known.
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Example 1. Models with missing data

We can rewrite (3) in the form

Z ′
ij = Xij + ξ′ij

where Z ′
ij = Zij/(1− π), ξ′ij = Xij(ηij − E (ηij))/(1− π). Thus, we

can reduce the model with missing data (3) to the form

Z ′ = X + Ξ′

where the entries ξ′ij of Ξ′ are bounded random variables with zero
means and variance O(π|X |∞) for small π. Thus, with a
probability close to 1, we have that |Ξ|∞ = O(π

√
log(pn)|X |∞)

for small π.
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“Blind” Lasso/Dantzig selector

Lasso estimator:

θ̂L = arg min
θ∈Rp

{
|y − Zθ|22 + r |θ|1

}
,

where |θ|qq =
∑q

j=1 |θj |, r > 0 a tuning parameter, typically r ∼ 2ε.

Dantzig selector (Candes and Tao, 2007):

θ̂D , arg min
{
|θ|1 :

∣∣∣1
n
ZT (y − Zθ)

∣∣∣
∞
≤ 2ε

}
.
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Missing data

π = 0 π = 0.01 π = 0.02 π = 0.03

s = 1 1.00
(0.00)

18.00
(25.36)

43.75
(27.04)

51.56
(25.49)

s = 2 2.00
(0.00)

41.29
(26.70)

61.40
(16.74)

65.62
(16.78)

s = 3 3.00
(0.00)

50.21
(24.31)

65.96
(15.66)

75.03
(10.12)

Empirical mean and standard deviation of the number of
coefficients bigger than 10−2 for the Lasso
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Missing data

π = 0 π = 0.01 π = 0.02 π = 0.03

s = 1 1.00 0.58 0.15 0.12
s = 2 1.00 0.22 0.02 0.01
s = 3 1.00 0.08 0.00 0.00

Proportion of simulations where the sparsity pattern
is exactly recovered, Lasso estimator.

π = 0 π = 0.02 π = 0.04 π = 0.06

s = 1 1.00 0.21 0.02 0.01
s = 3 1.00 0.01 0.00 0.00
s = 5 1.00 0.00 0.00 0.00

Proportion of simulations where the sparsity pattern
is exactly recovered, Dantzig selector.
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Example 2. Portfolio replication

Replicating a hedge fund portfolio means obtaining a profit and loss
profile similar to those of the hedge fund without investing in it.

We observe the daily absolute returns yi , i = 1, . . . ,T , of a
portfolio (difference between the close price and the open price on
day i). Theoretically:

yi =

p∑
j=1

θjXij ,

where p is the total number of assets in the portfolio, Xij is the
return of the j-th asset belonging to the portfolio on day i and θj
its quantity. In practice: a measurement error between yi and∑p

j=1 θjXij , which leads us to linear regression + measurement
error in the matrix of returns X = (Xij)i ,j .
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Example 3. Inverse problems with unknown operator

Recover an unknown function f that belongs to a Hilbert space H
based on

Y = Af + ζ

where A : H → V is a linear operator, V is a Hilbert space, ζ is a
random variable with values in V .

Expansion with two bases (φj), (ψi ) + truncation =⇒

Y = Xθ∗ + ξ

X = ((Aφj , ψi )i=1,...,n,j=1,...,p), and the vectors y = (Y1, . . . ,Yn),
ξ = (ξ1, . . . , ξn).
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Example 3. Inverse problems with unknown operator

In applications operator A is often not known but its action on any
given function in H can be observed with a relatively small noise.
Thus, we have noisy observations of the matrix X =⇒ Matrix
Uncertainty model.

Efromovich/Koltchinskii (2001), Cavalier/Hengartner (2005), Cav-
alier/Raimondo (2007), Hoffmann/Reiss (2008), Marteau (2007)
consider the case n = p and non-degenerate X . Not always
satisfying to assume, especially if n and p are very large. Our
approach covers n = p with degenerate matrices X that satisfy
some regularity assumptions. It also covers the case p � n, which
is a useful extension because by taking a large p we can assure
that the residual r is indeed negligible.
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Summary

A non-asymptotic approach to errors-in-variables models, free
of classical indentifiability constraints, p � n.

Extension of `1-based sparse recovery beyond the often
prohibitive restricted isometry/restricted eigenvalue
conditions.

Simple and efficient way of sparse recovery in several specific
problems, such as models with missing data, inverse problems
with unknown operator or some financial models (portfolio
selection, portfolio replication).
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Linear equation with noisy matrix

No noise in observations, ξ = 0. Thus, we solve

y = Xθ,

where X is an unknown matrix such that we can observe its noisy
values

Z = X + Ξ,

where Ξ satisfies |Ξ|∞ ≤ δ.

Let Θ be a given convex subset of Rp.

We will assume that there exists an s-sparse solution θs of
y = Xθ such that θs ∈ Θ.
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Linear equation with noisy matrix, MU-selector

Define the estimator θ̂ of θs by:

θ̂ = argmin{|θ|1 : θ ∈ Θ, |y − Zθ|∞ ≤ δ|θ|1}. (4)

(We denote by |x |r , r ≥ 1, the `r -norm of x ∈ Rd whatever is
d ≥ 1.)

This is a convex minimization problem. If Θ = Rp or if Θ is a
linear subspace of Rp, a simplex, a cone, we have a linear
programming problem.

We will call solutions of (4) the non-noisy (or pure) matrix
uncertainty selectors (shortly non-noisy MU-selectors).
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MU-selector: Existence

The feasible set of problem (4):

Θ1 = {θ ∈ Θ : |y − Zθ|∞ ≤ δ|θ|1}

is non-empty. In fact, Θ1 contains at least θs , since

|y − Zθs |∞ = |Ξθs |∞ ≤ |Ξ|∞ |θs |1 ≤ δ|θs |1.

Thus, there always exists a solution θ̂ of (4). But it is not
necessarily unique.
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Restricted eigenvalue assumption

For a vector ∆ = (aj)j=1,...,M and a subset of indices
J ⊆ {1, . . . ,M} write

∆J = (aj1{j ∈ J})j=1,...,M .

The Gram matrix: Ψ = XTX/n.

Assumption RE(s). (Bickel, Ritov and T., 2007)

There exists κ > 0:
∆TΨ∆ ≥ κ|∆J |22

for all J ⊆ {1, . . . , p} such that |J| ≤ s and |∆Jc |1 ≤ |∆J |1.
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More specific assumptions

Assumption RE is more general than several other assumptions on
the Gram matrix:

Coherence assumption (Donoho/Elad/Temlyakov),

Restricted Isometry,“Uniform uncertainty principle”
(Candes/Tao),

Incoherent design assumption (Meinshausen/Yu,
Zhang/Huang).
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Coherence assumption

Assumption C. All the diagonal elements of the matrix
Ψ = XTX/n are qual to 1 and all its off-diagonal elements
Ψij , i 6= j , satisfy the coherence condition:

max
i 6=j

|Ψij | ≤ ρ

with some ρ < 1.

Remark: Assumption C with

ρ <
1

3αs

implies Assumption RE(s) with

κ =
√

1− 1/α.
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Theorem 1

Assume that there exists an s-sparse solution θs ∈ Θ of the
equation y = Xθ. Then for any non-noisy MU-selector θ̂:

1

n
|X (θ̂ − θs)|22 ≤ 4δ2|θ̂|21.

If Assumption RE(s) holds, then

|θ̂ − θs |1 ≤ 4
√

sδ

κ
|θ̂|1.

If Assumption RE(2s) holds, then

|θ̂ − θs |2 ≤ 4δ

κ
|θ̂|1.
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Theorem 1 (cont’d)

If Assumption C holds with ρ < 1
3αs , α > 1, then

|θ̂ − θs |∞ < 2

(
1 +

2

3
√

sα(α− 1)

)
δ|θ̂|1.

Remarks

1. We can replace |θ̂|1 by |θs |1 in all the inequalities of Theorem 1.

2. It is straightforward to deduce a bound for |θ̂ − θs |r , ∀ r ≥ 1
from the bounds of Theorem 1.
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Selection of sparsity pattern

Define the thresholded estimator θ̃ = (θ̃1, . . . , θ̃p) where

θ̃j = θ̂j I{|θ̂j | > τ}, j = 1, . . . , p, (5)

with the data-dependent threshold

τ = C∗(α)δ|θ̂|1

for C∗(α) = 2

(
1 + 2

3
√

α(α−1)

)
and some α > 1.

Since the MU-selector θ̂ is, in general, not unique, the thresholded
estimator θ̃ is neither necessarily unique.
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Selection of sparsity pattern

Denote by J(θ) the set of non-zero coordinates of θ.

Theorem 2

Assume that θs ∈ Θ is an s-sparse solution of y = Xθ, and that
Θ ⊆ {θ ∈ Rp : |θ|1 ≤ a} for some a > 0. Let Assumption C hold
with ρ < (3αs)−1 for some α > 1. If

min
j∈J(θs)

|θsj | > C∗(α)δa,

then
sign θ̃j = sign θsj , j = 1, . . . , p.

for all θ̃.
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Selection of sparsity pattern

Remark. Under Assumption C with ρ < (3αs)−1 as required in
Theorem 2, the s-sparse solution is unique, cf. Lounici (2008), so
that the right hand side of

sign θ̃j = sign θsj , j = 1, . . . , p. (6)

is uniquely defined. The estimator θ̃ is not necessarily unique,
nevertheless Theorem 2 assures that the sign recovery property (6)
holds for all versions of θ̃.

Alexandre Tsybakov Sparse Recovery under Matrix Uncertainty



Introduction
Sparse solution of linear equation with noisy matrix

General regression with unknown design matrix
Approximately s-sparse solutions

Numerical experiments

Noisy case: Definition of MU-selector

Let ξ 6= 0. Then define the MU-selector as:

θ̂ = argmin{|θ|1 : θ ∈ Θ,

∣∣∣∣1nZT (y − Zθ)

∣∣∣∣
∞
≤ (1 + δ)δ|θ|1 + ε}. (7)

For δ = 0 and Θ = Rp we get the Dantzig selector.

(7) is a convex minimization problem and it reduces to linear
programming if Θ = Rp or if Θ is a linear subspace of Rp or a
simplex.

The feasible set of (7) is non-empty since it contains the true
vector θ∗.

The solution of (7) is not necessarily unique.
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Let the true parameter θ∗ = θs be s-sparse and let θ∗ ∈ Θ. Let all
the diagonal elements of XTX/n be equal to 1. Set

ν = 2(2 + δ)δ|θs |1 + 2ε.

Then, under Assumption RE(s) for MU-selector θ̂:

|θ̂ − θs |1 ≤ 4νs

κ2
,

1

n
|X (θ̂ − θs)|22 ≤ 4ν2s

κ2
.

Under Assumption RE(2s):

|θ̂ − θs |rr ≤
(

4ν

κ2

)r

s, ∀ 1 ≤ r ≤ 2,
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Under Assumption C with ρ < 1
3αs , α > 1:

|θ̂ − θs |∞ <
3α+ 1

3(α− 1)
ν. (8)

Remarks

1. It is straightforward to get a bound for |θ̂ − θs |r , ∀ r > 2 from
the bounds of Theorem 3.
2. If δ = 0 and Θ = Rp we retrieve the corresponding results in
Bickel, Ritov and T. (2007) for Dantzig selector.

3. If Θ ⊆ {θ ∈ Rp : |θ|1 ≤ a} for some a > 0, then (8) is less than

τ =
3α+ 1

3(α− 1)

(
2ε+ 2(2 + δ)δa

)
.
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Theorem 4

Let the true parameter θ∗ = θs be s-sparse and let θ∗ ∈ Θ. Let
Θ ⊆ {θ ∈ Rp : |θ|1 ≤ a} for some a > 0 and all the diagonal
elements of XTX/n be equal to 1. Let Assumption C hold with
ρ < (3αs)−1 for some α > 1. If

min
j∈J(θs)

|θsj | > τ,

then
sign θ̃j = sign θsj , j = 1, . . . , p.

τ = 3α+1
3(α−1)

(
2ε+ 2(2 + δ)δa

)
.
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Approximately s-sparse solutions

Let θ∗ be arbitrary, not necessarily s-sparse. Then we can get bo-
unds involving a residual term, the difference between θ∗ and its
s-sparse approximation θs . In particular, we can take θs as the best
s-sparse approximation of θ∗, i.e., the vector that coincides with θ∗

in its s largest in absolute value coordinates and has other coordi-
nates that vanish.

Assumption RE(s, 2)

There exists κ > 0 such that

min
∆ 6=0: |∆Jc |1≤2|∆J |1

|X∆|2√
n|∆J |2

≥ κ

for all subsets J of {1, . . . , p} of cardinality |J| ≤ s.
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Selection of sparsity pattern: noisy case

Theorem 5

Assume that there exists a solution θ∗ ∈ Θ of the equation
y = Xθ. Then for any non-noisy MU-selector θ̂,

1

n
|X (θ̂ − θ∗)|22 ≤ 4δ2|θ̂|21.

If Assumption RE(s,2) holds, then

|θ̂ − θ∗|1 ≤ 4
√

sδ

κ
|θ̂|1 + 6 min

J:|J|≤s
|θ∗Jc |1.

NB Assumption C with ρ < 1
5αs for some α > 1 implies Assump-

tion RE(s, 2) with κ2 = 1− 1/α (Bickel, Ritov and T., 2007).
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Theorem 5 (cont’d)

If Assumption C holds with ρ < 1
5αs , α > 1, then

|θ̂ − θ∗|∞ < 2

(
1 +

2

5
√

sα(α− 1)

)
δ|θ̂|1 +

6

5αs
min

J:|J|≤s
|θ∗Jc |1.
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Censored matrix

matrix X of size 100× 1000 (n = 100, p = 1000) which is the
normalized version of a 100× 1000 matrix with iid standard
Gaussian entries.

Get Zij by censoring of Xij :

Zij = Xij I{|Xij | ≤ t}+ t(signXij)I{|Xij | > t}, t = 0.9.

Choose randomly (uniformly) s non-zero elements in a vector
θ of size 1000. The associated coefficients are 1 + |Ni |,
i = 1, . . . , s, where the Ni are iid standard Gaussian variables.

We set y = Xθ + ξ, where ξ a normal random vector with
zero mean and covariance matrix σ2I with σ = 0.05/1.96 (so
that for an element of ξ, the probability of being between
−0.05 and 0.05 is 95%).
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Censored matrix

We compute the solution of (7) where we optimize over
Θ = R1000

+ for ε = | 1nZT ξ|∞ and different values of the
parameter δ. We also compute the “blind” (i.e., based on
(y ,Z )) Lasso and Dantzig selector.

Practical choice of δ is crucial. Since the matrix is normalized
and t = 0.9, it is reasonable to take a value of δ whose order
of magnitude . 0.1. We take δ = 0 (ignoring the noise), and
δ = 0.05, 0.1.

We make 100 replications for each couple (s, π).
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Censored matrix

`2-err PredErr Nb1 Nb2 Exact

Lasso 0.0670
(0.0106)

11.97
(1.785)

95.46
(2.017)

1
(0)

0

Dantzig 0.0464
(0.0075)

4.673
(1.040)

72.23
(4.751)

1
(0)

0

δ = 0 0.0627
(0.0112)

9.297
(1.685)

74.43
(5.142)

1
(0)

0

δ = 0.05 0.0131
(0.0026)

1.328
(0.257)

1.440
(0.711)

1
(0)

66

δ = 0.1 0.0027
(0.0008)

0.275
(0.085)

1
(0)

1
(0)

100

Censored matrix, s = 1.

Alexandre Tsybakov Sparse Recovery under Matrix Uncertainty



Introduction
Sparse solution of linear equation with noisy matrix

General regression with unknown design matrix
Approximately s-sparse solutions

Numerical experiments

Censored matrix

`2-err PredErr Nb1 Nb2 Exact

Lasso 0.1825
(0.0317)

34.56
(6.161)

96.8
(1.509)

3
(0)

0

Dantzig 0.1411
(0.0267)

14.55
(3.687)

84.59
(4.547)

3
(0)

0

δ = 0 0.2115
(0.0415)

30.95
(6.027)

85.91
(4.404)

3
(0)

0

δ = 0.05 0.0053
(0.0059)

0.526
(0.517)

3.140
(0.374)

3
(0)

87

δ = 0.1 0.0382
(0.0162)

3.512
(1.120)

3
(0)

3
(0)

100

Censored matrix, s = 3.

Alexandre Tsybakov Sparse Recovery under Matrix Uncertainty



Introduction
Sparse solution of linear equation with noisy matrix

General regression with unknown design matrix
Approximately s-sparse solutions

Numerical experiments

Missing data

The same parameters of experiment as above, except that the
observed matrix Z is defined by Zij = ηijXij , ηij Bernoulli with
π = 0.1.

`2-err PredErr Nb1 Nb2 Exact

Lasso 0.0180
(0.0101)

2.204
(1.165)

94.22
(3.061)

1
(0)

0

Dantzig 0.0097
(0.0070)

0.963
(0.749)

66.18
(10.89)

1
(0)

0

δ = 0 0.0151
(0.0105)

1.438
(0.953)

68.75
(10.92)

1
(0)

0

δ = 0.05 0.0032
(0.0022)

0.272
(0.175)

7.460
(4.940)

1
(0)

12

δ = 0.1 0.0043
(0.0017)

0.416
(0.128)

1.560
(1.194)

1
(0)

74

Missing data, s = 1.
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Missing data

`2-err PredErr Nb1 Nb2 Exact

Lasso 0.0719
(0.0275)

6.672
(2.108)

96.84
(1.270)

3
(0)

0

Dantzig 0.0529
(0.0233)

4.867
(2.183)

83.55
(5.038)

3
(0)

0

δ = 0 0.0740
(0.0326)

5.536
(2.163)

84.76
(5.020)

3
(0)

0

δ = 0.05 0.0314
(0.0177)

2.496
(0.848)

6.910
(3.108)

3
(0)

12

δ = 0.1 0.0643
(0.0179)

6.099
(0.903)

3.290
(0.791)

3
(0)

84

Missing data, s = 3.
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Portfolio replication

Data basis: Open and close prices of p = 491 assets of the
Standard and Poors (S&P 500 index) for the n = 251 trading days
of 2007.

po
ij and pc

ij are open and close prices of the j-th asset for the

i-th day. The matrix (X̃ )ij = pc
ij − po

ij ; X is a normalized

matrix obtained from X̃ .

We pick s assets to build our portfolio. We compute the daily
absolute return vector of our portfolio Xθ, with the coordinate
in the vector θ ∈ R491 of each chosen asset equal to 1/s and
the other equal to 0 (note that in practice, if the j-th asset is
in the portfolio, it means that its quantity is 1/(sσ̃j), with σ̃j

the empirical standard deviation of its absolute returns).
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We consider the following six portfolios:

s = 2 s = 3

Boeing, Goldman Sachs Boeing, Google, Goldman Sachs
Boeing, Coca Cola Boeing, Google, Coca Cola

Boeing, Ford Boeing, Google, Ford

We compute y = Xθ + ξ, where ξ is the same noise as in the
preceding application (ε will also be chosen in the same way
as in the preceding application).

We run the algorithm with Z = X (no matrix uncertainty)
and δ = 0.5. We output the retrieved sparsity pattern.

We run the algorithm with δ = 0.5 and matrix uncertainty: Z
is equal to X , up to one of its columns which is replaced by
zeros. The column corresponds to one of the assets in the
portfolio. We suppress a column associated to the asset
different from Boeing and Google.
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Initial Portfolio Retrieved Portfolio, δ = 0.5

B, Goldman Sachs B, Morgan Stanley, Merrill Lynch
B, Coca Cola B, Pepsico

B, Ford B, General Motors

B, G, Goldman Sachs B, G, Morgan Stanley, Merrill Lynch
B, G, Coca Cola B, G

B, G, Ford B, G, General Motors

Alexandre Tsybakov Sparse Recovery under Matrix Uncertainty



Introduction
Sparse solution of linear equation with noisy matrix

General regression with unknown design matrix
Approximately s-sparse solutions

Numerical experiments

Summary

A non-asymptotic approach to errors-in-variables models, free
of classical indentifiability constraints, p � n.

Extension of `1-based sparse recovery beyond the often
prohibitive restricted isometry/restricted eigenvalue
conditions.

Simple and efficient way of sparse recovery in several specific
problems, such as models with missing data, inverse problems
with unknown operator, some financial models.
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