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We propose a general dynamic reduced-order modelling framework for typical
experimental data: time-resolved sensor data and optional non-time-resolved particle
image velocimetry (PIV) snapshots. This framework can be decomposed into four
building blocks. First, the sensor signals are lifted to a dynamic feature space
without false neighbours. Second, we identify a sparse human-interpretable nonlinear
dynamical system for the feature state based on the sparse identification of nonlinear
dynamics (SINDy). Third, if PIV snapshots are available, a local linear mapping
from the feature state to the velocity field is performed to reconstruct the full state
of the system. Fourth, a generalized feature-based modal decomposition identifies
coherent structures that are most dynamically correlated with the linear and nonlinear
interaction terms in the sparse model, adding interpretability. Steps 1 and 2 define a
black-box model. Optional steps 3 and 4 lift the black-box dynamics to a grey-box
model in terms of the identified coherent structures, if non-time-resolved full-state data
are available. This grey-box modelling strategy is successfully applied to the transient
and post-transient laminar cylinder wake, and compares favourably with a proper
orthogonal decomposition model. We foresee numerous applications of this highly
flexible modelling strategy, including estimation, prediction and control. Moreover,
the feature space may be based on intrinsic coordinates, which are unaffected by
a key challenge of modal expansion: the slow change of low-dimensional coherent
structures with changing geometry and varying parameters.

Key words: low-dimensional models, nonlinear dynamical systems

1. Introduction

Understanding, modelling and controlling complex fluid flows is a central focus in
many scientific, technological and industrial applications, including energy (e.g. wind,

† Email address for correspondence: loiseau.jc@gmail.com
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tidal and combustion), transportation (e.g. planes, trains, and automobiles), security
(e.g. airborne contamination) and medicine (e.g. artificial hearts and artificial
respiration). Improved models of engineering flows have the potential to dramatically
improve performance in these systems through optimization and control, resulting
in practical gains such as drag reduction, lift increase and mixing enhancement
(Fabbiane et al. 2014; Brunton & Noack 2015; Rowley & Dawson 2017; Sipp &
Schmid 2016). Although the Navier–Stokes equations provide a detailed mathematical
model, this representation may be difficult to use for engineering design, optimization
and control. Instead, they are commonly discretized into a high-dimensional, nonlinear
dynamical system with many degrees of freedom and multi-scale interactions. These
equations are nonetheless expensive to simulate, making them unwieldy for iterative
optimization or in-time control. They may also obscure the underlying physics,
which often evolves on a low-dimensional attractor (Noack et al. 2003; Holmes
et al. 2012). The various fidelities of model description were described by Wiener
(1948): ‘white-box’ describes an accurate evolution equation based on first principles
(e.g. Navier–Stokes discretization), ‘grey-box’ describes a low-dimensional model
approximating the full state (e.g. proper orthogonal decomposition (POD)–Galerkin
models) and ‘black-box’ describes input–output models that lack a connection to the
full-state space (e.g. neural networks).

In the following, we outline related reduced-order models as our point of departure
in § 1.1 and foreshadow proposed innovations of this study in § 1.2.

1.1. Related reduced-order models as point of departure

Reduced-order models provide low-dimensional descriptions of the underlying fluid
behaviour in a compact and computationally efficient representation. There are
many techniques for reduced-order modelling, ranging from physical reductions
to purely data-driven methods, and nearly everything in between. Proper orthogonal
decomposition (POD) (Sirovich 1987; Berkooz, Holmes & Lumley 1993; Holmes
et al. 2012) provides a low-rank modal decomposition of fluid flow field data,
extracting the most energetic modes. It is then possible to Galerkin project the
Navier–Stokes equations onto these modes, resulting in an approximate, low-
dimensional model in terms of mode coefficients (Noack, Morzynski & Tadmor
2011; Carlberg, Tuminaro & Boggs 2015). POD–Galerkin models are widely used,
as they are interpretable, grey-box models, and it is straightforward to reconstruct
the high-dimensional flow field from the low-dimensional model via POD modes.
The first pioneering example of Aubry et al. (1988) featured wall turbulence, almost
three decades ago. Subsequent POD models have been developed for the transitional
boundary layer (Rempfer & Fasel 1994), the mixing layer (Ukeiley et al. 2001; Wei
& Rowley 2009), the cylinder wake (Deane et al. 1991; Galletti et al. 2004) and the
Ahmed body wake (Östh et al. 2014), to name only a few.

POD–Galerkin modelling is challenging for changing domains (Bourguet, Braza
& Dervieux 2011), changing boundary conditions (Graham, Peraire & Tang 1999)
and slow deformation of the modal basis (Babaee & Sapsis 2016). Standard Galerkin
projection can also be expected to suffer from stability issues (Rempfer 2000; Schlegel
& Noack 2015; Carlberg, Barone & Antil 2017), although including energy-preserving
constraints may improve the long-time stability and performance of nonlinear models
(Balajewicz, Dowell & Noack 2013; Cordier et al. 2013). POD–Galerkin models
tend to be valid for a narrow range of operating conditions, near those of the
dataset used to generate the POD modes. Transients also pose a challenge to POD
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modelling. Noack et al. (2003) and Tadmor et al. (2010) demonstrate the ability of
a low-dimensional model to reproduce nonlinear transients of the von Kàrmàn vortex
shedding past a two-dimensional cylinder, provided the projection basis includes a
shift mode quantifying the distortion between the linearly unstable base flow and
marginally stable mean flow. These techniques have been extended to include the
effect of wall actuation (Graham et al. 1999; Rediniotis, Ko & Kurdila 2002).

In addition to the physics-informed Galerkin projection, data-driven modelling
approaches are prevalent in fluid dynamics (Brunton & Noack 2015; Rowley &
Dawson 2017). For example, dynamic mode decomposition (DMD) (Rowley et al.
2009; Schmid 2010; Kutz et al. 2016), the eigensystem realization algorithm (ERA)
(Juang & Pappa 1985), Koopman analysis (Mezić 2005, 2013; Tu et al. 2014;
Williams, Kevrekidis & Rowley 2015), cluster-based reduced-order models (CROM)
(Kaiser et al. 2014), NARMAX models (Glaz, Liu & Friedmann 2010; Zhang et al.
2012; Billings 2013; Semeraro et al. 2017) and network analysis (Nair & Taira
2015) have all been used to identify dynamical systems models from fluids data,
without relying on prior knowledge of the underlying Navier–Stokes equations. DMD
models are readily obtained directly from data, and they provide interpretability in
terms of flow structures, but the resulting models are linear, and the connection to
nonlinear systems is tenuous unless DMD is enriched with nonlinear functions of
the data (Williams et al. 2015; Kutz et al. 2016). Neural networks have long been
used for flow modelling and control (Lee et al. 1997; Milano & Koumoutsakos 2002;
Krizhevsky, Sutskever & Hinton 2012; Zhang & Duraisamy 2015), and recently
deep neural networks have been used for Reynolds averaged turbulence modelling
(Ling, Kurzawski & Templeton 2016; Kutz 2017). However, many machine learning
methods may be prone to overfitting, have limited interpretability and make it difficult
to incorporate known physical constraints. Parsimony has thus become an overarching
goal when using machine learning to model nonlinear dynamics. In the seminal work
of Bongard & Lipson (2007) and Schmidt & Lipson (2009) governing dynamics and
conservation laws are discovered using genetic programming along with a Pareto
analysis to balance model accuracy and complexity, preventing overfitting.

Recently, Brunton, Proctor & Kutz (2016b) introduced the sparse identification of
nonlinear dynamics (SINDy), which identifies parsimonious nonlinear models from
data. SINDy follows the principle of Ockham’s razor, resting on the assumption
that there are only a few important terms that govern the dynamics of a system, so
that the equations are sparse in the space of possible functions. Sparse regression
is then used to efficiently determine the fewest terms in the dynamics required to
accurately represent the data, preventing overfitting. Because SINDy is based on
linear algebra (i.e. the nonlinear dynamics is represented as a linear combination
of candidate nonlinear functions), the method is readily extended to incorporate
known physical constraints (Loiseau & Brunton 2018). In general, it is possible to
obtain nonlinear models using genetic programming or SINDy on POD or DMD
mode coefficients, which make these methods grey box, having a transformation
from the model back to the high-dimensional, interpretable state space. However,
models developed on POD/DMD mode coefficients may still suffer from fundamental
challenges of traditional POD–Galerkin models, such as capturing changing boundary
conditions, moving geometry and varying operating condition.

1.2. Contribution of this work

In this work, we introduce a new grey-box modelling procedure that yields
interpretable nonlinear models from measurement data. The method is applied
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to the well-investigated two-dimensional transient flow past a circular cylinder
with slow change of the base flow and varying coherent structures (Tadmor et al.

2011). In particular, we develop nonlinear models only from lift measurements that
accurately capture steady-state and transient flow behaviour. First, a feature vector
is constructed from the lift signal, including a time-delayed value. This lifting shall
avoid false neighbours, i.e. neighbouring states with significantly different temporal
evolution. Second, a sparse dynamical model is identified in this feature space.
For the following steps, full-state measurement data are assumed to be available.
Third, a local linear mapping from feature vector to velocity field is constructed
using a K-nearest neighbours (KNN) approach. This mapping provides significantly
more accurate flow reconstruction, as compared to a POD–Galerkin model of the
same order. Technically, we mitigate the significant challenges of using an ‘elliptic’
Galerkin modelling approach with ‘hyperbolic’ dynamics: the global modes connect
all locations in all directions instantaneously while coherent structures are convected
with the flow (Noack 2016).

Furthermore, it is also possible to construct a generalized set of modes that are most
dynamically correlated with the given terms in the identified model. The resulting
modal decomposition, relying on (quadratic) stochastic estimation (Adrian & Moin
1988; Bonnet et al. 1994; Murray & Ukeiley 2007; Tu et al. 2013), reveals coherent
structures associated with given nonlinear interaction terms. With the associated full-
state data and generalized modes, it is possible to reconstruct the full-state associated
with a given low-dimensional prediction in the reduced-order grey-box model.

To summarize, the resulting grey-box modelling procedure has the following
beneficial features: (i) it captures nonlinear physics, (ii) it is based on a simple,
non-invasive computational algorithm, (iii) the resulting model is interpretable in
terms of nonlinear interaction physics and generalized modes (optional with full-state
data) and (iv) modelling feature vectors is more robust to mode deformation, moving
geometry and varying operating condition. This procedure is shown schematically in
figure 1.

The manuscript is organized as follows: § 2 provides an overview of the flow
configuration considered in this work, namely the incompressible, two-dimensional
flow past a circular cylinder at Re = 100. Section 3 describes the proposed grey-box
modelling procedure, including modelling in feature space and obtaining a generalized
modal expansion if full-state data are available. In § 4, numerical results for
the grey-box modelling procedure are presented and analysed for the cylinder
flow. Section 5 provides some leads for application of the present approach to
higher-dimensional systems. It also highlights some connections with previous works.
Finally, § 6 summarizes our key findings and provides the reader with possible future
directions to extend this work.

2. Flow configuration

The flow configuration considered in the present work is the two-dimensional
incompressible viscous flow past a circular cylinder at Re = 100, based on the
free-stream velocity U∞, the cylinder diameter D and the kinematic viscosity ν.
This Reynolds number is well above the critical Reynolds number (Rec = 48) for
the onset of the two-dimensional vortex shedding (Zebib 1987; Schumm, Eberhard
& Monkewitz 1994) and below the critical Reynolds number (Rec = 188) for the
onset of three-dimensional instabilities (Zhang et al. 1995; Barkley & Henderson
1996). In the fluid dynamics community, a large body of literature exists in which

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

14
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

U
 B

er
lin

 U
ni

ve
rs

ita
et

sb
ib

lio
th

ek
, o

n 
07

 M
ar

 2
01

9 
at

 0
8:

24
:4

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.147
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Sparse reduced-order modelling 463
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FIGURE 1. (Colour online) Schematic overview of the proposed sparse modelling
procedure. A sparse dynamical system (Brunton et al. 2016b) is identified based on
features obtained from sensor signals s, and the full state u may also be estimated with
the availability of particle image velocimetry snapshots (optional).

this particular set-up has been chosen to illustrate modal decomposition (Bagheri
2013) and model identification techniques (Noack et al. 2003; Sengupta et al. 2015;
Brunton et al. 2016b; Rowley & Dawson 2017). This set-up is thus a particularly
compelling test case to illustrate our model identification strategy, as well as to draw
connections and quantify its performance against other well-established techniques.

The dynamics of the flow is governed by the incompressible Navier–Stokes
equations

∂u

∂t
+ (u · ∇)u = −∇p +

1

Re
∇2u

∇ · u = 0,

}

(2.1)

where u = (u, v)T and p are the velocity and pressure fields, respectively. The centre
of the cylinder has been chosen as the origin of the reference frame x = (x, y), where
x denotes the streamwise coordinate and y denotes the spanwise coordinate. This
study considers the same computational domain as in Noack et al. (2003), extending
from x = −5 to x = 15 in the streamwise direction, and from y = −5 to y = 5
in the spanwise direction. A uniform velocity profile is prescribed at the inflow, a
classical stress-free boundary condition is used at the outflow and free-slip boundary
conditions are used on the lateral boundaries of the computational domain. Based on
the spectral element solver Nek 5000 (Fischer, Lottes & Kerkemeir 2008), the domain
is discretized by 1832 seventh-order spectral elements. Finally, the time integration of
the diffusive terms relies on a backward differentiation of order 3 (BDF3), while the
convective terms are advanced in time based on a third-order accurate extrapolation.
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50 100 1500
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–0.2

0.2

0

d d

0.25–0.25

t

(a) (b)

FIGURE 2. (Colour online) (a) Evolution of the lift coefficient CL as a function of time
for the two-dimensional cylinder flow at Re = 100. (b) Trajectory of the system in the
phase plane (CL, dCL/dt). In both panels, the orange dots indicate the instants of time for
which the corresponding vorticity field is shown in figure 3.

Two out of the three direct numerical simulations used in this work have been
initialized with the following initial condition

u(x, 0) = us(x) + 0.001ǫ(x), (2.2)

where us(x) is the linearly unstable steady solution of the Navier–Stokes equations
and ǫ(x) is a zero-mean and unit-variance random white-noise velocity field. Each
simulation is run for 150 convective time units, providing M = 1200 equidistantly
sampled velocity snapshots u(m)(x) = u(x, tm), m = 1, . . . , M, and synchronous
measurements of the lift and drag coefficients, CL(tm) and CD(tm). This timespan
covers the entire unforced transient phase, from the steady solution to the fully
developed von Kármán vortex street. Note that only one of these two simulations
is used to identify the low-order model in § 4.1, while the second one serves only
cross-validation purposes.

Figure 2 depicts a typical evolution of the lift coefficient CL, while figure 3 shows
snapshots of the vorticity field at different instants of time. For t 6 50, the flow
is governed by linear dynamics. Consequently, the vorticity field of the perturbation
v(x, t)= u(x, t)− us(x), shown in figure 3(a), can be well approximated by the leading
instability mode. For 50 6 t 6 80, the perturbation grows to an extent that nonlinear
effects cause the perturbation to distort. Eventually, for t > 80, the flow settles onto
a periodic limit cycle corresponding to the classical von Kàrmàn vortex street. Given
the evolution of the lift coefficient depicted in figure 2 and the associated snapshots
shown in figure 3, the aim of the present work is to propose a new reduced-order
modelling strategy able to accurately reproduce such dynamics and flow structures.
Note that this set-up mimics an experiment in Hosseini, Noack & Martinuzzi (2016)
where the pressure difference between the top and bottom side of a cylinder is a
surrogate quantity for the lift. This difference had been recorded in a time-resolved
manner while non-time-resolved particle image velocimetry (PIV) flow snapshots
were taken.

3. Sparse sensor-based modelling

Here, we discuss the core mathematical and algorithmic framework used to identify
nonlinear reduced-order models and build a full-state estimator from data. The
identification procedure relies on the sparse identification of nonlinear dynamics
(SINDy) method (Brunton et al. 2016b) briefly summarized in § 3.2. As a second
step, we introduce the reader to two different full-state estimators in § 3.3 based on
stochastic estimation and nearest neighbours algorithms.
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100 100 100

5

 0

 –5

x x x

y

(a) (b) (c)

FIGURE 3. (Colour online) Snapshots of the vorticity field at the different time instants
highlighted in figure 2. Note that the vorticity field of the linearly unstable base flow,
us(x), has been subtracted in order to highlight the vorticity induced by the perturbation.

3.1. From sensor signals to feature space

Performing direct numerical simulations allows one to gather space–time-resolved
data at every single point within the computational domain considered. In contrast,
experimentalists typically have access only to a limited number of time-resolved
sensor measurements s. The aim of the present work is thus to illustrate how one can
leverage recent advances in system identification and machine learning to construct
reduced-order models directly from these limited sensor measurements. For that
purpose, experimental conditions are mimicked with direct numerical simulations and
we consider a single sensor measurement given by

s(t) := CL(t), (3.1)

where CL is the lift coefficient. Note that in general s may be a vector of mea-
surements, including for instance the lift and drag coefficients, pressure measurements
on an immersed body or point velocity field measurements at selected locations.
However, in the present study, the lift coefficient is sufficient to characterize the
flow. Given the sensor measurements s, our aim is to identify a low-order model
that allows us to predict the evolution of our system. Raw signals may unfortunately
be ill behaved for system identification purposes and may need to be augmented, or
lifted, to include functions of the sensor measurements. We consider the augmented
state a to be a feature vector given by

a = g(s). (3.2)

There are many choices for the mapping g to enrich the sensor measurements and
improve models. If the sensors are sufficient to define the state of the system, then
g may be the identity map. If the sensors consist of high-dimensional snapshots,
then g may extract POD mode coefficients. It may also be possible to augment the
measurements with delay embedding (Takens 1981; Juang & Pappa 1985; Brunton
et al. 2017) in order to obtain a sufficiently high-dimensional feature vector a as
to fully characterize the dynamics of the system. More generally, choosing a good
transformation g is an important open problem, with connections to representation
theory and the Koopman operator perspective on dynamical systems (Mezić 2005,
2013; Williams et al. 2015; Arbabi & Mezić 2016; Brunton et al. 2016a, 2017).
In the present study, we choose g to augment the sensor measurement of the lift
coefficient with its time derivative, along with a proper scaling:

a1(t) := s(t),

a2(t) :=
1

ω∞

ds

dt
(t),







(3.3)
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where ω∞ is the post-transient angular shedding frequency estimated from the power
spectral density of the lift signal depicted in figure 2. This choice has been guided by
physical considerations: the lift can be measured and allows for the characterization
of the state of the flow. It is also well known that the flow around a two-dimensional
cylinder at Re = 100 only necessitates three degrees of freedom (Noack et al. 2003),
or features, to be approximately described: the shedding amplitude, shedding phase
and the degree of base flow deformation. In this work, we will show that the degree
of base flow deformation can be described by the drag coefficient, which is then
modelled as an algebraic equation of the feature vector a. In comparison, in Hosseini
et al. (2016), the analogues of a1 and a2 were defined as the cosine and sine Morlet
transforms of the pressure difference history. Please refer to § 5.1 for a discussion
on appropriate sensor selection and for the definition of the mapping function g in
flows where the number of degrees of freedom required to model the dynamics of
the system may not be known a priori.

3.2. Sparse identification of nonlinear dynamics (SINDy)

Identifying reduced-order models from data is a central challenge in mathematical
physics, with a rich history of developments in fluid dynamics. The form of the
dynamics is typically either constrained via prior knowledge, as in the Galerkin
projection, or a particular model structure is chosen heuristically, and parameters are
optimized to match the data. Simultaneous identification of the model structure and
parameters from data is considerably more challenging, as there are combinatorially
many possible model structures. The sparse identification of nonlinear dynamics
(SINDy) architecture (Brunton et al. 2016b) bypasses the intractable combinatorial
search through all possible model structures, leveraging the fact that many systems
may be modelled by dynamics f that is sparse in the space of possible right-hand
side functions:

da

dt
= f (a), (3.4)

where a is the same state vector as in § 3.1. It is then possible to solve for the relevant
terms that are active in the dynamics using either a convex ℓ1-regularized regression
(Tibshirani 1996) or a sequentially thresholded least-squares method (Brunton et al.

2016b). Both algorithms penalize the number of terms in the dynamics and scale
favourably to large problems.

First, time series data are collected and formed into a data matrix:

A =
[

a(t1) a(t2) · · · a(tM)
]T

(3.5)

where ‘T’ denotes the matrix transpose. A similar matrix of derivatives is formed:

Ȧ =

[

da

dt
(t1)

da

dt
(t2) · · ·

da

dt
(tM)

]T

. (3.6)

In practice, this may be computed directly from the data in A. However, for noisy data,
the total-variation regularized derivative (Chartrand 2011) tends to provide numerically
robust derivatives. Based on the data in A, a library of candidate nonlinear functions
Θ(A) is constructed:

Θ(A) =
[

1 A P2(A) · · · Pd(A) · · · sin(A) · · ·
]

. (3.7)
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Here, Pd(A) denotes a matrix with column vectors given by all possible time series of
dth degree polynomials in the state a. Any basis functions may be used to generate
the library Θ , although polynomials work well for fluids. The dynamical system in
equation (3.4) may now be represented in terms of the data matrices in equations (3.6)
and (3.7) as

Ȧ = Θ(A)Ξ . (3.8)

Each column Ξk in Ξ is a vector of coefficients determining the active terms in the
kth row equation in equation (3.4). A parsimonious model will provide an accurate
model fit in equation (3.8) with as few terms as possible in Ξ . Such a model may
be identified using a convex ℓ1-regularized sparse regression:

Ξk = argmin
Ξ

′
k
‖Ȧk − Θ(A)Ξ ′

k‖2 + λ‖Ξ ′
k‖1. (3.9)

Here, Ȧk is the kth column of Ȧ. Sparse regression, such as the LASSO (Tibshirani
1996) or the sequential thresholded least-squares algorithm used in SINDy, improves
the numerical robustness of this identification for noisy overdetermined problems, in
contrast to earlier methods (Wang et al. 2011) that used compressed sensing (Candès
2006; Donoho 2006). Once identified, the sparse vectors Ξk may be synthesized into
a nonlinear dynamical system model:

dak

dt
= Θ(a)Ξk, (3.10)

where ak is the kth element of a and Θ(a) is a row vector of symbolic functions of
a, as opposed to the data matrix Θ(A). Identifying the most parsimonious nonlinear
model by applying sparse regression in the library Θ is a convex procedure. The
alternative approach, which involves regression onto every possible sparse nonlinear
structure, constitutes an intractable brute-force procedure. SINDy thus bypasses this
combinatorial search with modern convex optimization and machine learning. The
SINDy algorithm is closely related to NARMAX models (Billings 2013) and fast
function extraction (FFX) (McConaghy 2011).

A major benefit of the SINDy architecture is its ability to identify parsimonious
models that contain only the required nonlinear terms, resulting in interpretable
models that avoid overfitting. In the optimization above, the sparsifying parameter
λ may be varied from λ = 0 (i.e. least squares) to λ → ∞ (i.e. trivial dynamics
da/dt = 0), sweeping out a Pareto front. To identify the most parsimonious model
that best balances model complexity with accuracy, Mangan et al. (2017) proposed an
efficient methodology to rank candidate models on the Pareto front using the Akaike
information criterion (AIC) (Akaike 1974) or the Bayes information criterion (BIC)
(Schwarz et al. 1978).

The embedding of nonlinear dynamics in terms of a linear regression problem
in (3.9) makes the SINDy method highly extensible. Recent extensions to SINDy
enable the identification of nonlinear differential equations with rational function
nonlinearities by reformulating the problem as an implicit differential equation and
solving for the active terms by finding the sparsest vector in the null space of
an augmented library containing functions of the state and derivative terms (Mangan
et al. 2016). SINDy has also been generalized to identify partial differential equations
from data (Rudy et al. 2017; Schaeffer 2017), to include integral terms (Schaeffer
& McCalla 2017), and it has been extended to include inputs and control (Brunton,
Proctor & Kutz 2016c; Kaiser, Kutz & Brunton 2017).
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3.3. Full-state estimation

The proposed methodology enables the identification of a low-order model that
reproduces the system dynamics recorded by a few sensors. Although it may provide
useful insights into the physics, it does not allow for a straightforward full-state
estimation of the system considered. To accommodate this estimation, one needs to
define a function

h(x, a(t)) ≈ u(x, t) (3.11)

mapping the state of the system from the low-dimensional feature space to the
high-dimensional physical space. In the most general case, h is a nonlinear mapping
function. Note, however, that h(x, 0) physically corresponds to the reference state
us(x) at a = 0. While this reference state is classically chosen as the mean flow, in
the present work, it is chosen as the linearly unstable steady solution us(x) of the
Navier–Stokes equations. In the following, two different strategies to approximate
h(x, a) from data will be presented.

3.3.1. Local linear mapping

Let us consider, for the sake of simplicity and without loss of generality, the feature
vector a =

[

a1 a2

]T
. Given different transient evolutions of a(t), and having stored

the associated velocity field snapshots, the nonlinear mapping h(x, a(t)) ≈ u(x, t)

can be approximated by a local linear mapping. If non-time-resolved snapshots are
available, then only the corresponding synchronous instances of a are considered. In
the rest of this work, a•(t) will denote time evolution of the feature vector obtained
from a direct numerical simulation, while a◦(t) will denote the evolution predicted by
the low-dimensional models identified using the SINDy architecture outlined in § 3.2.
A Delaunay triangulation of the phase plane of the low-dimensional system can then
be obtained from the transient evolutions of a•

1(t) and a•
2(t) in the training dataset. An

example triangulation is illustrated in figure 4(a). Estimating the flow field associated
with a point

[

a◦
1 a◦

2

]

then amounts to a two-step procedure:

(i) Given the Delaunay triangulation of the phase plane, identify in which triangle
the point

[

a◦
1 a◦

2

]T
is contained. See figure 4 for an illustration.

(ii) Based on the vertices of this triangle, the flow field associated with
[

a◦
1 a◦

2

]T

can then be estimated as a weighted average of the flow fields associated with
each vertex. In the present work, these weights are chosen such that the query
point

[

a◦
1 a◦

2

]T
is the barycentre of the corresponding triangle.

Although it may be memory intensive, since numerous snapshots need to be stored,
it will be shown in § 4.2 that this local linear mapping procedure allows for an
unprecedented accuracy when reconstructing the flow field. Further, it is possible to
reduce the memory by compressing the snapshots. In such a case, the output of this
local linear mapping are the coefficients of the POD modes needed to reconstruct the
high-dimensional flow field.

3.3.2. Feature-based modal expansion

If full-state snapshots of the flow field are available, then it is possible to construct
a set of generalized feature-based modes that make the sparse models physically
interpretable, providing spatial structures associated with feature variables or specific
interaction terms identified in the dynamics. These modes are defined as the spatial
structures most correlated with either the feature vector a or with specific nonlinear
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0 1.5–1.5

0

–1.5

1.5

–0.4–0.5–0.6

0.1

0.2

0

(a) (b)

FIGURE 4. (Colour online) In both panels, the blue line depicts the trajectory of the
testing dataset for which we reconstruct the flow field. (a) Delaunay triangulation of the
state plane. In addition to the two transient trajectories started from the fixed point, a
third trajectory with an initial condition above the limit cycle has been used to obtain this
triangulation. (b) Close-up view in the vicinity of the query point (•). The corresponding
flow field can then be estimated as a weighted average of the flow fields associated with
each vertex of the triangle highlighted in orange.

terms in the sparse model (3.4). They are obtained by stochastic estimation, a means
of approximating a conditional average using a knowledge of unconditional statistics.
As shown in Adrian & Moin (1988), a stochastic estimate of the conditional average
can be obtained by means of a Taylor series expansion

û(x, t) = 〈u(x, t)|a(t)〉

≃ ai(t)ui(x) + ai(t)aj(t)uij(x) + · · · (3.12)

where ai(t) is the ith entry of the feature vector a(t), 〈·〉 is the expected value, and
û(x, t) is the estimate of the conditional average, in the present case the estimated
velocity field. The first and second-order feature-based modes ui(x) and uij(x),
respectively, are determined by minimizing the mean square error of the estimate
〈(û(x, t) − u(x, t)2)〉.

In practice, these feature-based modes are obtained by solving a least mean square
problem. Consider a sequence of base flow subtracted full-state snapshots

Q(x) =
[

u(k1)(x) u(k2)(x) u(kp)(x)
]

. (3.13)

(Note that the columns of the matrix Q correspond to a time sequence of full-state
snapshots, which is the mathematical convention in snapshot proper orthogonal
decomposition and dynamic mode decomposition (Kutz et al. 2016). However, the
matrix A uses transposed notation to be consistent with the original SINDy paper
(Brunton et al. 2016b), with rows corresponding to a time-sequence of transposed
feature vectors aT . Thus, the columns of A

T are a time-sequence of the features a,
similar to Q.) These snapshots do not need to be collected at the same sampling
period as the measurements s but only at a multiple of this sampling period. As such,
they are collected at times tk1, . . . , tkp

that correspond to a subset of the resolved
measurement times with which s and a are collected. Recall that the columns of
A

T are a time-resolved sequence of feature vectors a(tm), with m = 1, . . . , M. The
columns of A

T associated with the non-time-resolved snapshots in Q are given by

A
T
Q

=
[

a(tk1) a(tk2) · · · a(tkp
)
]

. (3.14)
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Considering only the first-order Taylor expansion of the conditional average, the
snapshots sequence may thus be approximated by

Q = U(x)AT
Q
(t) + R(x, t), (3.15)

where R is the truncation residual (i.e. the higher-order terms in the Taylor series
expansion of the conditional average). The columns of U(x) are the first-order feature-
based modes that are most correlated with the terms in the feature vector a(t). These
modes are found via least-squares regression:

U = Q
(

A
T
Q

)†
, (3.16)

where (AT
Q
)† is the Moore–Penrose pseudo-inverse of A

T
Q

. More generally, it is possible
to compute modes that are most correlated with the dynamic interaction terms in the
sparse model (3.8). Let γ1, . . . , γq denote the indices of the rows in Ξ with non-zero
entries, i.e. corresponding to active terms in the sparse dynamics. The corresponding
terms in the dynamics may be extracted via:

α =
(

Θ(a)
[

eγ1 eγ2 · · · eγq

])T
, (3.17)

where eγj
is a column vector consisting entirely of zeros, except for a one in the γjth

row; i.e. eγj
is the γjth column of the identity matrix. For example, we consider in

§ 4.2 a vector of nonlinear terms α given by α =
[

a1 a2 a2
1 + a2

2 2a1a2 a2
1 − a2

2

]T
.

This choice corresponds to the different terms active in the dynamics of the low-
order model identified in § 4.2. The five components comprise the first and second
harmonics as well as the base flow drift. It is now possible to obtain generalized
modes:

U = Q
([

α(tk1) α(tk2) · · · α(tkp
)
])

. (3.18)

Thus, each mode ui(x) is a spatial field corresponding to a specific interaction term
in the dynamical system, given by a component of α.

Compared to the local linear mapping presented in § 3.3.1, such a feature-based
expansion has a low memory footprint, although it will typically be less accurate.
However, even if the feature-based modes are not used for full-state reconstruction,
they imbue the sparse model with physical interpretability. The modal representation
above may be thought of as closely related to the proper orthogonal decomposition
or dynamic mode decomposition, except generalized to identify modes that are most
correlated with the features in a or the dynamic interaction terms in α.

4. Results

A detailed description of the application of the present methodology to the two-
dimensional cylinder flow at Re = 100 is given in this section. As a starting point,
our attention is focused in § 4.1 on the identification of a low-dimensional descriptor
system describing the dynamics of the flow solely based on the instantaneous lift
and drag coefficients. As a second step, the performances of different estimators to
reconstruct the full state of the system are discussed in § 4.2.

4.1. Sensor-based dynamics

In this section, a low-dimensional model of the transient and post-transient laminar
cylinder wake is presented. First, a dynamical model capturing the dynamics of
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0 0.5

Raw data

Low-pass filtered data

1.0 1.5 2.0 2.5 3.0

10–14

10–4

10–9

101

PSD

FIGURE 5. (Colour online) Comparison of the power spectral density (PSD) of the
original lift signal (see figure 2) and its low-pass filtered counterpart used for identification
purposes.

the lift coefficient is identified. Then, this low-order model is supplemented with
a nonlinear algebraic measurement equation in order to infer the evolution of the
drag coefficient. Note that prior to system identification, the lift signal is low-pass
filtered as to simplify the identification process. Figure 5 depicts the power spectral
density of the raw signal and its low-pass filtered counterpart. As can be seen, the
low-pass filter suppresses the second low-amplitude harmonic. Nonetheless, plotting
both signals in the time domain shows no discernible differences (not shown). In
practice, such a procedure is similar to the Krylov–Bogulobiov assumption used
by Tadmor et al. (2010) to simplify the low-order model derived from a Galerkin
projection of the Navier–Stokes equations onto the span of the leading POD modes.
The influence of this low-amplitude harmonic on the identified model is discussed in
appendix A.

It is well known that the two-dimensional cylinder flow behaves as a self-excited,
self-limiting and nearly harmonic nonlinear oscillator. This behaviour is clearly visible
in the time evolution of the instantaneous lift coefficient depicted in figure 2. As
such, the dynamics can be described by a nonlinear second-order ordinary differential
equation (ODE), or by a set of two coupled first-order ODEs. The feature vector a(t)

characterizing the state of the system in the feature space is defined as

a =
[

â1 â2

]T
, (4.1)

with â = a/amax, amax being the maximum absolute value of a once the system evolves
onto the periodic limit cycle. Such normalization ensures that

−1 6 a1,2 6 1, (4.2)

a condition which greatly simplifies the sparse optimization problem involved in the
identification procedure. Although this mapping function has been defined analytically
in the present work, similar features could be identified using delay coordinates,
as in the singular spectrum analysis (SSA) in meteorology and ecology (Colebrook
1978; Barnett & Hasselmann 1979; Weare & Nasstrom 1982; Ghil et al. 2002) or
the eigensystem realization algorithm (ERA) from system identification and control
theory (Juang & Pappa 1985). These delay coordinates have recently been shown
to provide an embedding of nonlinear dynamics into a new coordinate system
where the dynamics is approximately linear, establishing a connection to Koopman
operator theory (Arbabi & Mezić 2016; Brunton et al. 2017). Alternatively, the
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Hilbert transform can also be used to embed the dynamics. In addition, a number
of techniques in nonlinear time series analysis have been developed to determine the
dimension of the feature vector a needed to correctly reproduce the dynamics, e.g.
the false nearest neighbours algorithm proposed by Kantz & Schreiber (2004).

4.1.1. Determining the structure of the model

As a starting point, let us first determine the optimal structure of the low-order
model. Based on the transient evolution of the lift coefficient s•(t) depicted in figure 2,
the corresponding time series of the feature vector a•(t) has been computed. The
sparse identification of nonlinear dynamics algorithm is used to identify the equations
governing the dynamics of a. Four libraries of polynomial functions are considered,
with the maximum polynomial degree ranging from d = 1 (i.e. linear) up to d = 7 (i.e.
septic). For d = 3 (i.e. cubic), this pool of functions reads

Θ(a1, a2) =
[

1 a1 a2 a2
1 a1a2 a2

2 a3
1 a2

1a2 a1a2
2 a3

2

]

. (4.3)

Such a pool of functions, which can easily be enriched if needed, is a natural choice
for the identification of nonlinear oscillators.

Given our different polynomial libraries Θ(a1, a2), the procedure proposed by
Mangan et al. (2017) based on the Akaike information criterion (AIC) is used to
select the model structure that best balances the trade-off between accuracy and
model complexity. Models with lower scores are more parsimonious, as in Mangan
et al. (2017).

Figure 6 depicts the distribution of the different models identified in the complexity
versus AIC plane. Note that the relative AICc score depicted is given by AICc =
AIC − AICmin. It should be emphasized that the model characterized by AICc = 0 is not
necessarily the best model possible, but only the best one among the different models
tested. In the present case, the model that best balances accuracy and complexity is
given by a cubic polynomial:

da1

dt
= 1.12a2

da2

dt
= −1.12a1 + 0.2(1 − a2

1 − a2
2)a2.











(4.4)

Surprisingly, the last three terms involved in the equations governing the dynamics of
a2 are identical. Moreover, the first coefficient identified corresponds to the circular
frequency of the natural vortex shedding.

Figure 7 depicts a comparison of the time trace of a1 obtained from direct numerical
simulation (DNS) and predicted by the low-order model identified for the training
dataset (figure 7a,b) and the cross-validation dataset (figure 7c,d). Note that the
latter has not been used in the identification process. Although it accurately captures
the dynamics of the system close to the periodic orbit, the identified low-order
model underestimates the growth rate of the fixed point’s linear instability. This
underestimation leads to a delayed nonlinear saturation of the oscillation amplitude.
This point will be investigated in the next section. Finally, note that models including
nonlinearities up to the seventh order reproduce very accurately the testing and
cross-validation time traces. These models may, however, be prone to overfitting, as
highlighted by the AIC score.
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FIGURE 6. (Colour online) Relative AICc criteria for models identified by SINDy. The
library of polynomial functions used for the identification includes up to seventh degree
polynomials. Magnification in lower panel shows the strongly (dark grey) and weakly
(light grey) supported AIC range. The filled-in orange square corresponds to the optimal
model, here with cubic nonlinearities.

4.1.2. Correcting the growth rate

As shown in the previous section, the cubic model identified underestimates the
growth rate of the fixed point’s linear instability, despite having the lowest AIC score,
balancing accuracy and complexity. Figure 8 depicts the evolution of the identified
growth rate as a function of the maximum polynomial degree of the model (blue
dots) and compares it to the one obtained from a linear stability analysis of the
corresponding high-dimensional linearized Navier–Stokes operator (dashed line). It
appears that SINDy identifies the correct growth rate for libraries of polynomial
functions with order N > 7. Despite the good agreement between the phase plane
trajectories predicted by the cubic model and the DNS observations (see figure 7b,d),
it appears that higher-order terms are necessary to accurately identify the instability
growth rate, even though it may increase the risk of overfitting.

Although the need for high-order terms may appear counter-intuitive, this is
relatively common in regression analysis with classical polynomials. To understand
this, let us rewrite our regression model for a2 as

da2

dt
= Θ1ξ1 + Θ2ξ2, (4.5)

where Θ1 contains the linear terms (i.e. Θ1(a1, a2) =
[

a1 a2

]

), Θ2(a1, a2) the
higher-order terms, while ξ1 and ξ2 are the corresponding vectors of coefficients.
Neglecting the sparsity constraint for the sake of simplicity, the least-squares problem
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FIGURE 7. (Colour online) (a,c) Comparison of the time evolution of the a1 obtained from
direct numerical simulation and predicted by the identified low-dimensional dynamical
system with cubic nonlinearity. (b,d) Trajectory of the true system and the identified one
on the phase plane (a1, a2). For (a,b) the initial condition is close to the linearly unstable
fixed point ub, given by a = 0. Panels (c,d) use the cross-validation dataset for which the
initial condition used in the direct numerical simulation has been chosen to lie outside of
the limit cycle and, for physical reasons, also constrained to start close to the paraboloid
manifold structuring the phase space of the system.

4 6 8 10 12 14 16 18

0.1

0.2

0.3

0.4

Polynomial degree

FIGURE 8. (Colour online) Evolution of the identified instability growth rate as a function
of the maximum polynomial order of the model. The dashed line depicts the growth
rate obtained from the eigenvalue analysis of the linearized Navier–Stokes operator. The
jittering observed for high-order polynomials (i.e. N > 12) is related to the ill conditioning
of the least squares used in SINDy, and it can be attenuated by regularizing the partial
regression problem.

becomes
[

Θ
T
1 Θ1 Θ

T
1 Θ2

Θ
T
2 Θ1 Θ

T
2 Θ2

] [

ξ1

ξ2

]

=

[

Θ
T
1 ȧ2

Θ
T
2 ȧ2

]

. (4.6)
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Thus, the coefficients ξ1 of the linear terms are given by

ξ1 = (ΘT
1 Θ1)

−1
Θ

T
1 (ȧ2 − Θ2ξ2). (4.7)

Note that here ȧ2 is used to denote the time derivative of a2 for the sake of clarity.
The term (ΘT

1 Θ1)
−1

Θ
T
1 ȧ2 is the least-squares solution when our pool of admissible

functions is limited to Θ1(a1, a2). The second term, −(ΘT
1 Θ1)

−1
Θ

T
1 Θ2ξ2, is the

correction of ξ1 due to the inclusion of higher-order polynomials in the regression
problem. This correction is proportional to the cross-correlation matrix Θ

T
1 Θ2 and is

related to the non-orthogonality properties of the set of functions forming our total
library Θ(a1, a2).

Note that that one needs not identify the complete high-order model in order to
estimate the correct growth rate of the instability. Given the Frisch–Waugh–Lovell
theorem, one needs only solve a partial regression problem for that purpose. Having
estimated the rate of the instability, one can then enforce this particular value directly
during the identification of the cubic model, as in Loiseau & Brunton (2018). The
resulting optimization problem then reads

minimizeξ‖Θ(a1, a2)ξ − ȧ2‖
2
2 + λ‖ξ‖1

subject to Cξ = d

}

(4.8)

where C and d are the linear constraints enforcing the estimated growth rate of the
instability. We then follow the same procedure as in the previous section to identify
the optimal constrained cubic model. The resulting model reads

d

dt

[

a1

a2

]

=

[

0 1.12
−1.12 0.3(1 − a2

1 − a2
2)

] [

a1

a2

]

. (4.9)

As shown in figure 9, the time evolution of a◦
1(t) predicted by this low-dimensional

model is in excellent agreement with DNS (a•
1(t)) on both the training and testing

datasets. It is remarkable that, despite its apparent simplicity, this two-degrees-of-
freedom model captures all of the key features of the cylinder flow, namely:

(i) It admits only one linearly unstable fixed point given by a = 0 and one attracting
limit cycle characterized by ‖a‖ = 1. The corresponding circular frequency ω◦ =
1.12 in the nonlinearly saturated state is identical to the frequency observed in
DNS (ω• = 1.12).

(ii) It explicitly highlights the quadratic dependency of the instantaneous growth rate
2σ(a) = 0.3(1 − a2

1 − a2
2). Such quadratic dependencies are consistent with our

current understanding of the nonlinear saturation process of globally unstable
flows; see Mantič-Lugo, Arratia & Gallaire (2014) for more details.

(iii) Once the amplitude of the oscillation has saturated to ‖a‖= 1, the system reduces
to a simple harmonic oscillator. A similar structure could be derived based on a
Galerkin projection of the Navier–Stokes equations onto the span of the first two
POD modes and using the marginally stable mean flow as the reference state.

From a physical point of view, this low-order system describes the dynamics of the
original high-dimensional system when constrained to the low-dimensional manifold
structuring its phase (Noack et al. 2003).
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FIGURE 9. (Colour online) (a,c) Comparison of the time evolution of a1 obtained from
direct numerical simulation and predicted by the identified low-dimensional dynamical
system. (b,d) Trajectories of the true system and the model on the phase plane (a1, a2).
For (a,b) the initial condition is close to the linearly unstable fixed point ub, given by
a = 0. Panels (c,d) use the cross-validation dataset for which the initial condition used in
the direct numerical simulation has been chosen to lie outside of the limit cycle and, for
physical reasons, was also constrained to start close to the parabolic manifold structuring
the phase space of the system.

4.1.3. Predicting the drag evolution

The dynamical system identified in the previous section provides valuable
information and accurately predicts the dynamics of its high-dimensional counterpart.
Being based solely on quantities derived from the instantaneous lift coefficient, the
model does not enable direct estimation of the corresponding drag force. However,
estimating the instantaneous drag force might be of critical importance in aerodynamic
applications. Defining the drag coefficient as an additional degree of freedom of our
system, two different possibilities arise:

(i) extend the identified system with a (nonlinear) algebraic measurement equation,
also identified using sparse regression; or,

(ii) identify a new dynamical system comprised of three coupled ODEs.

We have investigated both of these options. Given the simplicity and accuracy of
the dynamical system introduced previously, the former approach is preferred over
the latter. Using the drag coefficient of the base flow subtracted velocity field as our
additional degree of freedom a3, and normalizing it such that its mean value is ā3 = 1
on the limit cycle, the identified measurement equation reads

a2
3 = 1.08a2

1 + 0.92a2
2 − 0.18a1a2. (4.10)

Note that it can be re-written as

a2
3 = (a2

1 + a2
2) + 0.8(a2

1 − a2
2) − 0.18a1a2. (4.11)
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The first term highlights that the amplitude of the drag force is directly proportional
to the amplitude of the lift oscillation. The second and third terms then describe the
contribution of the second harmonic of the lift on the drag, hence characterizing the
instantaneous oscillation of the drag force around its mean value. Combining this
measurement equation with the dynamical system (4.9) identified in § 4.1.2 results in
a low-dimensional descriptor system governing the evolution of both the instantaneous
lift and drag coefficients.

Equation (4.11) describes a distorted cone and is notably different from the mean-
field paraboloid of the three-dimensional POD–Galerkin model by Noack et al. (2003).
This difference can be explained by the choice of the state space a. The oscillation
of von Kármán vortex shedding is characterized by a1 and a2 – albeit from different
physical mechanisms. During the transient, the vortex shedding moves upstream from
the stagnation point of the unstable steady solution to the immediate vicinity of the
cylinder. The global POD mode amplitudes a1, a2 resolve the vortex shedding even
when it is far downstream. However, the lift-based feature coordinates only respond
to the vortex shedding in the final stage when the vortices are close to the cylinder.
In contrast, the drag variation and the shift-mode amplitude of the three-dimensional
POD–Galerkin model are linearly related. Thus, a3 of the Galerkin expansion and of
the force-related reduced-order model resolve the same physics. Hence, the fluctuation
amplitude

√

a2
1 + a2

2 increases much faster with a3 for the POD-based model than for
the force-based system.

Figure 10(a,c) compares the predicted time evolution of a◦
3(t) against the evolution

of a•
3(t) obtained from direct numerical simulation, whereas figure 10(b,d) depicts

the associated trajectories projected onto the (a1, a3) phase plane. Along with the
dynamics of a1 and a2 being correctly captured by the dynamical system (4.9), the
nonlinear algebraic measurement equation (4.11) correctly infers the evolution of a3. It
is clear from these results that the low-dimensional descriptor system identified in the
present work is one of the simplest and yet most accurate and physically interpretable
low-order models available in the literature to reproduce the dynamics of the cylinder
flow at Re = 100.

4.2. Full-state estimation

The descriptor system identified in the previous section provides valuable information
and accurately predicts the dynamics of our sensor. However, it does not allow us to
directly infer the corresponding flow field. In order to reconstruct the flow field, we
must supplement our low-dimensional model with a full-state estimator

u(x, t) = h(a). (4.12)

Formally, this full-state estimator h is a nonlinear mapping from the low-dimensional
feature space to the high-dimensional physical space. In the rest of this section, four
different estimators will be employed:

(i) a first estimator based on locally linear mapping (LLM) using the full-state
snapshots from the training dataset to reconstruct those of the testing dataset,

(ii) a second estimator based on LLM outputting the estimated amplitudes of the first
five POD modes,

(iii) a third estimator based on LLM outputting the estimated amplitudes of the first
twenty-five POD modes,

(iv) a fourth estimator using the feature-based modal expansion described in § 3.3.2.
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FIGURE 10. (Colour online) (a,c) Comparison of the time evolution of a3 (i.e. the drag
coefficient) obtained from direct numerical simulation and predicted by the identified low-
dimensional dynamical system. (b,d) Trajectories of the true system and the model on the
phase plane (a1, a3). For (a,b) the initial condition is close to the linearly unstable fixed
point ub, given by a = 0. Panels (c,d) use the cross-validation dataset for which the initial
condition used in the direct numerical simulation is the same as described in figure 9.

Note that for the fourth estimator, we employ generalized feature modes. Given a
sparse nonlinear model, this generalized feature-based modal decomposition is based
on modal structures that are most correlated with specific terms in the dynamics. We
define a new feature vector α containing all of the non-zero terms identified on the
right-hand side of the sparse model:

α ,











a1

a2

a2
1 + a2

2
2a1a2

a2
1 − a2

2











=











α1

α2

α3

α4

α5











. (4.13)

The feature-based modal expansion considered hereafter then reads

u(x, t) = u0(x) +

5
∑

i=1

αi(t)ui(x) + r(x, t), (4.14)

where u0(x) is the linearly unstable steady solution to the Navier–Stokes equations
and r(x, t) is the residual. The different feature modes ui(x) have been computed
following the stochastic estimation procedure described in § 3.3. The associated
vorticity fields are shown in figure 11, while the time evolution of the different basis
coefficients αi(t) is depicted in figure 12(a). Figure 12(b) shows the cross-correlation
matrix of these signals. Given its diagonal structure, it is clear that the different
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FIGURE 11. (Colour online) Panel (a) depicts the vorticity field of the linearly unstable
base flow, while the dashed line highlights the spatial extent of the reversed flow region.
Panels (b–e) show the vorticity field of the feature modes associated with the extended
feature vector α.
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FIGURE 12. (Colour online) (a) Time evolution of the different basis coefficients used
in the feature-based modal expansion (4.14). (b) Corresponding cross-correlation matrix
computed using Pearson’s ρ linear correlation metric. Dark squares indicate that αi and αj

are strongly correlated (ρ = 1), while white squares indicate they are uncorrelated (ρ = 0).

basis coefficients αi(t) are uncorrelated one to another. For the cylinder flow, these
feature modes are very similar to the classical POD modes. A key advantage over
POD modes is that the present modes are directly interpretable as being the coherent
structures most correlated with our different measurements and the sparse nonlinear
interaction terms in the model.

Figure 13 compares the evolution of the relative estimation error for the different
estimators considered. Different sampling frequencies for the PIV-like snapshots
forming the training dataset are used in figure 13(b,c). The flow estimator based
on the local linear mapping (LLM) largely outperforms the other estimators. Its
accurate performance, on average two to three orders of magnitude more accurate
than the other estimators considered, results from the fact that LLM leverages all
of the information contained in the different snapshots matrices used whereas the
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FIGURE 13. (Colour online) Time evolution of the relative estimation error for
the different estimators considered. In (b,c), T (PIV)

s is the sampling period of the
non-time-resolved PIV-like snapshots forming the training dataset while T (Lift)

s refers to the
sampling period of the lift measurement.

different modal expansions only provide low-rank approximations of these same
matrices. In all cases, it has to be noted that increasing the sampling period T (PIV)

s

between two consecutive PIV-like snapshots when creating the training dataset hardly
influences the performance of the different estimators. Moreover, it can be observed
that the performance of the feature-based modal expansion is on a par with the LLM
procedure outputting the amplitudes of the first five POD modes. Finally, increasing
the number of POD modes considered is only beneficial during the early stage of
transition while leaving the accuracy of the POD-based estimator almost unchanged
once the system has reached a statistically stationary state.

Figure 14(b,c) depicts the estimated vorticity field, with the base flow subtracted,
at different instants in time and compare them with the true vorticity field obtained
from direct numerical simulation in figure 14(a). As expected, the vorticity fields
estimated by the local linear mapping (with full-state PIV-like snapshots) are in
much better agreement, from a physical and kinematic point of view, than the ones
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Local linear mapping

Galerkin expansion

(a)

(b)

(c)

FIGURE 14. (Colour online) Comparison of the vorticity fields at different instants of time
obtained (a) from direct numerical simulation, (b) from the local linear mapping procedure
and (c) from the feature-based modal expansion. Note that the vorticity field of the linearly
unstable base flow has been subtracted in order to highlight the perturbative vorticity field.

obtained by the other low-dimensional estimators. This is especially pronounced
during the period of exponential growth of the linear instability and at the onset
of nonlinear saturation during which the local linear mapping correctly captures
the deformation and distortion of the flow structure. In contrast, low-rank modal
expansions are notorious for their inability to capture such mode deformation and/or
changes in operating conditions. Given that the POD modes and generalized feature
modes used in this work essentially approximate the flow structure once the system
has reached the periodic limit cycle, it is thus expected that they provide only a
very crude estimation of the flow structures when the system evolves in the vicinity
of the linearly unstable base flow. This inability of a modal expansion to easily
address mode deformation is one of its key limitations and is the principal reason
why the local linear mapping strategy using full-state PIV-like snapshots should be
preferred. Combining the descriptor system identified in § 4.1 with the local linear
flow estimator finally allows us to construct a two-degrees-of-freedom reduced-order
model of the cylinder flow, having an unprecedented accuracy.

5. Discussion

In this work, the instantaneous lift force measurement had been used as our single
sensor. Here, the problem of sensor selection for more complex flow configurations is
discussed in § 5.1. Moreover, possible connections with the works of Tu et al. (2013)
and Iñigo, Sipp & Schmid (2014) are highlighted in § 5.2.

5.1. Optimal sensor selection

It has been implicitly assumed so far that it is possible to choose a single sensor
measurement whose time series contains sufficient information to fully characterize
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FIGURE 15. (Colour online) Location of the first five near-optimal streamwise velocity
sensors identified by the algorithm proposed in Manohar et al. (2017). As before, the
shaded contours depict the base flow subtracted vorticity field.

the dynamics of the flow under consideration. While using the instantaneous lift
coefficient is a natural choice for the two-dimensional cylinder flow, it may not
be as straightforward for more complex flow configurations to determine which
quantity to monitor, nor where to place the required sensors as to obtain the most
informative measurements. With the recent advances in machine learning and sparse
sensing, a considerable body of work has emerged in the literature about near-optimal
sensor placement for estimation or reconstruction tasks of high-dimensional systems.
One can cite for instance the recent work of Manohar et al. (2017) on data-driven
sparse sensor placement. Given prior velocity field snapshots, it is possible to use a
combination of POD/SVD and QR factorization with pivots of the collected snapshots
matrix. The POD analysis allows the user to determine the rank of the snapshot matrix
(i.e. the dimension of the low-dimensional model to be considered), while the pivots
of the QR factorization then provide the spatial location of the most informative
sensors with which to optimally reconstruct the high-dimensional state of the system
(Drmac & Gugercin 2016; Manohar et al. 2017). Figure 15 depicts the locations of
the first five near-optimal streamwise velocity sensors identified by this approach for
the present flow configuration. Three of these sensors are located along the y = 0
line, monitoring the mean flow distortion. The remaining two sensors are located
approximately at y ≃ ±0.5 along a diagonal, capturing the amplitude and phase of the
vortex shedding. These velocity measurements may then form the initial measurement
vector s required for the low-dimensional modelling methodology proposed herein.
For more details about data-driven sensor placement, interested readers are referred
to Manohar et al. (2017) and numerous references therein.

5.2. Comparisons with previous works

The low-dimensional modelling strategy proposed herein shares some connections with
the recent works of Tu et al. (2013) and Iñigo et al. (2014). All three approaches
are summarized as block diagrams in figure 16. For the sake of simplicity, the block
diagrams depicted in figure 16 all use the present notation where:

(1) s denotes the input sensor measurements vector,
(2) a denotes the state vector of the low-dimensional model,
(3) y denotes the output vector.

In Tu et al. (2013) and Iñigo et al. (2014), this output y corresponds to the
coefficients of POD modes used to reconstruct the velocity snapshots. In the present

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

14
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

U
 B

er
lin

 U
ni

ve
rs

ita
et

sb
ib

lio
th

ek
, o

n 
07

 M
ar

 2
01

9 
at

 0
8:

24
:4

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.147
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Sparse reduced-order modelling 483

s y

s y

s y

(a)

(b)

(c)

Tu et al. (2013)

f

Present

h

FIGURE 16. Block representations of the full-state reconstruction function described in (a)
Iñigo et al. (2014), (b) Tu et al. (2013) and (c) presented herein.

case, y can denote the coefficients of the POD modes, those of the feature-based
modes, or directly the reconstructed high-dimensional snapshot, depending on the
particular choice made by the user. All three approaches thus have the same input
and same output. They essentially differ on how one maps the input vector s to the
output vector y. Iñigo et al. (2014) use the sensor measurement vector s as the input
to a multiple-input-multiple-output (MIMO) linear time invariant (LTI) dynamical
system obtained using linear subspace identification techniques. The vector y of POD
coefficients used to reconstruct the high-dimensional velocity snapshot then comes
as the output of this MIMO LTI system. Tu et al. (2013) first define a mapping g

from the sensor measurement vector s to the state a of the low-dimensional system
using a multiple-time-delay modified linear stochastic estimator (MTD-mLSE). Next,
a discrete-time LTI system for a is identified using a combination of linear stochastic
estimation and prior knowledge obtained from DMD analysis. The state vector a of
this low-dimensional system is chosen as the amplitude of the leading POD modes,
and the output vector y is simply a itself.

Similar to Tu et al. (2013), we first define a function g mapping the sensor
measurement vector s to the state a of the low-dimensional model to be identified.
In its present formulation, this mapping has been defined analytically, although one
could have formally used the same technique as in Tu et al. (2013), i.e. defining a
mapping from time-delayed lift measurements to the leading POD coefficients. As a
second step, a (possibly) nonlinear continuous-time model governing the dynamics
of the state a is identified using SINDy. Finally, the predicted state a is mapped
to the output y. Depending on the choice of the user, this output y can denote
the coefficients of a modal expansion of the velocity field (e.g. POD modes or
feature-based modes) as in Tu et al. (2013) and Iñigo et al. (2014), or directly the
reconstructed high-dimensional velocity snapshot obtained from the locally linear
mapping procedure.
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It is clear that the approach described herein and the one proposed by Tu et al.

(2013) are closely related. The key difference is that Tu et al. (2013) obtain a
low-dimensional model using linear stochastic estimation and prior knowledge from
DMD analysis (thus assuming that the state a has linear dynamics), while our
low-dimensional model has been obtained using sparse nonlinear system identification.
In the limit of truly linear dynamics and for the same definition of the mapping
a = g(s), these two approaches should thus simply be discrete-/continuous-time
counterparts of each other. The same observation holds once the system reaches its
limit cycle as the model identified in the present work reduces in this case to a simple
harmonic oscillator. The connection with Iñigo et al. (2014) is not as straightforward,
although the two approaches should yield similar results if the dynamics of the state
a is indeed linear.

6. Conclusions

This work develops a new reduced-order modelling procedure for unsteady fluid
flows that yields accurate nonlinear models and insight into relevant flow structures.
This procedure identifies sparse nonlinear models, not on the full fluid state, but from
time-resolved sensor measurements that may be realistically obtained in experiments.
The sparsity of the model prevents overfitting and uncovers key nonlinear interaction
terms. Although the models are data driven, they are interpretable, and it is also
possible to incorporate partial prior knowledge of the physics or constraints to improve
the models. If snapshots are also available, for example from non-time-resolved PIV, it
is possible to estimate the full state from the sparse model using local linear mapping:
the full state is interpolated between the most similar historical flow fields, based on
the dynamics. It is also possible to construct a generalized modal decomposition that
identifies coherent structures most correlated with each interaction term in the sparse
nonlinear model.

This methodology is illustrated using the canonical two-dimensional cylinder flow
at Re = 100. Despite its simplicity, this flow configuration is a prototypical example
capturing the key physics of bluff body flows. Even though this study uses data from
direct numerical simulations, the overall strategy is generally applicable to a real flow
experiment with minor modifications. Despite their simplicity, the identified models
do not suffer the same drawbacks as reduced-order models obtained from a Galerkin
projection procedure, namely overestimation of the duration of transients and energy
overshoots at the onset of nonlinear saturation. Instead, the identified sparse models
provide simple explanations for the nonlinear saturation process of globally unstable
flows. Moreover, the models are based on sensor measurements, which may include
lift, drag or pressure measurements that are physically linked to the geometry. Working
in these intrinsic coordinates has the potential to overcome many of the limitations of
classical modal-based projection methods, including mode deformation due to moving
geometry and varying parameters.

The effectiveness of the reduced-order models identified and the modularity of
the methodology proposed in the present work suggest a number of exciting future
directions. There is significant potential for these methods to be applied broadly
to obtain interpretable reduced-order models for a range of flow configurations in
simulations and experiments. For example, these sensor-based models may be applied
to develop nonlinear unsteady aerodynamic models, generalizing previous linear
and linear parameter varying models (Brunton, Rowley & Williams 2013; Brunton,
Dawson & Rowley 2014; Hemati, Dawson & Rowley 2016).
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A key motivation in this work is its extension to flow control. Given a feature vector
a and actuators characterized by a control law b(t), one could use SINDy with control
(SINDYc) (Brunton et al. 2016c; Kaiser et al. 2017) in order to identify low-order
models

da

dt
= f (a, b) (6.1)

that incorporate the influence of the actuation b on the dynamics of a. Combining
such an approach with machine learning control (Duriez, Brunton & Noack 2016)
may result in interpretable models of entirely new flow behaviours and previously
unobserved flow physics that are discovered in the controlled flow. The identified
models can then serve as a low-dimensional representation of the actual system in
order to facilitate the computation of nonlinear optimal feedback control laws. This is
an area of active research by the authors. In the near future, the authors aim to apply
the methodology introduced in the present work to the optimal control of experimental
flows.

Finally, there are a number of methodological extensions that may improve the
performance of this sparse modelling framework. First, it will be important to
demonstrate that these methods scale favourably to systems with higher-dimensional
attractors. Because the algorithms are based on simple regression and sparse
optimization, they should remain computationally tractable. Next, it may be possible
to reduce the memory requirements of the local linear mapping by building local
modal libraries in different dynamic regimes (e.g. linear instability, saturated limit
cycle, etc.). The storage requirements may further be reduced using compression
techniques and sparse sampling. It may also be possible to incorporate the accuracy
of the generalized modal decomposition reconstruction into the cost function in the
SINDy regression, so that nonlinear features are selected based on their dynamic
relevance and their ability to reconstruct the full state.
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Appendix A. Influence of the low-amplitude harmonics

As explained in § 4.1, the lift signal recorded from DNS has been low-pass
filtered prior to the identification of the low-dimensional model as to remove the
low-amplitude second harmonics component of the signal. Although not mandatory,
this preprocessing step enables the identification of a simpler model without altering
its predictive and explanatory capabilities. In this appendix, the same procedure as
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described in § 4.1 is used directly on the raw unfiltered lift signal. Including the
correction of the growth rate, the identified cubic model reads

da1

dt
= 1.12a2

da2

dt
= −1.12a1 + 0.3a2 − 0.3a3

2 − 0.34a2
1a2.











(A 1)

This model can be rewritten as

da1

dt
= 1.12a2

da2

dt
= −1.12a1 + 0.3(1 − a2

1 − a2
2)a2 − 0.04a2

1a2.











(A 2)

Comparing model (A 2) and its low-pass filtered counterpart (4.9) presented in § 4.1,
it is clear that keeping the low-amplitude second harmonics in the signal used for the
identification gives rise to a correction term which is an order of magnitude smaller
than the other terms involved. Simulating both models gives almost identical results.
Following Ockham’s razor, the model identified in § 4.1 is thus preferred over the one
presented in this appendix due to its simpler formulation.
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