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Abstract. This article analyzes the recovery performance in the presence of noise

of sparse ℓ
1 regularization, which is often referred to as the Lasso or Basis-Pursuit.

We study the behavior of the method for inverse problems regularization when the

discretization step size tends to zero. We assume that the sought after sparse sum

of Diracs is recovered when there is no noise (a condition which has been thoroughly

studied in the literature) and we study what is the support (in particular the number

of Dirac masses) estimated by the Lasso when noise is added to the observation. We

identify a precise non-degeneracy condition that guarantees that the recovered support

is close to the initial one. More precisely, we show that, in the small noise regime,

when the non-degeneracy condition holds, this method estimates twice the number

of spikes as the number of original spikes. Indeed, we prove that the Lasso detects

two neighboring spikes around each location of an original spike. While this paper

is focussed on cases where the observations vary smoothly with the spikes locations

(e.g. the deconvolution problem with a smooth kernel), an interesting by-product is

an abstract analysis of the support stability of discrete ℓ1 regularization, which is of an

independent interest. We illustrate the usefulness of this abstract analysis to analyze

for the first time the support instability of compressed sensing recovery.

1. Introduction

We consider the problem of estimating an unknown Radon measure on the torus

T = R/Z (i.e. an interval with periodic boundary conditions), m0 ∈ M(T), from

low-resolution noisy observations in a separable Hilbert space H,

y = Φ(m0) + w ∈ H (1)

where w ∈ H is some measurement noise, and Φ : M(T) → H is a bounded linear map

such that

∀m ∈ M(T), Φ(m) =

∫

T

ϕ(x)dm(x), (2)

where ϕ ∈ C 2(T,H).
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A typical example of such an operation is a convolution, where H = L2(T) and

ϕ(x) : x′ 7→ ϕ̃(x′ − x) for some smooth function ϕ̃ defined on T. Another example is a

partial Fourier transform, whereH = CP , and ϕ(x) = (e2iπωkx)Pk=1 ∈ H where ωk ∈ Z are

the measured frequencies. For instance, using low frequency −fc 6 ωk = k−fc−1 6 fc
with P = 2fc + 1 is equivalent to using a convolution with the ideal low-pass filter

∀ x ∈ T, ϕ̃(x) =

fc∑

k=−fc

e2iπkx, (3)

with cutoff frequency fc. To simplify the notation, we shall assume that H is a real

Hilbert space, and we leave to the reader the straightforward adaptations to the complex

case.

1.1. Sparse Regularization

The problem of inverting (1) is severely ill-posed. A particular example is when

Φ is a low pass filter, which is a typical setting for many problems in imaging. In

several applications, it makes sense to impose some sparsity assumption on the data to

recover. This idea has been introduced first in the geoseismic literature, to model

the layered structure of the underground using sparse sums of Dirac masses [12].

Sparse regularization has later been studied by David Donoho and co-workers, see for

instance [16].

In order to recover sparse measures (i.e. sums of Diracs), it makes sense to consider

the following regularization

min
m∈M(T)

1

2
||y − Φ(m)||2 + λ|m|(T) (4)

where |m|(T) is the total variation of the measure m, defined as

|m|(T)
def.

= sup

{∫

T

ψ(x)dm(x) ; ψ ∈ C (T), ||ψ||∞ 6 1

}

. (5)

This formulation of the recovery of sparse Radon measures has recently received lots of

attention in the literature, see for instance the works of [5, 14, 9]. In the case where

there is no noise, w = 0, it makes sense to consider λ → 0 and to solve the following

limit problem

min
m∈M(T)

{|m|(T) ; Φ(m) = Φ(m0)} . (6)

1.2. Lasso

The optimization problem (4) is convex but infinite dimensional, and while there

exists solvers when Φ is measuring a finite number of Fourier frequency (see [9]), they

do not scale well with the number of frequencies. Furthermore, the case of an arbitrary

linear operator Φ is still difficult to handle, see [5] for an iterative scheme. The vast
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majority of practitioners thus approximate (4) by a finite dimensional problem computed

over a finite grid G
def.

= {zi ; i ∈ J0, G− 1K} ⊂ T, by restricting their attention to

measures of the form

ma,G
def.

=
G−1∑

i=0

aiδzi ∈ M(T).

For such a discrete measure, one has |m|(T) =
∑G−1

i=0 |ai| = ||a||1, which can be

interpreted as the fact that | · |(T) is the natural extension of the ℓ1 norm from

finite dimensional vectors to the infinite dimensional space of measures. Inserting this

parametrization in (4) leads to the celebrated Basis-Pursuit problem [11], which is also

known as the Lasso method in statistics [32],

min
a∈RN

1

2
||y − ΦGa||

2 + λ||a||1 (7)

where in the following we make use of the notations

ΦGa
def.

= Φ(ma,G) =
G−1∑

i=0

aiϕ(zi), (8)

One can understand (7) as performing a nearest neighbor interpolation of the Dirac’s

locations.

Note that while we focus in this paper on convex recovery method, and in particular

ℓ1-type regularization, there is a vast literature on the subject, which makes use of

alternative algorithms, see for instance [27, 4] and the references therein.

1.3. Motivating Example

Figure (1) illustrates the typical behavior of the Lasso method (7) to estimate a

sparse input measure m0 (shown in (a)) from observations y = Φm0 + w, where Φ is

the ideal low-pass filter with cutoff frequency fc, i.e. ϕ(x) = ϕ̃(x− ·) where ϕ̃ is defined

in (3). In the numerical simulation, we used fc = 12 and an uniform grid of G = 512

points. Here w is a small input noise, and its impact can be visualized in (a) where

both y0 = Φm0 (plain black curve) and y = y0 + w (dashed black curve) are displayed.

As can be expected, the recovered aλ (solution of (7)) with a small value of λ (here

λ = 0.05 is displayed in (c)) is bad because too much noise contaminates the result. A

well chosen value of λ (here λ = 4 is displayed in (d)) is able to remove the noise, and to

detect spikes located near the input spikes composing m0. However, as showed in [20],

in this small noise setting, one can recover up to twice as many spikes as the input

measures, because the spikes of m0 can get duplicated on immediate nearest neighbors

on the grid G. Figure 1, (b), further refines this analysis by displaying the whole path

λ 7→ aλ (dashed curves indicate spurious spikes whose locations do not match those of

the input measure m0). It is the goal of this paper to precisely analyze and quantify this

behavior. In particular, we precisely characterize the “extended support” (those grid

locations that are selected when the noise is small and λ well chosen) and show that for

deconvolution, it is exactly composed of pairs of nearest neighbors.
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Figure 1: Sparse spikes deconvolution results obtained by computing the solution aλ
of (7). The color reflects the positions of the spikes on the 1-D grid. (a) shows the input

measure m0 and the observation y = y0 + w. (b) shows how the solution aλ (vertical

axis) evolves with λ (horizontal axis). Each curve shows the evolution of λ 7→ (aλ)i for

indexes i ∈ {1, . . . , G− 1}. The color encodes the value of i. Plain curves correspond to

correct spikes locations i associated to the input measure m0. Dashed curves correspond

to incorrect spikes (not present in the input measure m0). (c,d) show the results aλ
obtained for two different values of λ.

1.4. Previous Works

Most of the early work to assess the performance of convex sparse regularization has

focussed its attention on the finite dimensional case, thus considering only the Lasso

problem (7). While the literature on this subject is enormous, only very few works

actually deal with deterministic and highly correlated linear operators such as low-pass

convolution kernels. The initial works of Donoho [16] study the Lipschitz behavior of

the inverse map y 7→ a⋆, where a⋆ is a solution of (7), as a function of the bandwidth

of the bandpass filter. The first work to address the question of spikes identification

(i.e. recovery of the exact location of the spikes over a discrete grid) is [18]. This work

uses the analysis of ℓ1 regularization introduced by Fuchs in [23]. This type of analysis

ensures that the support of the input measure is stable under small noise perturbation

of the measurements. Our finding is that this is however never the case (the support

is always unstable) when the grid is thin enough, and we thus introduce the notion of

“extended support”, which is in some sense the smallest extension of the support which

is stable. The idea of extending the support to study the recovery performance of ℓ1

methods can be found in the work of Dossal [17] who focusses on noiseless recovery and

stability in term of ℓ2 error.

Recently, a few works have studied the theoretical properties of the recovery over

measures (4). Candès and Fernandez-Granda show in [9] that this convex program does

recover exactly the initial sparse measure when w = 0 and λ → 0 (i.e. program (6))
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under a minimum-separation condition, i.e. if the spikes are well-separated. The

robustness to noisy measurements is analyzed by the same authors in [8] using an

Hilbertian norm, and in [22, 2] in terms of spikes localization. The work of [30] analyzes

the reconstruction error. Lastly, [20] provides a condition ensuring that (4) recovers

the same number of spikes as the input measure and that the error in terms of spikes

localization and elevation has the same order as the noise level. It is important to note

that in the special case where m0 is a positive measure, then m0 is always a solution

to (6), as shown in [14] (see also [15] for a refined analysis of the stability to noise in

this special case).

Very few works have tried to bridge the gap between these grid-free methods over

the space of measures, and finite dimensional discrete approximations that are used by

practitioners. These theoretical questions are however relevant from a practitioner’s

point of view, and we refer [26] for experimental observations of the impact of

discretization and the corresponding recovery bias. The convergence (in the sense of

measures) of the solutions of the discrete problem toward to ones of the grid-free problem

is shown in [31], where a speed of convergence is shown using tools from semi-infinite

programming [29]. The same authors show in [3] that the discretized problem achieves

a similar prediction L2 error as the grid-free method. Γ-convergence results on ℓ1 but

also ℓ0 regularization are provided in the PhD work of [25]. In [20], we have shown that

solutions of the discrete Lasso problem estimate in general as much as twice the number

of spikes as the input measure. We detail in the following section how the present work

gives a much more precise and general analysis of this phenomenon.

1.5. Contributions

Our paper is composed of two contributions (Theorems 1 and 2) that study the

robustness to noise of the support of the solution of Lasso finite dimensional recovery

problems. We stress the fact that we always suppose that the sought after sparse measure

m0 is identifiable, i.e. is the solution of the BLASSO program (6) (i.e. in the noiseless

case w = 0, λ = 0). This mandatory hypothesis is now well understood, as detailed

in Section 1.4, and is always true if the measure m0 is positive, or under a minimum

separation distance between the spikes. Our main contributions study whether the

support of the recovered solution is close from the one of m0 in the presence of a small

noise. Such a stability cannot hold in full generality, and requires a strengthening of

the optimality condition for m0 being identifiable, which we refers in the following as a

“non-degeneracy” condition.

Section 2 presents our first contribution. This is an improvement over the known

analysis of the Lasso in an abstract setting (that is (7) when ΦG is replaced with any

finite dimensional linear operator). Whereas Fuchs’ result [23] characterizes the exact

support recovery of the Lasso at low noise, our previous work [20] has pointed out that

when Fuchs’criterion is not satisfied, the nonzero components of the solutions of the

Basis-Pursuit at low noise are contained in the extended support, that is the saturation
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set of some minimal norm dual certificate. Theorem 1 states that under a sufficient non-

degeneracy condition (hypothesis (20), which holds generically), all the components of

the extended support are actually nonzero (with a prediction on the signs).

Section 3 applies this result to Problem (7) on thin grids. After recalling the

convergence properties of Problem (7) towards (4), we show that, if the input measure

m0 = mα0,x0 =
∑N

ν=1 α0,νδx0,ν has support on the grid (i.e. x0,ν ∈ G for all ν),

and if a non-degeneracy condition holds (the “Non-Degenerate Source Condition”, see

Definition 2), the methods actually reconstructs at low noise pairs of Dirac masses, i.e.

solutions of the form

mλ =
N∑

ν=1

(
αλ,νδx0,ν + βλ,νδx0,ν+ενh

)
, where εν ∈ {−1,+1}, (9)

and sign(αλ,ν) = sign(βλ,ν) = sign(α0,ν). (10)

The precise statement of this result can be found in Theorem 2. Compared to [20]

where it is predicted that spikes could appear at most in pairs, this result states that

all the pairs do appear, and it provides a closed-form expression for the shift ε. That

closed-form expression does not vary as the grid is refined, so that the side on which

each neighboring spike appears is in fact intrinsic to the measure, we call it the natural

shift. Moreover, we characterize the low noise regime as ||w||2
λ

= O(1) and λ = O(h).

It is worth emphasizing that, in this setting of spikes retrieval on thin grids, our

contributions give important information about the structure of the recovered spikes

when the noise w is small. This is especially important since, contrary to common

belief, the spikes locations for Lasso are not stable: even for an arbitrary small noise

w, neither methods retrieve the correct input spikes locations.

Eventually, we illustrate in Section 4 our abstract analysis of the Lasso problem (7)

(as provided by Theorem 1) to characterize numerically the behavior of the Lasso for

compressed sensing (CS) recovery (i.e. when one replaces the filtering ΦG appearing

in (7) with a random matrix). The literature on CS only describes the regime where

enough measurements are available so that the support is stable, or does not study

support stability but rather ℓ2 stability. Theorem 1 allows us to characterize numerically

how much the support becomes unstable (in the sense that the extended support’s

size increases) as the number of measurements decreases (or equivalently the sparsity

increases).

1.6. Notations and preliminaries

The set of Radon measures (resp. positive Radon measures) is denoted by M(T)

(resp. M+(T)). Endowed with the total variation norm (5), M(T) is a Banach space.

Another useful topology on M(T) is the weak* topology: a sequence of measures

(mn)n∈N weak* converges towards m ∈ M(T) if and only if for all ψ ∈ C (T),

limn→+∞

∫

T
ψdmn =

∫

T
ψdm. Any bounded subset of M(T) (for the total variation) is

relatively sequentially compact for the weak* topology. Moreover the topology induced
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by the total variation is stronger than the weak* topology, and the total variation is

sequentially lower semi-continuous for the weak* topology. Throughout the paper, given

α ∈ RN and x0 ∈ TN , the notation mα,x0
def.

=
∑N

ν=1 ανδx0,ν hints that αν 6= 0 for all ν

(contrary to the notation ma,G), and that the x0,ν ’s are pairwise distinct.

Given a separable Hilbert space H, the properties of Φ : M(T) → H and its adjoint

are recalled in Proposition 1 in Appendix. The ∞, 2-operator norm of Φ∗ : H → C (T)

is defined as ||Φ∗||∞,2
def.

= sup {||Φ∗w||∞ ; w ∈ H, ||w|| 6 1} (and the ∞, 2 operator norm of

a matrix is defined similarly). Given a vector x0 ∈ TN , Φx0 refers to the linear operator

RN → H, with

∀α ∈ RN , Φx0α
def.

= Φ(mα,x0) =
N∑

ν=1

ανϕ(x0,ν).

It may also be seen as the restriction of Φ to measures supported on the set

{x0,ν ; ν ∈ J1, NK}. A similar notation is adopted for Φ′
x0

(replacing ϕ(x0,ν) with

ϕ′(x0,ν). The concatenation of Φx0 and Φ′
x0

is denoted by Γx0
def.

=
(

Φx0 Φ′
x0

)

.

We shall rely on the notion of set convergence. Given a sequence (Cn)n∈N of subsets

of T, we define

lim sup
n→+∞

Cn =

{

x ∈ T ; lim inf
n→+∞

d(x, Cn) = 0

}

(11)

lim inf
n→+∞

Cn =

{

x ∈ T ; lim sup
n→+∞

d(x, Cn) = 0

}

(12)

where d is defined by d(x, C) = infx′∈C |x′−x| and |x−x′| refers to the distance between

x and x′ on the torus. If both sets are equal, let C be the corresponding set (then C is

necessarily closed), we write

lim
n→+∞

Cn = C. (13)

If the sequence (Cn)n∈N is nondecreasing (Cn ⊂ Cn+1), then limn→∞Cn =
⋃

n∈NCn, and

if it is nonincreasing (Cn ⊃ Cn+1) then limn→∞Cn =
⋂

n∈NCn (where C denotes the

closure of C). We refer the reader to [28] for more detail about set convergence. We

shall also use this notion in Hilbert spaces, with obvious adaptations.

2. Abstract analysis of the Lasso

The aim of this section is to study the low noise regime of the Lasso problem in an

abstract finite dimensional setting, regardless of the grid stepsize. In this framework, the

columns of the (finite dimensional) degradation operator need not be the samples of a

continuous (e.g. convolution) operator, and the provided analysis holds for any general

Lasso problem. We extend the initial study of Fuchs of the basis pursuit method

(see [23]) which gives the analytical expression of the solution when the noise is low

and the support is stable. Here, provided we have access to a particular dual vector η0,
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we give an explicit parametrization the solutions of the basis pursuit at low noise even

when the support is not stable. This is especially relevant for the deconvolution problem

since the support is not stable when the grid is thin enough.

2.1. Notations and optimality conditions

We consider in this section observations in an arbitrary separable Hilbert space

H, which might be for instance L2(T) (e.g. in the case of a convolution) or a finite

dimensional vector space. The linear degradation operator is then denoted as A : RG →

H. Let us emphasize that in this section, for a ∈ RG, ‖a‖∞
def.

= max06k6G−1 |ak|.

Given an observation y0 = Aa0 ∈ H (or y = y0 + w, where w ∈ H), we aim at

reconstructing the vector a0 ∈ RG by solving the Lasso problem for λ > 0,

min
a∈RG

1

2
||y − Aa||2 + λ||a||1 (Pλ(y))

and for λ = 0 we consider the (Basis-Pursuit) problem

min
a∈RG

||a||1 such that Aa = y0. (P0(y0))

If a ∈ RG, we denote by I(a), or I when the context is clear, the support of a,

i.e. I(a)
def.

= {i ∈ J0, G− 1K ; ai 6= 0}. Also, we let sI
def.

= sign(aI), and supp±(a)
def.

=

{(i, si) ; i ∈ I} the signed support of a.

The optimality conditions for Problems (Pλ(y)) and (P0(y0)) are quite standard,

as detailed in the following proposition.

Proposition 1. Let y ∈ H, and aλ ∈ RG. Then aλ is a solution to (Pλ(y)) if and only

if there exists pλ ∈ H such that

‖A∗pλ‖∞ 6 1, and (A∗pλ)I = sign(aλ,I), (14)

λA∗pλ + A∗(Aaλ − y) = 0. (15)

Similarly, if a0 ∈ RG, then a0 is a solution to (P0(y0)) if and only if Aa0 = y0 and

there exists p ∈ H such that.

‖A∗p‖∞ 6 1 and (A∗p)I = sign(a0,I). (16)

Conditions (14) and (16) merely express the fact that ηλ
def.

= A∗pλ (resp. η
def.

= A∗p)

is in the subdifferential of the ℓ1-norm at aλ (resp. a0). In that case we say that ηλ
(resp. η) is a dual certificate for aλ (resp. a0). Condition (16) is also called the source

condition in the literature [6].

The term dual certificate stems from the fact that pλ (resp. p) is a solution to the

dual problem to (Pλ(y)) (resp. (P0(y0))),

inf
p∈C

∥
∥
∥
y

λ
− p
∥
∥
∥

2

2
, (Dλ(y))

resp. sup
p∈C

〈y0, p〉, (D0(y0))

where C
def.

=

{

p ∈ H ; max
k∈J0, G−1K

|(A∗p)k| 6 1

}

. (17)
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If a is a solution to (Pλ(y)) and pλ is a solution to (Dλ(y)), then (14) and (15) hold.

Conversely, for any a ∈ RP and any pλ ∈ H, if (14) and (15) hold, then a is a solution

to (Pλ(y)) and pλ is a solution to (Dλ(y)). A similar equivalence holds for (P0(y0))

and (D0(y0)).

Remark 1. In general, the solutions to (Pλ(y)) and (P0(y0)) need not be unique.

However, the dual certificate ηλ = A∗pλ which appears in (14) and (15) is unique.

On the contrary, the dual certificate η = A∗p which appears in (16) is not unique in

general.

We say that a vector a0 is identifiable if it is the unique solution to (P0(y0)) for the

input y = Aa0. The following classical result gives a sufficient condition for a0 to be

identifiable.

Proposition 2. Let a0 ∈ RG such that AI is injective and that there exists p ∈ H such

that

||(A∗p)Ic ||∞ < 1 and (A∗p)I = sign(a0,I), (18)

where Ic = J1, GK \ I. Then a0 is identifiable.

Conversely, if a0 is identifiable, there exists p ∈ H such that (18) holds and AI is

injective (see [24, Lemma 4.5]).

2.2. Extended support of the Lasso

From now on, we assume that the vector a0 ∈ RG is identifiable (i.e. a0 is the unique

solution to (P0(y0)) where y0 = Aa0). We denote by I = supp(a0) and sI = sign(a0,I)

the support and the sign of a0.

It is well known that (P0(y0)) is the limit of (Pλ(y)) for λ → 0 (see [11] for the

noiseless case and [24] when the observation is y = y0+w and the noise w tends to zero

as a multiple of λ) at least in terms of the ℓ2 convergence. In terms of the support of

the solutions, the study in [20], which extends the one by Fuchs [23], emphasizes the

role of a specific minimal-norm certificate η0 which governs the behavior of the model

at low noise regimes.

Definition 1 (Minimal-norm certificate and extended support). Let a0 ∈ RG, and let

p0 be the solution to (D0(y0)) with minimal norm. The minimal-norm certificate of

a0 is defined as η0
def.

= A∗p0. The set of indices ext(a0)
def.

= {1 6 j 6 G ; |(η0)j| = 1} is

called the extended support of a0, and the set ext±(a0)
def.

= {(j, (η0)j) ; j ∈ ext(a0)} ⊂

J0, G− 1K × {−1, 1} is called the extended signed support of a0.

Remark 2. In the case where a0 is a solution to (P0(y0)) (which is the case here since we

assume that a0 is an identifiable vector for (P0(y0))), we have (I, sign(a0,I)) ⊂ ext±(a0).

The minimal norm certificate thus turns out to be

η0 = A∗p0 where p0 = argmin
p∈H

{||p||2 ; ||A
∗p||∞ 6 1 and A∗

Ip = sI} . (19)
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The minimal norm certificate governs the (signed) support of the solution at low

noise regimes insofar as the latter is contained in the extended signed support. The

following new theorem, which is proved in Appendix C, shows that, in the generic case,

both signed supports are equal.

Theorem 1. Let a0 ∈ RG \ {0} be an identifiable signal , J
def.

= ext(a0) such that AJ
has full rank, and vJ

def.

= (A∗
JAJ)

−1 sign(η0,J). Assume that the following non-degeneracy

condition holds

∀ j ∈ J \ I, vj 6= 0. (20)

Then, there exists constants C(1) > 0, C(2) > 0 (which depend only on A, J and

sign(a0,J)) such that for 0 < λ 6 C(1)

(

min
i∈I

|a0,I |

)

and all w ∈ H with ‖w‖ 6 C(2)λ

the solution ãλ of (Pλ(y)) is unique, supp(ãλ) = J and it reads

ãλ,J = a0,J + A+
Jw − λ(A∗

JAJ)
−1 sign(η0,J),

where A+
J = (A∗

JAJ)
−1A∗

J .

Remark 3 (Comparison with the analysis of Fuchs). When J = I, Theorem 1 recovers

exactly the result of Fuchs [23]. Note that this result has been extended beyond the

ℓ1 setting,see in particular [34, 33] for a unified treatment of arbitrary partly smooth

convex regularizers. For this result to hold, i.e. to obtain I = J , one needs to impose

that the following pre-certificate

ηF
def.

= A∗A+,∗
I sI (21)

is a valid certificate, i.e. one needs that ||ηF,Ic ||∞ < 1. This condition is often called the

irrepresentability condition in the statistics literature (see for instance [36]). It implies

that the support I is stable for small noise. Unfortunately, it is easy to verify that for the

deconvolution problem, in general, this condition does not hold when the grid stepsize

is small enough (see [20, Section 5.3]), so that one cannot use the initial result. This

motivates our additional study of the extended support ext(a0) ⊃ I, which is always

stable to small noise. While this new result is certainly very intuitive, to the best of

our knowledge, it is the first time it is stated and proved, with explicit values of the

stability constant involved.

Remark 4. Theorem 1 guarantees that the support of the reconstructed signal ãλ at low

noise is equal to the extended support. The required condition vj 6= 0 in Theorem 1 is

tight in the sense that if vj = 0 for some j ∈ J \ I, then the saturation point of ηλ may

be strictly included in J . Indeed, it is possible, using similar calculations as above, to

construct w such that supp ãλ ( J with λ and ‖w‖2/λ arbitrarily small.

3. Lasso on Thin Grids

In this section, we focus on inverse problems with smooth kernels, such as for

instance the deconvolution problem. Our aim is to recover a measure m0 ∈ M(T) from
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the observation y0 = Φm0 or y = Φm0 + w, where ϕ ∈ C k(T;H) (k > 2), w ∈ H and

∀x ∈ T, Φm
def.

=

∫

T

ϕ(x)dm(x), (22)

so that Φ : M(T) → H is a bounded linear operator. Observe that Φ is in fact weak*

to weak continuous and its adjoint is compact (see Lemma 1 in Appendix).

Typically, we assume that the unknown measure m0 is sparse, in the sense that it

is of the form m0 =
∑N

ν=1 α0,νδx0,ν for some N ∈ N∗, here α0,ν ∈ R∗ and the x0,ν ∈ T

are pairwise distinct.

The approach we study in this paper is the (discrete) Basis Pursuit. We look for

measures that have support on a certain discrete grid G ⊂ T, and we want to recover the

original signal by solving an instance of (P0(y0)) or (Pλ(y)) on that grid. Specifically,

we aim at analyzing the behavior of the solutions at low noise regimes (i.e. when the

noise w is small and λ well chosen) as the grid gets thinner and thinner. To this end, we

take advantage of the characterizations given in Section 2, regardless of the grid, and

we use the Beurling Lasso (4) as a limit of the discrete models.

3.1. Notations and Preliminaries

For the sake of simplicity we only study uniform grids, i.e. G
def.

=

{ih ; i ∈ J0, G− 1K} where h
def.

= 1
G
is the stepsize. Moreover, we shall consider sequences

of grids (Gn)n∈N such that the stepsize vanishes (hn = 1
Gn

→ 0 as n → +∞) and to

ensure monotonicity, we assume that Gn ⊂ Gn+1. For instance, the reader may think of

a dyadic grid (i.e. hn = h0
2n
). We shall identify in an obvious way measures with support

in Gn (i.e. of the form
∑Gn−1

k=0 akδkhn) and vectors a ∈ RGn .

The problem we consider is a particular instance of (Pλ(y)) (or (P0(y0))) when

choosing A as the restriction of Φ to measures with support in the grid Gn,

A
def.

= ΦGn
=
(

ϕ(0) . . . ϕ((G− 1)hn)
)

. (23)

On the grid Gn, we solve

min
a∈RGn

1

2
||y − ΦGn

a||2 + λ||a||1, (Pn
λ (y))

and min
a∈RGn

||a||1 such that ΦGn
a = y0. (Pn

0 (y0))

We say that a measure m0 =
∑N

ν=1 α0,νδx0,ν (with α0,ν 6= 0 and the x0,ν ’s pairwise

distinct) is identifiable through (Pn
0 (y0)) if it can be written as m0 =

∑Gn−1
k=0 aiδihn and

that the vector a is identifiable using (Pn
0 (y0)).

As before, given a ∈ RGn , we shall write I(a)
def.

= {i ∈ J0, Gn − 1K ; ai 6= 0} or

simply I when the context is clear.

The optimality conditions (15) amount to the existence of some pλ ∈ H such that

max
06k6Gn−1

|(Φ∗pλ)(khn)| 6 1, and (Φ∗pλ)(Ihn) = sign(aλ,I), (24)

λΦ∗pλ + Φ∗(Φaλ − y) = 0. (25)
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Similarly the optimality condition (16) is equivalent to the existence of p ∈ H such that

max
06k6Gn−1

|(Φ∗p)(khn)| 6 1 and (Φ∗p)(Ihn) = sign(a0,I). (26)

Notice that the dual certificates are naturally given by the sampling of continuous

functions η = Φ∗p : T → R, and that the notation η(Ihn) or (Φ∗p)(Ihn) stands for

(η(ihn))i∈I where I = I(a0) (and similarly for ηλ = Φ∗pλ and I(aλ)).

If m0 is identifiable through (Pn
0 (y0)), the minimal norm certificate for the

problem (Pn
0 (y0)) (see Section 2) is denoted by ηn0 , whereas the extended support on Gn

is defined as

extnm0
def.

= {t ∈ Gn ; ηn0 (t) = ±1} . (27)

From Section 2, we know that the extended support is the support of the solutions at

low noise.

3.2. The Limit Problem: the Beurling Lasso

Problems (Pn
λ (y)) and (Pn

0 (y0)) have natural limits when the grid gets thin.

Embedding those problems into the spaceM(T) of Radon measures, the present authors

have studied in [20] their convergence towards the Beurling-Lasso used in [14, 9, 5, 30].

The idea is to recover the measure m0 using the following variants of (Pλ(y))

and (P0(y0)):

min
m∈M(T)

1

2
||y − Φm||2 + λ|m|(T), (P∞

λ (y))

and min
m∈M(T)

|m|(T) such that Φm = y0, (P∞
0 (y0))

where |m|(T) refers to the total variation of the measure m

|m|(T)
def.

= sup

{∫

T

ψ(x)dm(x) ; ψ ∈ C(T) and ‖ψ‖∞ 6 1

}

. (28)

Observe that in this framework, the notation ‖ψ‖∞ stands for supt∈T |ψ(t)|. When m

is of the form m =
∑N

ν=1 ανxν where αν ∈ R∗ and xν ∈ T (with the xν ’s pairwise

distinct), |m|(T) =
∑N

ν=1 |αν |, so that those problems are natural extensions of (Pλ(y))

and (P0(y0)). This connection is emphasized in [20] by embedding (Pn
λ (y)) and (Pn

0 (y0))

in the space of Radon measures M(T), using the fact that

sup

{∫

T

ψ(x)dm(x) ; ψ ∈ C(T), ∀k ∈ J0, Gn − 1K |ψ|(khn) 6 1

}

=

{

‖a‖1 if m =
∑Gn−1

k=0 akδkhn ,

+∞ otherwise.

We say that m0 is identifiable through (P∞
0 (y0)) if it is the unique solution

of (P∞
0 (y0)). A striking result of [9] is that when Φ is the ideal low-pass filter and
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that the spikes m0 =
∑N

ν=1 α0,νx0,ν are sufficiently far from one another, the measure

m0 is identifiable through P∞
0 (y0).

The optimality conditions for (P∞
λ (y)) and (P∞

0 (y0)) are similar to those of the

abstract Lasso (respectively (14), (15) and (16)). The corresponding dual problems

are

inf
p∈C∞

∥
∥
∥
y

λ
− p
∥
∥
∥

2

2
, (D∞

λ (y))

resp. sup
p∈C∞

〈y0, p〉, (D∞
0 (y0))

where C∞ def.

= {p ∈ H ; ‖Φ∗p‖∞ 6 1} . (29)

The source condition associated with (P∞
0 (y0)) amounts to the existence of some p ∈ H

such that

‖Φ∗p‖∞ 6 1 and (Φ∗p)(x0,ν) = sign(α0,ν) for all ν ∈ {1, . . . , N}. (30)

Here, ‖Φ∗p‖∞ = supt∈T |(Φ
∗p)(t)|. Moreover, if such p exists and satisifies |(Φ∗p)(t)| < 1

for all t ∈ T \ {x0,1, . . . , x0,N}, and Φx0 has full rank, then m0 is the unique solution

to (P∞
0 (y0)) (i.e. m0 is identifiable).

Observe that in this infinite dimensional setting, the source condition (30) implies

the optimality of m0 for (P∞
0 (y0)) but the converse is not true (see [20]).

Remark 5. A simple but crucial remark made in [9] is that if m0 is identifiable

through (P∞
0 (y0)) and that suppm0 ⊂ Gn, thenm0 is identifiable for (P

n
0 (y0)). Similarly,

the source condition for (P∞
0 (y0)) implies the source condition for (Pn

0 (y0)).

If we are interested in noise robustness, a stronger assumption is the Non Degenerate

Source Condition which relies on the notion of minimal norm certificate for (P∞
0 (y0)).

When there is a solution to (D∞
0 (y0)), the one with minimal norm, p∞0 , determines the

minimal norm certificate η∞0
def.

= Φ∗p∞0 . When m0 is a solution to (P∞
0 (y0)), the minimal

norm certificate can be characterized as

η∞0 = Φ∗p∞0 where (31)

p∞0 = argmin
p∈H

{||p|| ; ||Φ∗p||∞ 6 1, (Φ∗p)(x0,ν) = sign(α0,ν), 1 6 ν 6 N} . (32)

As with the discrete Lasso problem, a notion of extended (signed) support ext±∞ may

be defined and the minimal norm certificate governs the behavior of the solutions at low

noise (see [20] for more details).

Definition 2. Let m0 =
∑N

ν=1 α0,νδx0,ν an identifiable measure for (P∞
0 (y0)), and

η∞0 ∈ C (T) its minimal norm certificate. We say that m0 satisfies the Non-Degenerate

Source Condition if

• |η∞0 (t)| < 1 for all t ∈ T \ {x0,1, . . . x0,N},

• η∞0
′′(x0,ν) 6= 0 for all ν ∈ {1, . . . , N}.
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The Non Degenerate Source Condition might seem difficult to check in practice. It

turns out that it is easy to check numerically by computing the vanishing derivatives

precertificate.

Definition 3. Let m0 =
∑N

ν=1 α0,νδx0,ν an identifiable measure for (P∞
0 (y0)) such that

Γx0
def.

=
(

Φx0 Φ′
x0

)

has full rank. We define the vanishing derivatives precertificate as

η∞V
def.

= Φ∗p∞V where

p∞V
def.

= argmin
p∈H

{||p|| ; (Φ∗p)(x0,ν) = sign(α0,ν), (Φ
∗p)′(x0,ν) = 0, 1 6 ν 6 N} . (33)

This precertificate can be easily computed by solving a linear system in the least

square sense.

Proposition 3 ([20]). Let m0 =
∑N

ν=1 α0,νδx0,ν an identifiable measure for the

problem (P∞
0 (y0)) such that Γx0 has full rank.

Then, the vanishing derivatives precertificate can be computed by

η∞V
def.

= Φ∗p∞V where p∞V
def.

= Γ+,∗
x0

(

sign(α0,·)

0

)

, (34)

and Γ+,∗
x0

= Γx0(Γ
∗
x0
Γx0)

−1. Moreover, the following conditions are equivalent:

(i) m0 satisfies the Non Degenerate Source Condition.

(ii) The vanishing derivatives precertificate satisfies:

• |η∞V (t)| < 1 for all t ∈ T \ {x0,1, . . . x0,N},

• η∞V
′′(x0,ν) 6= 0 for all ν ∈ {1, . . . , N}.

And in that case, η∞V is equal to the minimal norm certificate η∞0 .

Remark 6. Using the block inversion formula in (34), it is possible to check that

p∞V = Φ+,∗
x0

sign(α0,·)− ΠΦ′
x0
(Φ′

x0

∗
ΠΦ′

x0
)−1Φ′

x0

∗
Φ+,∗
x0

sign(α0,·), (35)

where Π is the orthogonal projector onto (ImΦx0)
⊥. If we denote by p∞F the vector

introduced by Fuchs (see (21)), which turns out to be

p∞F = argmin
p∈H

{||p|| ; (Φ∗p)(x0,ν) = sign(α0,ν), 1 6 ν 6 N} ,

we observe that p∞V = p∞F − ΠΦ′
x0
(Φ′

x0
∗ΠΦ′

x0
)−1Φ′

x0
∗p∞F .

Remark 7. At this stage, we see that two different minimal norm certificates appear:

the one for the discrete problem (Pn
0 (y0)) which should satisfy (26) on a discrete grid

Gn, and the one for gridless problem (P∞
0 (y0)) which should satisfy (30). One should

not mingle them.
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3.3. The Lasso on Thin Grids for Fixed λ > 0

As hinted by the notation, Problem (P∞
λ (y)) is the limit of Problem (Pn

λ (y)) as

the stepsize of the grid vanishes (i.e. n → +∞). Indeed, we may identify each

vector a ∈ RGn with the measure ma =
∑Gn−1

k=0 akδkhn (so that ‖a‖1 = |ma|(T))

and embed (Pn
λ (y)) into the space of Radon measures. With this identification, the

Problem (Pn
λ (y)) Γ-converges towards Problem (P∞

λ (y)) (see the definition below),

and as a result, any accumulation point of the minimizers of (Pn
λ (y)) is a minimizer

of (P∞
λ (y)).

Remark 8. The space M(T) endowed with the weak* topology is a topological vector

space which does not satisfy the first axiom of countability (i.e. the existence of a

countable base of neighborhoods at each point). However, each solution mn
λ of (Pn

λ (y))

(resp. m∞
λ of (P∞

λ (y))) satisfies

λ|mn
λ|(T) 6 λ|mn

λ|(T) +
1

2
||Φmn

λ − y||2 6
1

2
||y||2. (36)

Hence we may restrict those problems to the set

X
def.

=

{

m ∈ M(T) ; λ|m|(T) 6
1

2
||y||2

}

which is a metrizable space for the weak* topology. As a result, we shall work with

the definition of Γ-convergence in metric spaces, which is more convenient than working

with the general definition [13, Definition 4.1]). For more details about Γ-convergence,

we refer the reader to the monograph [13].

Definition 4. We say that the Problem (Pn
λ (y)) Γ-converges towards Problem (P∞

λ (y))

if, for all m ∈ X, the following conditions hold

• (Liminf inequality) for any sequence of measures (mn)n∈N ∈ XN such that

supp(mn) ⊂ Gn and that mn weakly* converges towards m,

lim inf
n→+∞

(

λ|mn|(T) +
1

2
||Φmn − y||2

)

> λ|m|(T) +
1

2
||Φm− y||2.

• (Limsup inequality) there exists a sequence of measures (mn)n∈N ∈ XN such that

supp(mn) ⊂ Gn, m
n weakly* converges towards m and

lim sup
n→+∞

(

λ|mn|(T) +
1

2
||Φmn − y||2

)

6 λ|m|(T) +
1

2
||Φm− y||2.

The following proposition shows the Γ-convergence of the discretized problems

toward the Beurling Lasso problem. This ensures in particular the convergence of

the minimizers, which was already proved in [31]. Notice that this Γ-convergence can

be seen as a consequence of the study in [25], where discrete vectors a are embedded

in M(T) using ma =
∑Gn−1

k=0 ak1[khn,(k+1)hn) (as opposed to
∑Gn−1

k=0 akδkhn). While that

other discretization yields the same convergence of the primal problems, it seems less

convenient to interpret the convergence of dual certificates, so that we propose a direct

proof (using our discretization) in Appendix D.1.
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Proposition 4 ([25]). The Problem (Pn
λ (y)) Γ-converges towards (P∞

λ (y)), and

lim
n→+∞

inf (Pn
λ (y)) = inf (P∞

λ (y)). (37)

Each sequence (mn
λ)n∈N such that mn

λ is a minimizer of (Pn
λ (y)) has accumulation

points (for the weak*) topology, and each of these accumulation point is a minimizer

of (P∞
λ (y)).

In particular, if the solution mλ to (P∞
λ (y)) is unique, the minimizers of (Pn

λ (y))

converge towards mλ.

Here, we propose to describe the convergence of the minimizers of (Pn
λ (y)) more

accurately than the plain weak-* by studying the dual certificates pλ and looking at the

support of the solutions mn
λ to (Pn

λ (y)) (see [20, Section 5.4]). One may prove that mn
λ

is generally composed of at most one pair of Dirac masses in the neighborhood of each

Dirac mass of the solution m∞
λ =

∑Nλ

ν=1 αλ,νδxλ,ν to (P∞
λ (y)). More precisely,

Proposition 5. Let λ > 0, and assume that there exists a solution to (P∞
λ (y)) which

is a sum of a finite number of Dirac masses: m∞
λ =

∑Nλ

ν=1 αλ,νδxλ,ν (where αν 6= 0).

Assume that the corresponding dual certificate η∞λ = Φ∗p∞λ satisfies |η∞λ (t)| < 1 for all

t ∈ T \ {x1, . . . , xN}.

Then any sequence of solution mn
λ =

∑Gn−1
i=0 anλ,iδihn to (Pn

λ (y)) satisfies

lim sup
n→+∞

(supp(mn
λ)) ⊂ {x1, . . . xN}.

If, moreover, m∞
λ is the unique solution to (P∞

λ (y)),

lim
n→+∞

(supp(mn
λ)) = {x1, . . . xN}. (38)

If, additionally, (η∞λ )′′(xν) 6= 0 for some ν ∈ {1, . . . , N}, then for all n large enough,

the restriction of mn
λ to (xν − r, xν + r) (with 0 < r < 1

2
minν−ν′ |xλ,ν − xλ,ν′ |) is a sum

of Dirac masses of the form aλ,iδihn + aλ,i+εi,nδ(i+εi,n)hn with εi,n ∈ {−1, 1}, aλ,i 6= 0 and

sign(aλ,i) = sign(αλ,ν). Moreover, if aλ,i+εi,n 6= 0, sign(aλ,i+εi,n) = sign(αλ,ν).

We skip the proof as it is very close to the arguments of [20, Section 5.4]. Moreover

the proof of Proposition TODO in the companion paper [21] for the C-BP is quite

similar.

3.4. Convergence of the Extended Support

Now, we focus on the study of low noise regimes. The convergence of the extended

support for (Pn
0 (y0)) towards the extended support of (P∞

0 (y0)) is analyzed by the

following proposition.

From now on, we assume that the source condition for (P∞
0 (y0)) holds, and that

suppm0 ⊂ Gn for n large enough (in other words, y0 = ΦGn
a0 for some a0 ∈ RGn), so

that m0 =
∑N

ν=1 α0,iδx0,ν is a solution of (Pn
0 (y0)). Moreover we assume that n is large

enough so that |x0,ν − x0,ν′ | > 2hn for ν ′ 6= ν.
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Proposition 6 ([20]). The following result holds:

lim
n→+∞

ηn0 = η∞0 , (39)

in the sense of the uniform convergence (which also holds for the first and second

derivatives). Moreover, if m0 satisfies the Non Degenerate Source Condition, for n

large enough, there exists εn ∈ {−1, 0,+1}N such that

ext±
n
(m0) = supp±(m0) ∪

(
supp±(m0) + εnhn

)
, (40)

where supp±(m0) + εnhn
def.

= {(x0,ν + εnνhn, η
∞
0 (x0,ν)) ; 1 6 ν 6 N}.

That result ensures that on thin grids, there is a low noise regime for which

the solutions are made of the same spikes as the original measure, plus possibly one

immediate neighbor of each spike with the same sign. However, it does not predict

which neighbors may appear and where (is it at the left or at the right of the original

spike?).

The following new theorem, whose proof can be found in Appendix D.2, refines

that result by giving a sufficient condition for the spikes to appear in pairs (i.e. εν = ±1

for 1 6 ν 6 N). Moreover, it shows that the value of εn does not depend on n, and it

gives the explicit positions of the added spikes εν , for 1 6 ν 6 N .

Theorem 2. Assume that the operator Γx0 =
(

Φx0 Φ′
x0

)

has full rank, and that

m0 satisfies the Non-Degenerate Source Condition. Moreover, assume that all the

components of the natural shift

ρ
def.

= (Φ′∗
x0
ΠΦ′

x0
)−1Φ′∗

x0
Φ+,∗
x0

sign(m0(x0)) (41)

are nonzero, where Π is the orthogonal projector onto (ImΦx0)
⊥.

Then, for n large enough, the extended signed support of m0 on Gn has the form

ext±
n
(m0) = {(xν , sign(α0,ν))}16ν6N ∪ {(xν + ενhn, sign(α0,ν)}16ν6N (42)

where ε = sign (diag(sign(α0))ρ) . (43)

In the above theorem, observe that Φ′∗
x0
ΠΦ′

x0
is indeed invertible since Γx0 has full

rank.

Corollary 1. Under the hypotheses of Theorem 2, for n large enough, there exists

constants C
(1)
n > 0, C

(2)
n > 0 such that for λ 6 C

(1)
n min16ν6N |α0,ν |, and for all

w ∈ H such that ‖w‖ 6 C
(2)
n λ, the solution to (Pn

λ (y)) is unique, and reads mλ =
∑N

ν=1(αλ,νδx0,ν + βλ,νδx0,ν+εhn), where
(

αλ
βλ

)

=

(

α0

0

)

+ Φ+
extnw − λ(Φ∗

extnΦextn)
−1 sign

(

α0

α0

)

,

where extn(m0) = {xν}16ν6N ∪ {xν + ενhn}16ν6N ,

ε = sign (diag(sign(α0))ρ) ,

sign(αλ,ν) = sign(βλ,ν) = sign(α0,ν).
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3.5. Asymptotics of the Constants

To conclude this section, we examine the decay of the constants C
(1)
n , C

(2)
n in

Corollary 1 as n → +∞. For this we look at the values of c1, . . . , c5 given in the

proof of Theorem 1.

By Lemma 3 applied to Φextn(m0) =
(

Φx0 Φx0 + hn(Φ
′
x0

+O(hn))
)

, we see that

c1,n
def.

= ||RIΦ
+
extn(m0)

||∞,2 ∼
1

hn
||(Φ′∗

x0
ΠΦ′∗

x0
)−1Φ′∗

x0
Π||∞,2, (44)

c2,n
def.

= ||vI ||∞ =
∣
∣
∣

∣
∣
∣RI(Φ

∗
extn(m0)

Φextn(m0))
−1

(

sI
sI

)
∣
∣
∣

∣
∣
∣
∞

∼
1

hn
||ρ||∞, (45)

c3,n
def.

= (||RKΦ
+
extn(m0)

||∞,2)
−1

(

min
k∈K

|vk|

)

∼
mink∈K |ρk|

||(Φ′∗
x0
ΠΦ′∗

x0
)−1Φ′∗

x0
Π||∞,2

. (46)

However, the expressions of c4 and c5 lead to an overly pessimistic bound on the signal-

to-noise ratio. Indeed the majorization used in (Appendix C.2) is too rough in this

framework: it does not distinguish between neighborhoods of x0,ν ’s, where the certificate

is close to 1, and the rest of the domain. The following proposition, whose proof can be

found in Appendix D.3, gives a more refined asymptotic.

Proposition 7. The constants C
(1)
n , C

(2)
n in Corollary 1 can be chosen as C

(1)
n = O(hn)

and C
(2)
n = O(1), and one has

∣
∣
∣

∣
∣
∣

(

αλ
βλ

)

−

(

α0

0

)
∣
∣
∣

∣
∣
∣
∞

= O

(
w

hn
,
λ

hn

)

. (47)

4. Numerical illustrations on Compressed sensing

In this section, we illustrate the “abstract” support analysis of the Lasso problem

provided in Section 2, in the context of ℓ1 recovery for compressed sensing. Let us

mention that more experiments, illustrating the doubling of the support for sparse

spikes recovery on thin grids are described in the companion paper, in a comparison

of the Lasso and the C-BP. Compressed sensing corresponds to the recovery of a high

dimensional (but hopefully sparse) vector a0 ∈ RP from low resolution, possibly noisy,

randomized observations y = Ba0 + w ∈ RQ, see for instance [7] for an overview of the

literature on this topic. For simplicity, we assume that there is no noise (w = 0) and

we consider here the case where B ∈ RQ×P is a realization from the Gaussian matrix

ensemble, where the entries are independent and uniformly distributed according to a

Gaussian N (0, 1) distribution. This setting is particularly well documented, and it has

been shown, assuming that a0 is s-sparse (meaning that | supp(a0)| = s), that there are

roughly three regimes:

If s < s0
def.

= Q
2 log(P )

, then a0 is with “high probability” the unique solution of (P0(y0))

(it is identifiable), and the support is stable to small noise, because ηF (as defined

in (21)) is a valid certificate, ||ηF ||∞ 6 1. This is shown for instance in [35, 19].
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If s < s1
def.

= Q
2 log(P/Q)

, then a0 is with “high probability” the unique solution

of (P0(y0)), but the support is not stable, meaning that ηF is not a valid certificate.

This phenomena is precisely analyzed in [10, 1] using tools from random matrix theory

and so-called Gaussian width computations.

If s > s1, then a0 with “high probability” is not the solution of (P0(y0)).

We do not want to give details here on the precise meaning of with “high probability”,

but this can be precisely quantified in term of probability of success (with respect to

the random draw of B) and one can show that a phase transition occurs, meaning that

for large (P,Q) the transition between these regimes is sharp.

While the regime s < s0 is easy to understand, a precise analysis of the intermediate

regime s0 < s < s1 in term of support stability is still lacking. Figure 2 shows how

Theorem 1 allows us to compute numerically the size of the recovered support, hence

providing a quantification of the degree of “instability” of the support when a small noise

w contaminates the observations. The simulation is done with (P,Q) = (400, 100).

The left part of the figure shows, as a function of s (in abscissa), the probability

(with respect to a random draw of Φ and a0 a s-sparse vector) of the event that a0 is

identifiable (plain curve) and of the event that ηF is a valid certificate (dashed curve).

This clearly highlights the phase transition phenomena between the three different

regimes, and one roughly gets that s0 ≈ 6 and s1 ≈ 20, which is consistent with

the theoretical asymptotic bounds found in the literature.

The right part of the figure, shows, for three different sparsity levels s ∈ {14, 16, 18},

the histogram of the repartition of |J | where J is the extended support, as defined in

Theorem 1. According to Theorem 1, this histogram thus shows the repartition of

the sizes of the supports of the solutions to (Pλ(y)) when the noise w contaminating

the observations y = Ba0 + w is small and λ is chosen in accordance to the noise

level. As one could expect, this histogram is more and more concentrated around the

minimum possible value s (since we are in the regime s < s1 so that the support I of

size s is included in the extended support J) as s approaches s0 (for smaller values,

the histogram being only concentrated at s since J = I and the support is stable).

Analyzing theoretically this numerical observation is an interesting avenue for future

work that would help to better understand the performance of compressed sensing.

Conclusion

In this work, we have provided a precise analysis of the properties of the solution

path of ℓ1 regularization in the low-noise regime. A particular attention has been paid

to the support set of this path, which in general cannot be expected to match the one of

the sought after solution. Two striking examples support the relevance of this approach.

For imaging problems (when the observations depend smoothly on the spikes locations),

we showed theoretically that in general this support is not stable, and we were able to

derive in closed form the solution of the “extended support” that is twice larger, but is

stable. In the compressed sensing scenario (i.e. when the operator of the inverse problem
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Figure 2: Left: probability as a function of s of the event that a0 is identifiable (plain

curve) and of the even that its support is stable (dashed curve). Right: for several value

of s, display of histogram of repartition of the sizes |J | of the extended support J .

is random), we showed numerically how to leverage our theoretical findings and analyze

the growth of the extended support size as the number of measurements diminishes.

This analysis opens the doors for many new developments to better understand this

extended support, both for deterministic operators (e.g. Radon transform in medical

imaging) and random ones.
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Appendix A. Useful properties of the integral transform

Lemma 1. Let k0 ∈ N∗ and assume that ϕ ∈ C k0(T,H). Then Φ(k) : M(T) → H, m 7→
∫

T
ϕ(k)(t)dm(t) is weak-* to weak continuous, and its adjoint operator Φ(k),∗ : H → C (T)

is compact and given by (Φ(k),∗q)(t) = 〈q, ϕ(k)(t)〉 for all q ∈ H, t ∈ T.

Eventually, dk

dtk
(Φ∗q)(t) = (Φ(k),∗q)(t).
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Proof. By continuity and bilinearity of the inner product, we see that

∀q ∈ H, 〈q, Φ(k)m〉 =

∫

T

〈q, ϕ(k)(t)〉dm(t).

Since t 7→ 〈q, ϕ(k)(t)〉 is in C (T) we obtain the weak-* to weak continuity and the

expression of the adjoint operator. Its compactness, namely that {Φ∗p; p ∈ H, ||p|| 6 1}

is relatively compact in C (T), follows from the Ascoli-Arzelà theorem. The last assertion

is simply that dk

dtk
〈q, ϕ(t)〉 = 〈q, dk

dtk
ϕ(t)〉

The compactness mentioned above yields the following property. Given any

bounded sequence {pn}n∈N in H, we may extract a subsequence {pn′}n′∈N which

converges weakly towards some p̃ ∈ H. Then, the (sub)sequence Φ∗pn′ converges towards

Φ∗p̃ for the (strong) uniform topology, and its derivatives Φ(k),∗pn′ also converge towards

Φ(k),∗p̃ for that topology.

Appendix B. Asymptotic expansion of the inverse of a Gram matrix

In this Appendix, we gather some useful lemmas on the asymptotic behavior of

inverse Gram matrices.

Lemma 2. Let A : RN → H, B : RN → RN be linear operators such that A has full rank

and B is invertible. Then the Moore-Penrose pseudo-inverse of AB is (AB)+ = B−1A+.

Proof. Since AB has full rank, the classical formula of the pseudo-inverse yields

((AB)∗(AB))−1 (AB)∗) = B−1(A∗A)−1B−1,∗B∗A∗ = B−1A+.

Lemma 3. Let A,B,Bh : R
N → H be linear operators such that Bh = B + O(h) for

h→ 0+, and that
(

A B
)

has full rank. Let Π be the orthogonal projector onto (ImA)⊥,

and let

Gh
def.

=

(

A∗

A∗ + hB∗
h

)
(

A A+ hBh

)

and s ∈ RN . Then for h > 0 small enough, Gh and B∗ΠB are invertible, and

G−1
h

(

s

s

)

=
1

h

(

(B∗ΠB)−1B∗A+,∗s

−(B∗ΠB)−1B∗A+,∗s

)

+O(1), (B.1)

(

A A+ hBh

)+

=
1

h

(

(B∗ΠB)−1B∗Π

−(B∗ΠB)−1B∗Π

)

+O(1), (B.2)

but
(

A A+ hBh

)+,∗
(

s

s

)

= A+,∗s− ΠB(B∗ΠB)−1B∗A+,∗s+O(h). (B.3)
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Proof. Observe that
(

A A+ hBh

)

=
(

A Bh

)
(

IN IN
0 hIN

)

so that

Gh =

(

IN 0

IN hIN

)(

A∗A A∗Bh

B∗
hA B∗

hBh

)(

IN IN
0 hIN

)

.

Since
(

A B
)

has full rank, the middle matrix is invertible for h small enough, and

G−1
h =

(

IN − 1
h
IN

0 1
h
IN

)(

A∗A A∗Bh

B∗
hA B∗

hBh

)−1(

IN 0

− 1
h
IN

1
h
IN

)

.

Writing

(

a b

c d

)

def.

=

(

A∗A A∗Bh

B∗
hA B∗

hBh

)

, the block inversion formula yields

(

a b

c d

)−1

=

(

a−1 + a−1bS−1ca−1 −a−1bS−1

−S−1ca−1 S−1

)

,

where S
def.

= d− ca−1b = B∗
hBh − B∗

hA(A
∗A)−1A∗Bh = B∗

hΠBh

is indeed invertible for small h since
(

A B
)

has full rank. Moreover, a−1bS−1 =

A+Bh(B
∗
hΠBh)

−1, and S−1ca−1 = (B∗
hΠBh)

−1B∗
hA

+,∗.

Now, we evaluate G−1
h

(

s

s

)

=

(

IN − 1
h
IN

0 1
h
IN

)(

a−1s+ a−1bS−1ca−1s

−S−1ca−1s

)

. We obtain

G−1
h

(

s

s

)

=
1

h

(

S−1ca−1s

−S−1ca−1s

)

+O(1) =
1

h

(

(B∗ΠB)−1B∗A+,∗s

−(B∗ΠB)−1B∗A+,∗s

)

+O(1).

Eventually, by Lemma 2,
(

A A+ hBh

)+

=

(

IN − 1
h
IN

0 1
h
IN

)(

A∗A A∗Bh

B∗
hA B∗

hBh

)−1(

A∗

B∗
h

)

.

We obtain

(

A A+ hBh

)+

=

(

IN − 1
h
IN

0 1
h
IN

)(

A+ − A+Bh(B
∗
hΠBh)

−1B∗
hΠ

−(B∗
hΠBh)

−1B∗
hΠ

)

and we deduce

(

A A+ hBh

)+

=
1

h

(

(B∗ΠB)−1B∗Π

−(B∗ΠB)−1B∗Π

)

+O(1),

and
(

A A+ hBh

)+,∗
(

s

s

)

=
(

A+,∗ − ΠBh(BhΠBh)
−1B∗

hA
+,∗ ΠBh(B

∗
hΠBh)

−1
)

(

IN 0

− 1
h
IN

1
h
IN

)(

s

s

)

= A+,∗s− ΠB(B∗ΠB)−1B∗A+,∗s+O(h).
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Appendix C. Proofs for Section 2

Appendix C.1. Characterization of η0

It is shown in [20] that there exists a low noise regime where the (signed) support

of any solution ãλ of Pλ(y0 + w) is included in ext±(a0), supp
± ãλ ⊂ ext±(a0). It is

therefore crucial to understand precisely the behavior of η0 and the structure of the

extended (signed) support ext±(a0). Before detailing the proof of Theorem 1, we thus

detail in the following lemma a (new) result giving a characterization of η0.

Lemma 4. Let (J, sJ) ⊂ J0, G − 1K × {−1, 1} such that (I, sign((a0)I)) ⊂ (J, sJ) and

AJ has full rank. Define vJ = (A∗
JAJ)

−1sJ .

Then (J, sJ) is the extended signed support of a0, i.e. (J, sJ) = ext±(a0), if and

only if the following two conditions hold:

• for all j ∈ J \ I, vj = 0 or sj = − sign(vj),

• ‖A∗
JcAJvJ‖∞ < 1.

In that case, the minimal norm certificate is given by η0 = A∗A+,∗
J sJ .

Proof. Writing the optimality conditions for (19), we see that p ∈ H is equal to p0 if

and only if ‖A∗p‖∞ 6 1, A∗
Ip = sign(a0,I), and there exists u+ ∈ (R+)G and u− ∈ (R+)G

such that:

2p+ Au+ − Au− = 0, (C.1)

where for i ∈ Ic, u+,i (resp. u−,i) is a Lagrange multiplier for the constraint

(A∗p)i 6 1 (resp. (A∗p)i > −1) which satisfies the complementary slackness condition:

u+,i((A
∗p)i − 1) = 0 (resp u−,i((A

∗p)i + 1) = 0), and for i ∈ I, (u+,i − u−,i) is the

Lagrange multiplier for the constraint (A∗p)i = sign(a0)i.

First, let (J, sJ) = ext±(a0) (so that J determines the set of active constraints) and

p = p0. Using the complementary slackness condition we may reformulate (C.1) as

p0 − AJvJ = 0, (C.2)

for some v ∈ RG, where vj = 0 or sign vj = −(A∗p0)j for j ∈ J \ I, and vj = 0 for

j ∈ J0, G−1K\J . Inverting this relation, we obtain vJ = (A∗
JAJ)

−1(η0)J , and the stated

conditions hold.

Conversely, let (J, sJ) ⊂ J0, G − 1K × {−1, 1} (not necessarily equal to ext±(a0))

such that (I, sign((a0)I)) ⊂ (J, sJ) and that the conditions of the lemma hold, with

vJ = (A∗
JAJ)

−1sJ . Then, setting p = −AJvJ , we see that ‖A
∗p‖∞ 6 1, A∗

Ip = sign(a0)I ,

and (C.1) holds with the complementary slackness when setting u+,j = 1
2
max(vj, 0),

u−,j =
1
2
max(−vj, 0) for j ∈ J and u±,j = 0 for j /∈ J . Then p = p0 and the equivalence

is proved.
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Appendix C.2. Proof of Theorem 1

We define a candidate solution â by

âJ = a0,J + A+
Jw − λvJ , âJc = 0 (C.3)

and we prove that â is the unique solution to (Pλ(y0 + w)) using the optimality

conditions (14) and (15).

We first exhibit a condition for sign(âJ) = sign(η0,J). To shorten the notation, we

write sJ
def.

= sign(η0,J). Since for i ∈ I, a0,i 6= 0, the constraint sign(âI) = sI is implied

by

||RIA
+
J ||∞,2||w||+ ||vI ||∞λ < T, where T = min

i∈I
|a0,I | > 0,

and RI : u 7→ uI is the restriction operator. As for K = J \ I, for all k ∈ K a0,k = 0

but we know from Lemma 4 that sign(vk) = −sk. The constraint sign(âK) = sK is thus

implied by

||RKA
+
J ||∞,2||w|| 6 λ

(

min
k∈K

|vk|

)

︸ ︷︷ ︸

>0

.

Hence, we have sign âJ = sign η0,J = sJ , and by construction supp(â) = J with

A∗
J(y − Aâ) = λsJ . (C.4)

To ensure that â is the unique solution to (Pλ(y)) with y = y0 + w, it remains to

check that

||A∗
Jc(y − Aâ)||∞ < λ. (C.5)

From (C.3) and (C.2),

y − Aâ = y0 + w − Aa0 − AA+
Jw − λAv

=
(
IH − AJA

+
J

)
w − λp0

= Pker(A∗

J
)w − λp0,

and we see that (C.5) is implied by

||A∗
JcPker(A∗

J
)||2,∞||w|| − λ(1− ||η0,Jc ||∞) < 0

where by construction ||η0,Jc ||∞ < 1.

Putting everything together, one sees that â is the unique solution of (Pλ(y)) if the

following affine inequalities hold simultaneously

c1||w||+ c2λ < T where

{

c1
def.

= ||RIA
+
J ||∞,2,

c2
def.

= ||vI ||∞,
(C.6)

||w|| 6 c3λ where c3
def.

= (||RKA
+
J ||∞,2)

−1

(

min
k∈K

|vk|

)

> 0, (C.7)

c4||w|| − c5λ < 0 where

{

c4
def.

= ||A∗
JcPker(A∗

J
)||2,∞,

c5
def.

= 1− ||η0,Jc ||∞ > 0.
(C.8)
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Hence, for ‖w‖ < min(c3,
c5
c4
)λ and

(
c1c5
c4

+ c2

)

λ < T , the first order optimality

conditions hold.

Appendix D. Proofs for Section 3

Appendix D.1. Proof of Proposition 4

The liminf inequality of Definition 4 is a consequence of the (weak) lower semi-

continuity of the total variation and the norm inH (since Φ is weak* to weak continuous,

ΦGn
mn − y weakly converges towards Φm− y):

lim inf
n→+∞

(

λ|mn|(T) +
1

2
||Φmn − y||2

)

> λ lim inf
n→+∞

(|mn|(T)) +
1

2
lim inf
n→+∞

(
||Φmn − y||2

)

> λ|m|(T) +
1

2
||Φm− y||2.

As for the limsup inequality, we approximate m with the measure mn =
∑Gn−1

k=0 bkδkhn , where bk = m([khn, (k + 1)hn)). Then, for any ψ ∈ C(T),

∣
∣
∣
∣

∫

T

ψdm−

∫

T

ψdmn

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

Gn−1∑

k=0

∫

[khn,(k+1)hn)

(ψ(x)− ψ(khn))dm

∣
∣
∣
∣
∣

6 ωψ(hn)|m|(T),

where ωψ : t 7→ sup|x′−x|6t |ψ(x) − ψ(x′)| is the modulus of continuity of ψ. Therefore,

limn→+∞〈mn, ψ〉 = 〈m,ψ〉, and mn weakly* converges towards m. Incidentally, observe

that |mn|(T) 6 |m|(T), so that using the liminf inequality we get limn→+∞ |mn|(T) =

|m|(T). Moreover, by similar majorizations,

||Φmn − Φm|| =

∣
∣
∣
∣

∣
∣
∣
∣

∫

T

ϕdm−

∫

T

ϕdmn

∣
∣
∣
∣

∣
∣
∣
∣
6 ωϕ(hn)|m|(T),

so that Φmn converges strongly in L2(T) towards Φm. As a result limn→+∞ ||Φmn−y||2 =

||Φm− y||2, and the limsup inequality is proved.

Eventually, from (36) we deduce the compactness of X, hence the existence of

accumulation points, and [13, Theorem 7.8] implies that accumulation points of (mn
λ)n∈N

are minimizers of (P∞
λ (y)), as well as (37).

Appendix D.2. Proof of Theorem 2

We define a good candidate for ηn0 and using Lemma 4 we prove that it is indeed

equal to ηn0 when the grid is thin enough.

To comply with the notations of Section 2, we write

N∑

ν=1

α0,iδx0,ν =
Gn−1∑

k=0

a0,kδkhn ,
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and we let I
def.

= {i ∈ J0, Gn − 1K ; a0,i 6= 0}. Moreover, for any choice of sign (εi)i∈I ∈

{−1,+1}N , we set J
def.

=
⋃

i∈I{i, i + εi} and sJ = (sj)j∈J where si
def.

= si+εi
def.

= sign(a0,i)

for i ∈ I. Since |x0,ν − x0,ν′ | > 2hn for ν ′ 6= ν, we have Card J = 2× Card I = 2N .

Recalling that A =
(

ϕ(0) . . . ϕ((Gn − 1)hn)
)

, we consider the submatrices

AI
def.

=
(

ϕ(ihn)
)

i∈I
=
(

ϕ(x0,1) . . . ϕ(x0,N)
)

and AJ\I
def.

=
(

ϕ((i+ εi)hn)
)

i∈I

so that up to a reordering of the columns AJ =
(

AI AJ\I

)

. In order to apply Lemma 4,

we shall exhibit a choice of (εi)i∈I such that AJ has full rank, that v
def.

= (A∗
JAJ)

−1sJ
satisfies sign(vj) = −sj for j ∈ J \ I and ‖A∗

JcAJv‖∞ < 1 .

The following Taylor expansion holds for AJ\I as n→ ∞:

AJ\I = A0 + hn(B0 +O(hn)), with A0 = AI = Φx0

and B0 =
(

ϕ′(x0,1) . . . ϕ′(x0,N)
)

diag ((εi1), . . . (εiN ))

= Φ′
x0
diag ((εi1), . . . (εiN )) .

By Lemma 3 in Appendix, the Gram matrix A∗
JAJ is invertible for n large enough,

and

(A∗
JAJ)

−1

(

sI
sI

)

=
1

hn

(

(diag(εi1 , . . . , εiN ))
−1ρ

−(diag(εi1 , . . . , εiN ))
−1ρ

)

+O(1),

where ρ is defined in (41), where Π is the orthogonal projector onto (ImΦx0)
⊥, and for

ν ∈ J1, NK, iν refers to the index i ∈ I such that ihn = x0,ν . Therefore, vJ\I has the

sign of − diag(εi1 , . . . εiN )ρ, and it is sufficient to choose εiν = siν × sign(ρν) to ensure

that sign vJ\I = −sJ\I for n large enough.

With that choice of ε, it remains to prove that ‖A∗
JcAJv‖∞ < 1. Let us write

p̃n
def.

= AJv = A+,∗
J

(

sI
sI

)

. It is equivalent to prove that for k ∈ J c, |Φ∗p̃n(khn)| < 1.

Using the above Taylor expansion and Lemma 3 in Appendix, we obtain that

lim
n→+∞

p̃n = A+,∗
0 sI − ΠB0(B

∗
0ΠB0)

−1B∗
0A

+,∗
0 sI

= Φ+,∗
x0

sign(α0,·)− ΠΦ′
x0
(Φ′

x0

∗
ΠΦ′

x0
)−1Φ′

x0

∗
Φ+,∗
x0

sign(α0,·)

= p∞V (by (35)).

Hence, Φ∗p̃n and its derivatives converge to those of η∞V = η∞0 , and there exists

r > 0 such that for all n large enough, for all 1 6 ν 6 N , Φ∗p̃n is strictly concave (or

stricly convex, depending on the sign of η∞0
′′(x0,ν)) in (x0,ν − r, x0,ν + r). Hence, for

t ∈ (x0,ν − r, x0,ν + r) \ [x0,ν , x0,ν + εi(ν)hn], we have |Φ
∗p̃n(t)| < 1. Since by compactness

max

{

|η∞0 (t)| ; t ∈ T \
N⋃

ν=1

(x0,ν − r, x0,ν + r)

}

< 1
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we also see that for n large enough

max

{

|Φ∗p̃n(t)| ; t ∈ T \
N⋃

ν=1

(x0,ν − r, x0,ν + r)

}

< 1.

As a consequence, for k ∈ J c, |Φ∗p̃n(khn)| < 1, and from Lemma 4, we obtain that

Φ∗p̃n = ηn0 and
⋃N
ν=1{x0,ν , x0,ν + εi(ν)hn} is the extended support on Gn.

Appendix D.3. Proof of Proposition 7

The proof of (47) follows from applying (44) and (45) in the expression for αλ and

βλ provided by Corollary 1. Let ω
def.

= Φ∗Πw, where Π is the orthogonal projector onto

(ImΦx0)
⊥ = kerΦ∗

x0
. In order to ensure (C.5) we may ensure that :

|ω(jhn) + ληn0 (jhn)| − λ < 0, (D.1)

for all j ∈ J c (that is (jhn /∈ extn(m0)).

By the Non-Degenerate Source Condition, there exists r > 0 such that for all

ν ∈ {1, . . . , N},

∀t ∈ (x0,ν − r, x0,ν + r), |η∞0 (t)| > 0.95 and |(η∞0 )′′(t)| >
3

4
|(η∞0 )′′(x0,ν)|,

and by compactness supT\
⋃N

ν=1
(x0,ν−r,x0,ν+r)

|η∞0 | < 1. Since ηn0 → η∞0 (with uniform

convergence of all the derivatives), for n large enough,

∀ν ∈ {1, . . . , N}, ∀t ∈ (x0,ν−r, x0,ν+r), |η
n
0 (t)| > 0.9 and |(ηn0 )

′′(t)| >
1

2
|(η∞0 )′′(x0,ν)|,

(with equality of the signs) and

sup
T\

⋃N
ν=1

(x0,ν−r,x0,ν+r)

|ηn0 | 6 k
def.

=
1

2

(

sup
T\

⋃N
ν=1

(x0,ν−r,x0,ν+r)

|η∞0 |+ 1

)

< 1.

First, for j such that jhn ∈ T \
⋃N
ν=1(x0,ν − r, x0,ν + r), we see that it is sufficient

to assume ||Φ∗||∞,2||w||2 < (1− k)λ to obtain (D.1).

Now, let ν ∈ {1, . . . , N} and assume that η∞0 (x0,ν) = 1 (so that (η∞0 )′′(x0,ν) < 0)

and that εν = 1, the other cases being similar. We make the following observation: if

a function f : (−r,+r) → R satisfies f ′′(t) 6 C for some C < 0 and f(0) = f(hn) = 0,

then f(t) 6 C
2
t(t− hn) < 0 for t ∈ (−r, 0] ∪ [hn, r).

Notice that ω = Φ∗Πw is a C 2 function which vanishes on extn(m0) (hence at x0,ν
and x0,ν + hn), and that its second derivative is bounded by ||(Φ′′)∗||∞,2||w||. Moreover,

ηn0 (x0,ν) = ηn0 (x0,ν + hn) = 1 and sup(x0,ν−r,x0,ν+r)(η
n
0 )

′′ 6
1
2
(η∞0 )′′(x0,ν) < 0. Thus, for

||w||
λ
<

|(η∞
0

)′′(x0,ν)|

2||(Φ′′)∗||∞,2
, we may apply the observation to ω(· − x0,ν)+λ(ηn0 (· − x0,ν)− 1) so as

to get

ω(t) + λ(ηn0 (t)− 1) 6

(

||(Φ′′)∗||∞,2||w||+ λ
1

2
(η∞0 )′′(x0,ν)

)

(t− x0,ν)(t− x0,ν − hn) < 0
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for t ∈ (x0,ν − r, x0,ν ] ∪ [x0,ν + hn, x0,ν + r).

On the other hand, the inequality −ω(t)−λ(ηn0 (t)+1) < 0 holds for ||Φ∗||∞,2||w||2 <

1.9λ. As a result (D.1) holds for all j such that jhn ∈ (x0,ν−r, x0,ν+r), provided that the

signal-to-noise ratio satisfies ||w||2
λ

6 c, where c > 0 is a constant which only depends on

minν |(η
∞
0 )′′(x0,ν)|, ||Φ

∗||∞,2, ||(Φ
′′)∗||∞,2 and supT\

⋃N
ν=1

(x0,ν−r,x0,ν+r)
|η∞0 |. In other words,

including the condition involving c3,n, we may choose C
(2)
n = min(c3,n, c) = O(1).
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