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Abstract: Sparse representation has proven to be a promising approach to image super-resolution, where the 

low resolution (LR) image is usually modeled as the down-sampled version of its high resolution (HR) 

counterpart after blurring. When the blurring kernel is the Dirac delta function, i.e., the LR image is directly 

down-sampled from its HR counterpart without blurring, the super-resolution problem becomes an image 

interpolation problem. In such case, however, the conventional sparse representation models (SRM) become 

less effective because the data fidelity term will fail to constrain the image local structures. In natural images, 

fortunately, the many nonlocal similar patches to a given patch could provide nonlocal constraint to the local 

structure. In this paper we incorporate the image nonlocal self-similarity into SRM for image interpolation. 

More specifically, a nonlocal autoregressive model (NARM) is proposed and taken as the data fidelity term 

in SRM. We show that the NARM induced sampling matrix is less coherent with the representation 

dictionary, and consequently makes SRM more effective for image interpolation. Our extensive 

experimental results demonstrated that the proposed NARM based image interpolation method can 

effectively reconstruct the edge structures and suppress the jaggy/ringing artifacts, achieving the best image 

interpolation results so far in term of PSNR as well as perceptual quality metrics such as SSIM and FSIM.  

 

Index Terms: Image interpolation, super-resolution, sparse representation, nonlocal autoregressive model. 
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1. Introduction 

Image super-resolution has wide applications in digital photography, medical imaging, computer vision, and 

consumer electronics, aiming at reconstructing a high resolution (HR) image from its low resolution (LR) 

counterpart. As a typical inverse problem, image super-resolution can be modeled as y=DHx+v, where x is 

the unknown original image, H is the blurring operator, D is the down-sampling operator, v is the additive 

noise, and y is the observed data. In this paper we will focus on the situation that the observation is noise 

free and the blur kernel is the Dirac delta function, i.e., v is zero and H is the identity matrix. In this case, we 

have y=Dx; that is, y is directly down-sampled from the original image x, and the super-resolution problem 

becomes an image interpolation problem. A variety of image interpolation algorithms have been developed, 

including the classical bilinear and bi-cubic interpolators [1-2], the edge guided interpolators [3-5], the 

recently developed sparse coding based methods [6-7] and the sparse mixing estimators [8].   

Reconstructing x from its linear measurement y=DHx+v is an ill-posed inverse problem. The classical 

iterative back-projection (IBP) algorithm [9] reconstructs x by minimizing 
2

2
ˆ arg min= −xx y DHx . 

However, the solution to this l2-minimization problem is generally not unique, and the reconstructed image 

by IBP is often noisy. To refine the solution space, some regularization terms of x, denoted by R(x), can be 

introduced to regularize the solution: 
2

2
ˆ arg min { + ( )}Rλ= − ⋅xx y DHx x , where λ is a scalar constant. One 

widely used regularizer is the total variation (TV) model [10-13], which assumes that natural images have 

small first derivatives. However, the TV model favors piecewise constant image structures, and hence tends 

to smooth much the image details.  

In recent years, the sparse representation models (SRM) [14-29] have shown promising results in image 

super-resolution. SRM assumes that the image x is sparse in some domain spanned by a dictionary Ψ, i.e., 

x≈Ψα and most of the coefficients in α are close to zero. Intuitively, the SRM regularizer can be set as 

R(x)=||α||0. However, the l0-minimization is non-convex. As the closest convex relaxation [28], the l1-norm 

regularizer R(x)=||α||1 is widely adopted, leading to the following SRM based super-resolution model:  

{ }2

2 1
ˆ arg min +λ= − ⋅y DHαα Ψα α .                                                      (1) 
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Once the coding vector α̂  is obtained, the desired HR image can be reconstructed as ˆ ˆ=x Ψα . The above l1-

minimization problem can be solved by techniques such as the iterative shrinkage based surrogate [16] and 

proximal [17] algorithms. In addition to the standard sparse coding model in Eq. (1), in [44, 33, 26] 

group/simultaneous sparse coding models were proposed to exploit the nonlocal self-similarity and local 

sparsity in natural images. In [27], a centralized sparse coding model was also proposed to exploit the image 

nonlocal redundancy.  

The SRM based super-resolution has a close relationship with the compressive sensing (CS) theory [24, 

25, 45]. According to the CS theory, in order to accurately recover the original signal x from its linear 

measurement y, the following two conditions should be satisfied. 

1) Incoherence: the linear observation matrix A=DH and the dictionary Ψ should be incoherent. The 

coherence between A and Ψ can be computed by 
1 ,( , ) max | , |k j n k jnμ ≤ ≤= ⋅ < >A aΨ ψ  [45], where n is the 

sample size, ak denotes the kth row of A and ψj denotes the jth atom (i.e., column) of Ψ. There is 

( , ) [1, ]nμ ∈AΨ . In order for a good reconstruction, the coherence μ should be small.  

2) Sparsity: the original signal x should have a sparse expansion over the dictionary Ψ.  

In the case of image interpolation, the matrix H is the identity matrix, and hence the sampling matrix 

A=D is the canonical or spike matrix. It has been shown [45] that the coherence between such a D and Ψ is 

minimal, i.e., μ(D,Ψ) = 1, when Ψ is the Fourier dictionary. However, natural images are generally not 

band-limited due to the many sharp edge structures, and thus the Fourier dictionary Ψ may not lead to sparse 

enough representations of natural images. For other dictionaries such as the wavelet dictionary, the 

canonical sampling matrix D is generally coherent with Ψ. For instances, the average coherence values 

between canonical sampling matrix D and the Haar wavelet dictionary, the Daubechies D4 and D8 

dictionaries are 5.65, 5.72 and 5.76, respectively, when the sample size is n=64 (i.e., 8×8 image patch). 

Considering that the maximal coherence is sqrt(64)=8 for n=64, we can see that the wavelet dictionary is 

highly coherent with the canonical sampling matrix. Apart from the analytical Fourier and wavelet 

dictionaries, by using algorithms such as K-SVD [30] we can learn redundant dictionaries 64 256×∈ℜΨ  from 

some high quality natural images. The coherence between the canonical sampling matrix D and such learned 
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dictionaries are about 4.45~5.97. Overall, we can see that the coherence between the canonical sampling 

matrix D and the dictionary Ψ is high, making the SRM based image interpolation less effective.  

Some recently developed SRM based image interpolation/super-resolution methods [6, 8, 50] use 

different models from Eq. (1) to reconstruct the HR image. In [6], a pair of over-complete dictionaries, 

denoted by Ψh and Ψl, are co-learned from a set of HR image patches and the associated set of LR image 

patches. It is enforced that the two sets of training patches share the same sparse representation coefficients 

over the couple of dictionaries. Then for an input LR image y, it is sparsely represented over Ψl, and the 

obtained sparse representation coefficients α are used to reconstruct the HR image x via x=Ψhα. An 

improved version of this coupled dictionary learning based image super-resolution method was later 

presented in [50]. In [8], a series of linear inverse estimators of x are computed based on different priors on 

the image regularity. These estimators are then mixed in a frame over patches of coefficients with 

appropriate regularity, providing an l1-sparse representation weighted by the signal regularity in each patch. 

The sparse mixing of these inverse estimators improves the stability of each estimator and makes the final 

estimation more accurate.  

In this paper, we propose a novel SRM based image interpolation approach by modeling and exploiting 

adaptively the image local and nonlocal redundancies 2 . Natural images often show a rich amount of 

repetitive patterns. For a given image patch, we may find many similar patches to it, which can be spatially 

either close to or far from this patch. Such kind of nonlocal similarity is very helpful to improve the image 

restoration output, and it has been successfully used in image denoising [31-34], deblurring [35-36] and 

super-resolution [37-38, 49]. Considering the fact that a given pixel can be well approximated by its 

nonlocal neighbors, which is the underlying principle of nonlocal means filtering [31-34], we propose the 

concept of nonlocal autoregressive model (NARM), which refers to modeling a given pixel as the linear 

combination of its nonlocal neighboring pixels. The NARM can be viewed as a natural extension of the 

commonly used autoregressive model, which approximates a pixel as the linear combination of its local 

neighbors. The NARM reflects the image self-similarity, and it constrains the image local structure (i.e., the 

local patch) by using the nonlocal redundancy. On the other hand, the NARM can act as a kernel, and can be 

                                                 
2 Since the local redundancy can also be viewed as nonlocal redundancy (just with shorter spatial distance), in the 

remaining of this paper we simply use nonlocal redundancy to represent both of them.  
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embedded into the data fidelity term of the conventional SRM model. Our study shows that the embedding 

of NARM kernels makes the sampling matrix more incoherent with the dictionary Ψ, which consequently 

enhances the effectiveness of SRM in image reconstruction according to the CS theory [24, 25, 45]. 

Nonetheless, the NARM induced kernels have very different physical meanings from the conventional 

kernels (such as Gaussian kernel) induced by the imaging system. The former mainly depends on the image 

content, while the later is mainly determined by the imaging process (e.g., lens, motion, etc).  

By introducing and embedding NARM into SRM, the image interpolation problem can be generalized to 

the conventional SRM based image restoration problem. In addition to the sparsity prior of representation 

coefficients, we also assume that the nonlocal similar patches have similar coding coefficients. This can 

improve much the stability and accuracy of sparse coding. The variable splitting optimization technique [46] 

is adopted to effectively solve the proposed NARM based SRM model. Our experimental results on 

benchmark test images clearly demonstrate that the proposed NARM method outperforms much the classical 

bi-cubic interpolator [1-2], the representative edge-guided interpolators [3-5], and the recently developed 

SRM based image interpolation methods [6, 8] in term of PSNR, SSIM [42] and FSIM [43] measures, as 

well as visual perception quality. 

The rest of the paper is organized as follows. Section 2 describes the NARM modeling for image 

interpolation. Section 3 discusses the NARM based SRM. Section 4 presents in detail the algorithm. Section 

5 presents extensive experimental results and Section 6 concludes the paper.  

 

2. Nonlocal Autoregressive Modeling 

For image interpolation, it is assumed that the low-resolution (LR) image is directly down-sampled from the 

original high-resolution (HR) image. Let’s denote by y(n,m), n=0,1,…,Nl-1, m=0,1,…,Ml-1, the LR pixels 

and by x(r,c), r=0,1,…, s⋅Nl-1, j=0,1,…, s⋅Ml-1, the HR pixels, where s is the scaling factor. We have x(r,c) 

= y(n,m) when r=s⋅n and c=s⋅m. Fig. 1 illustrates the case when s=2. The black dots represent the available 

LR pixels, while the white dots represent the missing pixels in the HR image. We can see that there is a great 

degree of freedom in recovering the missing pixels. One great challenge of image interpolation is to preserve 

the sharpness of edges in the interpolated HR image. The traditional edge-based interpolators preserve the 



 6 

edge sharpness by interpolating the missing pixels along edges [3-5] instead of across the edges. However, it 

is rather challenging to accurately estimate the edge directions or local statistics (e.g., local covariance 

matrix) from the LR image, and thus artifacts may be generated in the interpolated HR image. 

 

Figure 1: The low resolution (LR) image is down-sampled from its high resolution (HR) counterpart. The black dots 

represent the pixels of the LR image and the white dots represent the missing HR samples.   

 

    

                      (a)                                            (b)                                         (c)                                           (d) 

Figure 2: SRM based image interpolation (scaling factor: 3). (a) Original image; reconstructed images by (b) standard 

SRM with DCT dictionary (PSNR=32.49 dB); (c) standard SRM with local PCA dictionary (PSNR=32.50 dB); and (d) 

NARM based SRM with local PCA dictionary (PSNR=33.40 dB). 

 

In this paper we aim to develop an SRM based image interpolation method. As we discussed in the 

Introduction Section, the canonical sampling matrix D in image interpolation is generally coherent with the 

dictionary Ψ, making the standard SRM (refer to Eq. (1)) less effective for image interpolation. Fig. 2 shows 

an example. One can see that the standard SRM with either DCT dictionary or local PCA dictionary (refer to 

Sec. III for details) results in serious artifacts of ringings and zippers.  

To improve the SRM based image interpolation, we propose to improve the observation model y=Dx by 

incorporating the nonlocal self-similarity constraint. Since natural images have high local redundancy, many 

interpolation methods, including the classical bi-linear and bi-cubic interpolators [1-2] and the edge guided 

interpolators [3-5], interpolate the missing HR pixel, denoted by xi, as the weighted average of its local 

( , )r cx

( , )n my

(0,0)
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neighbors. In [5] the autoregressive model (ARM) is used to exploit the image local correlation for 

interpolation. Nonetheless, the image local redundancy may not be high enough for a faithful image 

reconstruction, especially in the region of edges, and thus artifacts such as ringings, jags and zippers often 

appear in the interpolated image.  Apart from local redundancy, fortunately, natural images also have a rich 

amount of nonlocal redundancy (e.g., repetitive image structures across the image). The pixel xi may have 

many nonlocal neighbors which are similar to it but spatially far from it. Clearly, those nonlocal neighbors 

(including the local ones) of xi, denoted by j

ix , can be used to approximate xi by weighted average:  

j j

i i ij
x xω≈∑ .                                                                        (2) 

In recent years the nonlocal methods have been successfully used in many image restoration applications 

[31-38].  

In practice, we use a local patch centered at xi, denoted by xi, to identify the nonlocal neighbors of xi by 

patch matching. Since the missing HR pixel xi and some of its local neighbors are not available, we initially 

interpolate the HR image x using methods such as the bi-cubic interpolator. Then we could search for the 

nonlocal similar patches to xi in a large enough window around xi. A patch j

ix  is chosen as the similar patch 

to xi if 
j

id = || ix 2

2||j

i t− ≤x , where t is a preset threshold, or j

ix  is chosen if it is within the first J (J=25 in our 

experiments) most similar patches to xi. We can then determine the weights j

iω  by solving the following 

regularized least-square problem: 

2 2

2 2
ˆ arg min

ii i i iγ= − +x Xωω ω ω  ,                                                    (3) 

where 1 2[ , , , ]J

i i i=X x x x , 1 2[ , , , ]J T

i i i iω ω ω=ω  and γ is the regularization parameter. The use of 

regularization in Eq. (3) is to enhance the stability of the least square solution, because both the patch xi and 

its neighbors in X are noisy due to the interpolation error. The solution of Eq. (3) can be readily obtained as  

1ˆ ( )T T

i iγ −= +X X I X xω .                                                             (4) 

In practice, we use the conjugate gradient method to efficiently solve Eq. (4).  

With iω , we propose the nonlocal autoregressive model (NARM) of image x as 

x = Sx + ex,                                                                         (5) 

where ex is the modeling error, and the NARM matrix S is   
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,   if   is a nonlocal neighbor of 
( , )

0,      otherwise

j j

i i ix x
i j

ω⎧⎪= ⎨
⎪⎩

S .                                           (6) 

It can be seen that NARM is a natural extension and generalization of the traditional ARM that uses only the 

spatially local neighbors to approximate xi. Fig. 3 illustrates the proposed NARM. We can see that a patch x0 

centered at x0 has a bunch of nonlocal neighbors 1

0x , …, 5

0x , and the weights assigned to the five neighbors 

are 1

0ω , …, 5

0ω . Meanwhile, anyone of the neighbors, for example 1

0x , has its own nonlocal neighbors and 

the associated weights. Like that with traditional ARM, with NARM all the pixels in the image can be 

connected but with a much more complex graph.  

1

0x

0x

2

0x
3

0x

4

0x

5

0x5

0ω
4

0ω
3

0ω
2

0ω 1

0ω

 

Figure 3: Illustration of the nonlocal autoregressive modeling (NARM).  

 

The NARM in Eq. (5) can be embedded into the standard SRM (Eq. (1)), leading to a new data fidelity 

term and making the SRM effective for image interpolation. Applying the downsampling operator D to Eq. 

(5), we have y=DSx+ey, where y=Dx and ey=Dex. The NARM based SRM for image interpolation can be 

generally written as    

 { }2

2
ˆ arg min + ( )Rλ= − ⋅y DSαα Ψα α  s.t. y=DΨα,                                            (7) 

where R(α) is the regularization term (e.g., sparsity constraint on α) and λ  is the parameter balancing the 

data fidelity term and the regularization term. We can see that the NARM matrix S is functionally similar to 

the blurring kernel matrix H in conventional SRM, reducing the degree of freedom of unknown pixels. 

Nonetheless, the NARM induced kernel S has very different physical meanings from the conventional kernel 
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H which is often induced by the imaging system. The shape of S mainly depends on the image content, 

while H is basically determined by the imaging process (e.g., lens, motion, etc).  

With NARM, the sampling matrix of SRM in Eq. (7) becomes A=DS. Let’s then compute the coherence 

value between A and different dictionaries Ψ. For 8×8 patches (i.e., n=64), the coherence between A and the 

Haar wavelet basis is about 1.24~4.72 (different S will lead to different coherence values), and the 

coherence values between A and D4 and D8 wavelet dictionaries are 1.21~4.77 and 1.25~4.74, respectively. 

For the local PCA dictionaries (refer to Sec. III for details about PCA dictionary), the coherence values 

between A and them are about 1.05~4.08. We can see that the NARM matrix S improves much the 

incoherence between sampling matrix and dictionaries, including the fixed wavelet dictionary and the 

adaptive local PCA dictionary. In Fig. 4 we show some PCA dictionaries, and compare the coherence values 

for the canonical sampling matrix D and the NARM improved sampling matrix A. In Fig. 2(d), we show the 

reconstructed HR image by NARM based SRM in Eq. (7) (we set R(α)=||α||1) with local PCA dictionaries. It 

can be clearly seen that the image edges reconstructed by NARM based SRM are much sharper than those 

by standard SRM methods. 

 

     
(a)                                (b)                                (c)                                 (d)                                (e) 

 

Figure 4: Examples of local PCA dictionaries (each block shows an atom of the local PCA dictionary) and their 

coherence values with different sampling matrices. Denote by μ1 the coherence between the canonical sampling matrix 

D and the local PCA dictionary, and by μ2 the coherence between the NARM improved sampling matrix A and the 

local PCA dictionary. (a) μ1=3.78, μ2=1.60; (b) μ1=3.28, μ2=1.80; (c) μ1=3.22, μ2=2.08; (d) μ1=6.41, μ2=1.47; (e) 

μ1=7.50, μ2=1.69. One can see that the NARM modeling improves the incoherence of the sparse representation model, 

and hence can lead to better image reconstruction results.  

 

The calculation of S needs to have the full resolution image x, which is unknown and is to be 

reconstructed. In general, we start from some initial estimate of x, denoted by x(0), and then some estimation 

of S, denoted by S(0), can be obtained. By solving the NARM based SRM in Eq. (7), an updated version of x, 

denoted by x
(1)= ˆΨα  can be obtained, from which the updated estimation of S, denoted by S

(1), can be 

computed. Such a procedure is iterated until a desired estimation of x is obtained.  
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3. NARM based Sparse Representation for Image Interpolation 

To implement the NARM based SRM in Eq. (7), we need to set the regularization term R(α) and select the 

dictionary Ψ.  In this section, rather than using the conventional l1-regularization on α, a more effective 

regularization is used by considering the nonlocal correlation between sparse coding coefficients. Moreover, 

local PCA dictionaries are learned to better adapt to the local image structures.  

 

A. The regularization term 

Since natural images usually have sparse expansion over a dictionary of bases (e.g., DCT bases, wavelet 

bases, or some learned dictionary), the l1-norm sparsity regularization can well regularize the solution of Eq. 

(7). In patch based sparse representation, the image x is partitioned into many (overlapped) patches xi, i = 1, 

2, …, N, and each patch is coded over the dictionary Ψ. Therefore, the NARM based SRM with l1-sparsity 

constraint can be written as 

{ }2

2 11
ˆ arg min +

N

ii
λ

=
= − ∑y DSαα Ψα α  s.t. y=DΨα,                                          (8) 

where αi is the coding vector of patch xi, and α is concatenated by all αi. For convenience of expression, 

here we use x=Ψα to denote the representation of full image x by combining all local patches xi=Ψαi. 

Clearly, the correlation between sparse coding vectors αi is not exploited in Eq. (8).  

Recall that in computing the NARM matrix S, for each patch xi we have identified a set of nonlocal 

neighbors j

ix  of it. Since in general xi can be well approximated by its nonlocal neighbors j

ix  as  

j j

i i ij
ω≈∑x x , the coding vectors of j

ix , denoted by j

iα , should also be able to approximate αi. Thus, αi 

should be close to the weighted average of j

iα , i.e., 2|| ||j j

i i ij
ω−∑α α  should be small. Let  

* j j

i i ij
ω=∑α α .                                                                    (9) 

We have the following nonlocal regularized SRM:  

{ }22 *

2 11 1 2
ˆ arg min + +

N N

i i ii i
λ η

= =
= − −∑ ∑y DSαα Ψα α α α  s.t. y=DΨα,                           (10) 
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where η is a constant. Compared with Eq. (8), the newly introduced nonlocal regularization term 

* 2

21
|| ||

N

i ii=
−∑ α α  in Eq. (10) could make the sparse coding more accurate by exploiting the nonlocal 

redundancy. In addition, it has been shown in [21, 41] that the re-weighted lp-norm (p=1 or 2) can enhance 

the sparsity and lead to better results. Therefore, we extend the proposed nonlocal regularized SRM in Eq. 

(10) to re-weighted nonlocal regularized SRM: 

{ }2 * 2

, , , , ,2 1 1
ˆ arg min + | |+ ( )

N r N r

i j i j i j i j i ji j i j
λ α η α α

= =
= − −∑ ∑ ∑ ∑y DSαα Ψα  s.t. y=DΨα,            (11) 

where ,i jα  and *

,i jα   denote the jth element of vector ,i jα  and *

,i jα , respectively, and ,i jλ  and ,i jη  are the 

weights assigned to the sparsity and nonlocal terms, respectively.  

We re-write Eq. (11) as 

{ }22 *

2 11 1 2
ˆ arg min + + ( )

N N

i i i i ii i= =
= − −∑ ∑y DSαα Ψα α α αλ η  s.t. y=DΨα,                       (12) 

where iλ  and iη  are diagonal weighting matrices whose diagonal elements are ,i jλ  and ,i jη , respectively. 

In the literature of variational image restoration [40], it has been shown that the regularization parameter 

should be inversely proportional to the signal-to-noise-ratio (SNR). In the iteratively re-weighted lp-norm 

minimization [41, 21], it is suggested that the weight assigned to coding coefficient α should be set as 

2| |pα − . Therefore, for each element of the coding vector αi, denoted by αi,j, we set adaptively the associated 

weights λi,j and ηi,j as 

1 2
, ,( ) ( ) * 2

, , ,

,   
| | ( )

i j i jl l

i j i j i j

c cλ η
α ε α α ε

= =
+ − +

,                                                (13) 

where c1 and c2 are two predefined positive constants, ( )

,

l

i jα  denotes the estimate of ,i jα  obtained in the lth 

iteration, and ε is a small positive number to increase the stability of Eq. (13). The detailed algorithm to 

minimize the model in Eq. (12) will be given in Section IV.  

 

B. The selection of dictionary 

In the proposed NARM based SRM in Eq. (12), the analytically designed dictionary, such as DCT, wavelet 

and curvelet dictionaries, can be used to span the sparse domain. However, recent studies have shown that 
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dictionaries learned from example images can lead to better image restoration results [23, 30, 39]. Moreover, 

in [7] a set of compact PCA sub-dictionaries, instead of one single over-complete dictionary, are learned 

from several natural images. Then for a given patch xi, a sub-dictionary is adaptively selected to code it. 

Such an adaptive sparse domain selection (ASDS) strategy has shown very promising results [7].  

In this paper, we adopt this ASDS strategy to better characterize the image local structures. Similar to 

[7], for each patch xi we adaptively select one compact PCA dictionary; different from [7], where the PCA 

dictionaries are pre-learned from example high quality images, in this paper we learn online the sub-

dictionaries. With an initial estimate of x, we cluster the local patches into K clusters, denoted by Zk, k=1, 

2, …, K. For each cluster Zk, since the patches within it are similar to each other, it is not necessary to learn 

an over-complete dictionary, and we simply use PCA to learn a compact dictionary Ψk for cluster Zk. Those 

sub-dictionaries actually form a big over-complete dictionary Ψ=[ Ψ1, Ψ2, … , ΨK] for the whole space of 

image patches. For a given patch xi to be coded, we first check which cluster is the closest one to it, and then 

select the sub-dictionary associated with this cluster, say Ψk, to code xi. This actually enforces the coding 

coefficients of xi over the remaining sub-dictionaries to be 0, leading to a very sparse representation of xi. 

Furthermore, by using the adaptive PCA dictionary, we only need to use a few major eigenvectors of Ψk to 

code xi, and this could further sparsify the coding coefficients of xi. For more details about the clustering and 

PCA based compact dictionary learning, please refer to [7]. In implementation, we update the PCA 

dictionaries in several iterations to reduce computational cost.  

 

4. The Interpolation Algorithm 

Given the current estimate of x, the NARM matrix S, the *

iα  and the weighting matrixes, iλ  and iη  in Eq. 

(12) can be calculated for the next iteration of minimization. After updating the PCA dictionariesΨ (or we 

can update them in several iterations), we can then update x by minimizing the energy function in Eq. (12). 

Consequently, the updated estimate of x is used to update S, Ψ, *

iα , iλ and iη , which are in turn used to 

improve the reconstruction of x. Such an iterative minimization process terminates until some stopping 

criterion is met.  
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A. Algorithm  

In this paper, we adopt the variable splitting technique [46] to solve the constrained minimization in Eq. (12). 

By introducing a quadratic term, we convert the objective function in Eq. (12) to:  

{ }22 2 *

2 2 11 1 1 2,{ }
ˆ ˆ( ,{ }) arg min + + ( )

i

N N N

i i i i i i i ii i i
β

= = =
= − − + −∑ ∑ ∑

x
x y DSx R x

α
α Ψα α α αλ η , s.t. y=Dx,       (14) 

where Ri is the matrix extracting a local patch from x at position i. With a large enough parameter β, Rix 

approaches to Ψαi, and the above objective function approaches to Eq. (12).  

As described in Sec. III-B, instead of using a single over-complete dictionary, we use a set of sub-

dictionaries to adaptively characterize image local structures. We cluster the image patches into K clusters 

and learn a PCA dictionary for each cluster. Then the learned dictionary Ψk for cluster k is assigned to the 

patches falling into this cluster. With the adaptive local dictionary, the objective function can be written as: 

22 2 *

2 2 1 2,{ }
1 1 1

ˆ ˆ( ,{ }) arg min + + ( )
i

k

K N N

i i k i i i i i i

k i C i i

β
= ∈ = =

⎧ ⎫⎪ ⎪= − − + −⎨ ⎬
⎪ ⎪⎩ ⎭

∑∑ ∑ ∑
x

x y DSx R x
α

α Ψ α α α αλ η , s.t. y=Dx,         (15) 

where Ck is the set of indices of patches within cluster k. The above minimization problem can be solved by 

alternatively optimizing x and {αi}. For a set of fixed sparse codes {αi}, x can be optimized by minimizing  

2 2

2 2
1

ˆ arg min +
k

K

i k i

k i S

β
= ∈

⎧ ⎫⎪ ⎪= − −⎨ ⎬
⎪ ⎪⎩ ⎭

∑∑
x

x y DSx R x Ψ α , s.t. y=Dx,                                  (16) 

and for a fixed x, the set of sparse codes {αi} can be solved by minimizing  

22 *

2 1 2{ }
1 1 1

ˆ{ } arg min + ( )
i

k

K N N

i i k i i i i i i

k i S i i

β
= ∈ = =

⎧ ⎫⎪ ⎪= − + −⎨ ⎬
⎪ ⎪⎩ ⎭
∑∑ ∑ ∑R x

α
α Ψ α α α αλ η .                          (17) 

The above optimization processes can be iterated until converged. During the iterative process, we gradually 

increase the value of β such that Eq. (14) can well approximate Eq. (12).  

One major advantage of variable splitting technique lies in that it can split a difficult problem into two 

sub-problems that are much easier to solve. For Eq. (16), we employ the Augmented Lagrange Multiplier 

(ALM) algorithm [47-48] to solve it. With ALM, we have the following Lagrangian function of Eq. (16): 

2 2 2

2 2 2
1

( , , ) ,
k

K

i k i

k i C

L μ β μ
= ∈

= − + − + − + −∑∑x Z y DSx R x Z y Dx y DxΨ α ,                    (18) 

where 〈·,·〉 denotes the inner product, Z is the Lagrangian multiplier, and μ is a positive scalar. Then the 
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optimization problem of Eq. (16) can be solved by the ALM method, which consists of the following 

iterations [47] 

( 1) ( ) ( )arg min ( , , )l l lL μ+ =
x

x x Z ,                                                          (19) 

( 1) ( ) ( ) ( 1)( )l l l lμ+ += + −Z Z y Dx ,                                                          (20) 

( 1) ( )l lμ τ μ+ = ⋅ ,                                                                                   (21) 

where τ (τ>1) is a constant. For fixed Z(l) and μ(l), we solve Eq. (19) for x by taking ( ) ( )( , , ) / 0l lL μ∂ ∂ =x Z x , 

leading to the following equation: 

( ) ( ) ( )
1

( 1) ( ) ( ) ( )

1 1

2
N N

T Tl T l T T T l l T

i i i i k i

i i

β μ β μ
−

+

= =

⎡ ⎤ ⎡ ⎤
= + + + + +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑ ∑x DS DS R R D D DS y R R D Z D yΨ α .    (22) 

Since the matrix to be inverted in the right side of Eq. (22) is very large, we use the conjugate gradient 

algorithm to compute x. With the updated estimate of x, Z and μ can be easily updated [47]. The procedures 

can be iterated until converged.  

For a given x, the minimization of Eq. (17) is a typical patch-based sparse coding problem. For each 

patch i, we solve the following sparse coding problem 

{ }22 *

2 1 2
ˆ arg min + ( )

i
i i k i i i i i iβ= − + −R x

α
α Ψ α α α αλ η .                                          (23) 

To solve the above nonlocal regularized sparse coding problem, we extend the iterative shrinkage method in 

[16, 13] from handling one l1-norm constraint to handling mixed l1 and l2-norm constraints. The closed-form 

shrinkage function can be derived as 

1,

,

2,

, ,

1,

, ,

2,

0,                                         
2 1

ˆ ( )

( ) ,     otherwise
2 1

j

i j

j

i j i j

j

i j i j

j

v

Soft v

v sign v

τ
τ

α
τ
τ

⎧
≤⎪ +⎪= = ⎨

⎪ −⎪ +⎩

,                                   (24) 

where , , 2,/(2 1)i j i j jv γ τ= +  with *2 / T

i i i k i iβ= + R xγ α Ψη , τ1,j=λi,j/β and τ2,j=ηi,j/β.  

The proposed NARM based SRM algorithm for image interpolation is summarized in Algorithm 1.  
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Algorithm 1: NARM based SRM for Image Interpolation  

1. Initialization:  

(a)  Initialize x using the bi-cubic interpolator; 

(b)  Compute {Ψk} via patch clustering and PCA, and compute NARM matrix S and 
*

iα ; 

(c)  Set  Z(0)=0, μ(0)>0, β>0, τ>1, ρ>1, λ>0,and η>0; 

2.  Outer loop, j=1,2,…,J 

(a)  Solving Eq. (17) for {αi}: compute ( 1)j

i

+α  using Eq. (24) ; 

(b)  Inner loop, l=1,2,..,L 

i. Solving Eq. (19) for x(l+1) by using the conjugate gradient algorithm; 

ii. ( 1) ( ) ( ) ( 1)( )l l l lμ+ += + −Z Z y Dx ; 

iii. ( 1) ( )l lμ τ μ+ = ⋅ ;  

(c)  If mod(j, J0), update {Ψk}, S, 
*

iα , λi,j and ηi,j via Eq. (13);  

(d)  
( 1) ( )j jβ ρ β+ = ⋅ ; 

(e)  Go back to step 2-(a) till the algorithm converges or the maximum number of iteration is 

reached.  

3.  Output the interpolated image x. 

 

In the outer loop of Algorithm 1, we compute the set of sparse codes {αi} using the current estimate of 

original image x, and update {Ψk}, S, 
*

iα , λi,j and ηi,j in every J0 iterations (J0=15 in our implementation) to 

save the computational cost. The inner loop that solves the constrained minimization of Eq. (16) follows the 

standard procedures of ALM algorithm [47]. Our numerical tests show that Algorithm 1 converges even 

with L=1, and thus we only need to execute the conjugate gradient algorithm (to solve Eq. (22)) once in each 

outer loop, saving much the cost. Our experiments show that Algorithm 1 usually converges in 50 iterations.  

 

B. Computational complexity 

The computational cost of Algorithm 1 mainly comes from four sources, i.e., the clustering-based PCA sub-

dictionary learning in Step 1(b) and Step 2(c), the NARM computing in Step 1(b) and Step 2(c), the patch-

based sparse coding in Step 2(a), and the conjugate gradient minimization in Step 2(b).  

The patch clustering needs O(u⋅K⋅q⋅n) operations, where u (u=12 in our implementation) is the number 

of iterations in K-means clustering, q is the total number of patches extracted for clustering (to save 

computational cost we exclude those smooth patches whose intensity variances are smaller than a threshold 

from clustering), and n is the length of the patch vector. The computation of PCA sub-dictionaries needs 

O(K⋅(m2⋅n2+n3)) operations, where we assume that each cluster has m patch samples in average. Thus, the 
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clustering-based PCA sub-dictionary learning needs O(T(u⋅K⋅q⋅n+K⋅(m2⋅n2+n3))) operations in total, where T 

counts the times of PCA sub-dictionary update in the whole algorithm implementation.  

The NARM modeling involves NL times of K-nearest neighbor search for nonlocal similar patches and 

conjugate gradient minimization for solving Eq. (4), where NL is the number of LR pixels. Thus, this process 

needs O(NL⋅(s2⋅n+t1⋅p2)) operations in total, where s is the width of searching window, t1 is the number of 

iterations in conjugate gradient minimization, and p is the number of nonlocal samples used for NARM 

modeling. The sparse coding by Eq. (23) needs O(N⋅(2⋅n2+p⋅n)) operations, where N is the total number of 

patches extracted for sparse coding. The major computational cost in the conjugate gradient algorithm for 

computing Eq. (22) comes from the matrix-vector multiplication, i.e., multiplying G with vector x, where 

G=
1

( )
NT T T

i ii
β μ

=
+ +∑DS DS R R D D . Since DS and DT

D are sparse and 
1

N T

i ii=∑ R R  can be pre-computed, 

the matrix-vector multiplication can be executed very fast. In general, the conjugate gradient minimization 

converges in less than κ iterations, where κ is the condition number of matrix G. Thus, the cost of conjugate 

gradient minimization is O(J⋅κ⋅(NL⋅N⋅(p+1)+N⋅n)), where J is the total number of outer loop iterations in 

Algorithm 1.  

        Based on our experience, it costs about 2~4 minutes to interpolate an LR image of size 128×128 to an 

HR image of size 256×256 by running Algorithm 1 on an Intel Core2Duo i7 2.67G laptop PC under Matlab 

R2011a environment. The running time is shorter for smooth images than non-smooth images, since the 

many smooth patches will be excluded from patch clustering. For example, the running time of image 

Foreman is about 2.5 minutes, while the running time of image Fence is 3.6 minutes. The number of patches 

extracted for sparse coding also influences the running time. For example, if the patches are extracted in 

every two pixels along the horizontal and vertical directions, the running time of Foreman is about 2.5 

minutes. If the patches are extracted at every pixel, the running time increases to 3.0 minutes with a slight 

increase of PSNR (about 0.1 dB).  
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5. Experimental Results  

 

     

     
 

Figure 5: Test images. From left to right and top to bottom: Lena, House, Foreman, Leaves, Peppers, Butterfly, Girl, 

Fence, Parthenon, and Starfish. 

 

In this section we evaluate the proposed interpolation method. Refer to Fig. 5, ten widely used test images in 

the literature are employed in the experiments. In our implementation, the patch size is set to 5×5. In all 

experiments, the LR images are generated by down-sampling directly the original HR images with a factor 

of s (s = 2 or 3). For color images, we only apply the proposed method to the luminance channel since 

human visual system is more sensitive to luminance changes, and apply the bi-cubic interpolator to 

chromatic channels. To evaluate the quality of interpolated images, the PSNR and two perceptual quality 

metrics, SSIM [42] and FSIM [43], are computed to compare the competing interpolation algorithms. For 

color images, we only report the PSNR, SSIM and FSIM measures for the luminance channel. All the 

experimental results can be downloaded from http://www.comp.polyu.edu.hk/~cslzhang/NARM.htm.  

To more comprehensively evaluate the effectiveness of the proposed NARM modeling as well as the 

nonlocal regularization, we first conduct experiments with four variants of the proposed method. We then 

compare the proposed method with other state-of-the-art image interpolation methods. At last, we discuss 

the parameter selection of the algorithm.  
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A. Effectiveness of NARM and nonlocal regularization 

To demonstrate the effectiveness of the proposed NARM and sparsity regularization, we implement four 

variants of the proposed interpolation algorithm. First, let’s remove the NARM from the data fidelity term. 

There are two variants in this case. The first one, denoted by “SRM”, solves the standard SRM minimization: 

{ }2

2 11
ˆ arg min +

N

i ii=
= − ∑y Dαα Ψα αλ  s.t. y=DΨα.                                       (25) 

The original image is reconstructed by ˆ ˆ=x Ψα . The second variant, denoted by “SRM-NL”, solves the SRM 

minimization with nonlocal regularization: 

{ }22 *

2 11 1 2
ˆ arg min + + ( )

N N

i i i i ii i= =
= − −∑ ∑y Dαα Ψα α α αλ η  s.t. y=DΨα.                        (26) 

By incorporating NARM into the data fidelity term, there are other two variants. Let’s denote by 

“NARM-SRM” the NARM based SRM which solves the following minimization problem: 

{ }2

2 11
ˆ arg min +

N

i ii=
= − ∑y DSαα Ψα αλ  s.t. y=DΨα.                                    (27) 

The last variant, denoted by “NARM-SRM-NL”, solves the following minimization problem with nonlocal 

regularization: 

{ }22 *

2 11 1 2
ˆ argmin + + ( )

N N

i i i i ii i= =
= − −∑ ∑y DSαα Ψα α α αλ η  s.t. y=DΨα.                      (28) 

The variant NARM-SRM-NL can be implemented by Algorithm 1, while the other three variants can 

be implemented by modifying slightly Algorithm 1. Applying the four variants to the test images in Fig. 5, 

we show the PSNR results in Table 1. One can see that both the NARM based data fidelity constraint 

2

2
−y DSx  and the nonlocal regularization 

2
*

2i i−α α  can much improve the performance of standard SRM 

method. The SRM-NL method slightly outperforms NARM-SRM. However, by combining 
2

2
−y DSx  and 

2
*

2i i−α α , the NARM-SRM-NL method achieves the best interpolation result. Some reconstructed HR 

images of the proposed methods are shown in Figs. 6~7.  
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Table 1: PSNR (dB) results of the four variants of the proposed method. 

 Scaling factor s=2 

Images Lena House F.man Leaves Cam. Butterfly Girl Fence Parth. Starfish Average 

SRM 34.27 32.64 36.55 27.62 25.60 28.75 34.20 24.64 27.33 31.02 30.26 

NARM-SRM 34.66 33.19 38.26 28.71 25.43 29.45 34.29 24.60 27.14 31.78 30.75 

SRM-NL 34.89 33.29 38.32 29.15 25.88 29.81 34.11 24.72 27.42 31.21 30.88 

NARM-SRM-NL 35.04 33.45 38.60 29.77 25.92 30.35 34.28 24.70 27.26 31.73 31.11 

 Scaling factor s=3 

SRM 30.23 29.21 32.50 22.15 22.55 23.92 31.20 20.71 24.65 26.47 26.36 

NARM-SRM 30.43 29.46 33.40 22.75 22.44 24.65 31.58 20.61 24.56 26.59 26.65 

SRM-NL 31.03 29.76 34.08 23.03 22.76 25.01 30.50 20.61 24.77 26.71 26.83 

NARM-SRM-NL 31.18 29.76 34.60 23.32 22.60 25.48 31.95 20.49 24.66 26.78 27.08 

 

 

    
                       (a) SRM                       (b) NARM-SRM                    (c) SRM-NL                 (d) NARM-SRM-NL 

Figure 6: Reconstructed images on Starfish (zooming factor s=2). (a) PSNR=31.02 dB; (b) PSNR=31.78 dB; (c) 

PSNR=31.21 dB; (d) PSNR=31.73 dB.  

 

    
                       (a) SRM                       (b) NARM-SRM                    (c) SRM-NL                 (d) NARM-SRM-NL 

Figure 7: Reconstructed images on Butterfly (zooming factor s=2). (a) PSNR=28.75 dB; (b) PSNR=29.45 dB; (c) 

PSNR=29.81 dB; (d) PSNR=30.35 dB. 
 

B. Effectiveness of the local PCA dictionaries 

To verify the effectiveness of the local PCA dictionaries for image interpolation, we replace the local PCA 

dictionaries with the DCT dictionary in the SRM and NARM-SRM-NL algorithms, and denote by “DCT-

SRM” and “DCT-NARM-SRM-NL”, respectively, these two DCT dictionary based implementations. The 

results are shown in Table 2 and Figs. 8~9. One can see that the SRM outperforms DCT-SRM, while 
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NARM-SRM-NL outperforms DCT-NARM-SRM-NL, in term of both PSNR and visual quality. This 

validates that the local PCA dictionaries are better than DCT dictionary in reconstructing fine scale edges. 

 
Table 2: Comparison of the interpolation results (dB) by DCT and local PCA dictionaries. 

 Scaling factor s=2 

Images Lena House F.man Leaves Cam. Butterfly Girl Fence Parth. Starfish Average 

DCT-SRM 33.63 32.85 35.93 27.14 25.42 28.14 33.67 24.55 27.25 30.09 29.87 

SRM 34.27 32.64 36.55 27.62 25.60 28.75 34.20 24.64 27.33 31.02 30.26 

DCT-NARM- 

SRM-NL 
34.90 32.92 38.64 29.25 25.69 30.00 34.21 24.62 27.15 31.42 30.88 

NARM-SRM-NL 35.04 33.45 38.60 29.77 25.92 30.35 34.28 24.70 27.26 31.73 31.11 

 Scaling factor s=3 

DCT-SRM 29.90 29.21 32.49 22.05 22.54 23.87 31.34 20.82 24.68 26.15 26.30 

SRM 30.23 29.21 32.50 22.15 22.55 23.92 31.20 20.71 24.65 26.47 26.36 

DCT-NARM- 

SRM-NL 
31.10 29.11 34.61 23.15 22.67 25.41 31.61 20.57 24.61 26.71 26.96 

NARM-SRM-NL 31.18 29.76 34.60 23.32 22.60 25.48 31.95 20.49 24.66 26.78 27.08 

 

 

    
(a)                                      (b)                                       (c)                                     (d)  

Figure 8: Reconstructed HR Leaves images (scaling factor s=2). (a) DCT-SRM (PSNR=27.14 dB); (b) SRM 

(PSNR=27.62 dB); (c) DCT-NARM-SRM-NL (PSNR=29.25 dB); (d) NARM-SRM-NL (PSNR=29.77 dB).  

 
 

    
(a)                                       (b)                                        (c)                                      (d)  

Figure 9: Reconstructed HR Butterfly images (scaling factor s=3). (a) DCT-SRM (PSNR=23.87 dB); (b) SRM 

(PSNR=23.92 dB); (c) DCT-NARM-SRM-NL (PSNR=25.41 dB); (d) NARM-SRM-NL (PSNR=25.48 dB).  

 

 

C. Comparison with state-of-the-arts 

We compare the proposed NARM-SRM-NL method with state-of-the-art image interpolation methods, 

including the NEDI method [3], the directional filtering and data fusion (DFDF) method [4], the soft-
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decision and adaptive interpolator (SAI) [5], the recently developed sparsity-based ScSR [6] and SME 

(sparse mixing estimation) [8] methods3. The NEDI, DFDF and SAI are three well-known adaptive edge-

directed image interpolation methods. The ScSR and SME are two recently developed sparsity-based image 

super-resolution/interpolation methods, which also show visually pleasant results.  

We first report the results when the scaling factor s=2. The PSNR, SSIM and FSIM metrics by the 

competing methods on the ten test images are listed in Table 3. We can see that the proposed NARM based 

method achieves the highest PSNR, SSIM, and FSIM measures on almost all the test images. The PSNR 

gain of the proposed method over the second best method (i.e., the SAI method) can be up to 1.13 dB, and 

the average PSNR, SSIM and FSIM gains over SAI method are 0.68 dB, 0.0085, and 0.0057, respectively.  

In Figs. 10~13, we show some cropped portions of the reconstructed HR images by the competing 

methods. From these figures, we can see that those edge based interpolation methods [3-5] reconstruct the 

image structures much better than the filtering based bi-cubic method. In particular, the SAI method [5] is 

very effective in preserving the large scale edges (e.g., the edges of starfish and butterfly in Fig. 10(g) and 

Fig. 11(g)). However, one problem of these edge-based methods is that they tend to generate artifacts in 

small scale edge structures (e.g., Fig. 12(g) and Fig. 13(g)). This is mainly because that it is difficult to 

accurately estimate the direction (or the local covariance) of the edges from the LR image. By using the 

sparsity prior, the sparsity-based methods ScSR [6] and SME [8] work better in handling those fine scale 

edges. However, they still cannot produce very sharp edges. Some ringing and jaggy artifacts can be clearly 

observed in the HR images reconstructed by ScSR and SME (e.g., Figs. 10(e)~(f) and Figs. 11(e)~(f)). By 

efficiently exploiting the nonlocal information and the sparsity prior, the proposed NARM based method can 

much improve the visual quality of the reconstructed HR images. It can be observed that NARM-SRM-NL 

produces not only sharp large-scale edges but also fine-scale image details.  

Table 3: PSNR (dB), SSIM and FSIM results by different interpolation methods (s=2).  

Images Bi-cubic NEDI [3] DFDF [4] ScSR [6] SME [8] SAI [5] NARM-SRM-NL

Lena 

33.91 

0.9140 

0.9872 

33.76 

0.9134 

0.9868 

33.89 

0.9122 

0.9867 

33.70 

0.9080 

0.9855 

34.53 

0.9178 

0.9881 

34.68 

0.9184 

0.9882 

35.01 

0.9238 

0.9893 

House 

32.15 

0.8772 

0.9404 

31.67 

0.8743 

0.9434 

32.57 

0.8775 

0.9478 

31.78 

0.8699 

0.9370 

33.15 

0.8811 

0.9515 

32.84 

0.8778 

0.9496 

33.52 

0.8841 

0.9567 

                                                 
3 We thank the authors for providing the source codes.  
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Foreman 

35.56 

0.9491 

0.9652 

35.90 

0.9532 

0.9700 

36.81 

0.9541 

0.9712 

35.68 

0.9471 

0.9623 

37.17 

0.9554 

0.9724 

37.68 

0.9576 

0.9750 

38.64 

0.9581 

0.9754 

Leaves 

26.85 

0.9365 

0.9259 

26.23 

0.9403 

0.9429 

27.22 

0.9433 

0.9478 

27.52 

0.9460 

0.9293 

28.21 

0.9499 

0.9423 

28.72 

0.9575 

0.9591 

29.76 

0.9661 

0.9674 

Camera-

man 

25.36 

0.8639 

0.9041 

25.42 

0.8626 

0.9059 

25.67 

0.8670 

0.9143 

25.28 

0.8611 

0.9031 

26.14 

0.8711 

0.9120 

25.88 

0.8709 

0.9177 

25.94 

0.8781 

0.9231 

Butterfly 

27.68 

0.9242 

0.9155 

27.36 

0.9321 

0.9284 

28.66 

0.9397 

0.9452 

28.27 

0.9315 

0.9151 

28.65 

0.9380 

0.9267 

29.17 

0.9468 

0.9466 

30.30 

0.9561 

0.9591 

Girl 

33.83 

0.8533 

0.9416 

33.85 

0.8570 

0.9412 

33.79 

0.8520 

0.9395 

33.29 

0.8411 

0.9335 

34.03 

0.8563 

0.9438 

34.13 

0.8588 

0.9444 

34.46 

0.8658 

0.9434 

Fence 

24.52 

0.7776 

0.8822 

22.97 

0.7586 

0.8825 

24.55 

0.7757 

0.8790 

24.05 

0.7645 

0.8869 

24.53 

0.7822 

0.8974 

23.78 

0.7704 

0.8921 

24.79 

0.7939 

0.9040 

Parthenon 

27.08 

0.8043 

0.8947 

26.79 

0.7883 

0.8911 

27.18 

0.8034 

0.8963 

26.46 

0.7813 

0.8886 

27.13 

0.7997 

0.9009 

27.10 

0.8014 

0.8980 

27.36 

0.8095 

0.9019 

Starfish 

30.22 

0.9169 

0.9522 

29.36 

0.8987 

0.9458 

30.07 

0.9118 

0.9541 

30.35 

0.9170 

0.9537 

30.35 

0.9165 

0.9523 

30.76 

0.9207 

0.9577 

31.72 

0.9299 

0.9648 

Average 

29.72 

0.8817 

0.9309 

29.33 

0.8779 

0.9338 

30.04 

0.8837 

0.9382 

29.64 

0.8768 

0.9295 

30.39 

0.8868 

0.9387 

30.47 

0.8880 

0.9428 

31.15 

0.8965 

0.9485 

 

    
                         (a)                                        (b)                                           (c)                                        (d)  

    
(e)                                          (f)                                          (g)                                         (h)  

 

Figure 10: Reconstructed HR images (zooming factor s=2) of Starfish by different interpolation methods. (a) Original 

image; (b) Bi-cubic (PSNR=30.22dB, SSIM=0.9169, FSIM=0.9522); (c) NEDI [3] (PSNR=29.36dB, SSIM=0.8987, 

FSIM=0.9458); (d) DFDF [4] (PSNR=30.07dB, SSIM=0.9118, FSIM=0.9541); (e) ScSR [6] (PSNR=30.35dB, 

SSIM=0.9170, FSIM=0.9537); (f) SME [8] (PSNR=30.35dB, SSIM=0.9165, FSIM=0.9523); (g) SAI [5] 

(PSNR=30.76dB, SSIM=0.9207, FSIM=0.9577); (h) proposed NARM-SRM-NL (PSNR=31.72dB, SSIM=0.9299, 

FSIM=0.9648).  
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                         (a)                                        (b)                                           (c)                                        (d)  

    
(e)                                          (f)                                          (g)                                         (h)  

 

Figure 11: Reconstructed HR images (zooming factor s=2) of Butterfly by different interpolation methods. (a) Original 

image; (b) Bicubic (PSNR=27.68dB, SSIM=0.9242, FSIM=0.9155); (c) NEDI [3] (PSNR=27.36dB, SSIM=0.9321, 

FSIM=0.9284); (d) DFDF [4] (PSNR=28.66dB, SSIM=0.9397, FSIM=0.9452); (e) ScSR [6] (PSNR=28.27dB, 

SSIM=0.9315, FSIM=0.9151); (f) SME [8] (PSNR=28.65dB, SSIM=0.9380, FSIM=0.9267); (g) SAI [5] 

(PSNR=29.17dB, SSIM=0.9468, FSIM=0.9466); (h) proposed NARM-SRM-NL (PSNR=30.30dB, SSIM=0.9561, 

FSIM=0.9591).  

 

    
                         (a)                                        (b)                                           (c)                                        (d)  

    
(e)                                          (f)                                          (g)                                         (h)  

 

Figure 12: Reconstructed HR images (zooming factor s=2) of Fence by different interpolation methods. (a) Original 

image; (b) Bicubic (PSNR=24.52dB, SSIM=0.7776, FSIM=0.8822); (c) NEDI [3] (PSNR=22.97dB, SSIM=0.7586, 

FSIM=0.8825); (d) DFDF [4] (PSNR=24.55dB, SSIM=0.7757, FSIM=0.8790); (e) ScSR [6] (PSNR=24.02dB, 

SSIM=0.7645, FSIM=0.8869); (f) SME [8] (PSNR=24.53dB, SSIM=0.7822, FSIM=0.8974); (g) SAI [5] 

(PSNR=23.78dB, SSIM=0.7704, FSIM=0.8921); (h) proposed NARM-SRM-NL (PSNR=24.79dB, SSIM=0.7939, 

FSIM=0.9040).  

 



 24

    
                         (a)                                        (b)                                           (c)                                        (d)  

    
(e)                                          (f)                                          (g)                                         (h)  

 

Figure 13: Reconstructed HR images (zooming factor s=2) of Girl by different interpolation methods. (a) Original 

image; (b) Bicubic (PSNR=33.83dB, SSIM=0.8533, FSIM=0.9416); (c) NEDI [3] (PSNR=33.85dB, SSIM=0.8570, 

FSIM=0.9412); (d) DFDF [4] (PSNR=33.79dB, SSIM=0.8520, FSIM=0.9395); (e) ScSR [6] (PSNR=33.29dB, 

SSIM=0.8411, FSIM=0.9335); (f) SME [8] (PSNR=34.03dB, SSIM=0.8563, FSIM=0.9438); (g) SAI [5] 

(PSNR=34.13dB, SSIM=0.8588, FSIM=0.9444); (h) proposed NARM-SRM-NL (PSNR=34.46dB, SSIM=0.8658, 

FSIM=0.9434).  

 

 

The proposed NARM method is applicable to image interpolation with arbitrary integer scaling factor. 

In this section, we also conduct experiments with scaling factor s=3. Since the NEDI, DFDF, SAI and SME 

methods are designed for image interpolation with s=2n, where n is an integer, we compare the NARM-

SRM-NL algorithm with the bi-cubic algorithm and the ScSR algorithm. The PSNR, SSIM and FSIM results 

by the three methods are listed in Table 4, from which we can see that the proposed NARM-SRM-NL 

method outperforms ScSR and bi-cubic by a large margin. The average PSNR, SSIM and FSIM gains over 

ScSR method are up to 1.02 dB, 0.0254, and 0.0204, respectively. In Figs. 14~16, we show some cropped 

HR images reconstructed by the competing methods. One can see that ScSR produces sharper edges than bi-

cubic; however, there are still many ringing artifacts around the edges. Clearly, the proposed NARM-SRM-

NL generates the visually most pleasant HR images. The reconstructed edges by NARM-SRM-NL are much 

sharper than those by ScSR, while there are much fewer ringing and zipper artifacts.  
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Table 4: PSNR (dB), SSIM and FSIM results by different interpolation methods (s=3).  

Images Lena House F.man Leaves Cam. B.fly Girl Fence Parth. Starfish Average 

Bi-cubic 

30.14 

0.8550 

0.9651 

28.66 

0.8190 

0.8791 

32.07 

0.9079 

0.9285 

21.85 

0.8166 

0.8143 

22.36 

0.7686 

0.8208 

23.48 

0.8236 

0.8146 

31.45 

0.7772 

0.9040 

20.64 

0.5942 

0.7316 

24.28 

0.6790 

0.8146 

26.18 

0.8144 

0.8911 

26.11 

0.7855 

0.8564 

ScSR [6] 

30.00 

0.8472 

0.9609 

28.53 

0.8155 

0.8830 

32.29 

0.9073 

0.9289 

21.93 

0.8340 

0.8456 

22.21 

0.7673 

0.8286 

23.84 

0.8461 

0.8435 

31.10 

0.7653 

0.8966 

20.38 

0.5826 

0.7271 

24.06 

0.6710 

0.8138 

26.08 

0.8138 

0.8945 

26.04 

0.7850 

0.8622 

NARM-

SRM-NL 

31.16 

0.8693 

0.9699 

29.67 

0.8371 

0.8911 

34.80 

0.9284 

0.9455 

23.33 

0.8827 

0.8955 

22.72 

0.7899 

0.8349 

25.57 

0.8993 

0.9028 

31.90 

0.7847 

0.8861 

20.53 

0.6005 

0.7349

24.72 

0.6875 

0.8017 

26.86 

0.8293 

0.9060

27.13 

0.8109 

0.8768 

 

From Tables 3~4 and Figs. 10~16, we can see that the proposed NARM-SRM-NL interpolation method 

is very effective in reconstructing sharp edges when there are sufficient repetitive patterns in the image (e.g., 

images Foreman, Butterfly and Lena). This is because in such case we can accurately compute the NARM 

kernel S, the nonlocal sparsity regularization term, and the local PCA dictionaries by exploiting the nonlocal 

redundancy. However, for some regions, e.g., the grass region in image Cameraman and the fence region in 

image Fence, after down-sampling severe aliasing effects will appear in the LR image, and it is rather 

challenging to robustly find enough similar patches to construct the NARM kernel S, perform nonlocal 

regularization, and compute the local PCA dictionaries. As a result, the NARM method may fail to faithfully 

reconstruct those regions. 

 

    
(a)                                         (b)                                      (c)                                      (d) 

Figure 14: Reconstructed HR images (zooming factor s=3) of Butterfly by different interpolation methods. (a) Original 

image; (b) Bicubic (PSNR=23.48dB, SSIM=0.8236, FSIM=0.8146); (c) ScSR [6] (PSNR=23.84dB, SSIM=0.8461, 

FSIM=0.8435); (d) proposed NARM-SRM-NL (PSNR=25.57dB, SSIM=0.8993, FSIM=0.9028).  
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(a)                                         (b)                                      (c)                                      (d) 

Figure 15: Reconstructed HR images (zooming factor s=3) of Leaves by different interpolation methods. (a) Original 

image; (b) Bicubic (PSNR=21.85dB, SSIM=0.8166, FSIM=0.8143); (c) ScSR [6] (PSNR=21.93dB, SSIM=0.8340, 

FSIM=0.8456); (d) proposed NARM-SRM-NL (PSNR=23.33dB, SSIM=0.8827, FSIM=0.8955).  

 

 

    
(a)                                         (b)                                      (c)                                      (d) 

Figure 16: Reconstructed HR images (zooming factor s=3) of Lena by different interpolation methods. (a) Original 

image; (b) Bicubic (PSNR=30.14dB, SSIM=0.8550, FSIM=0.9651); (c) ScSR [6] (PSNR=30.00dB, SSIM=0.8472, 

FSIM=0.9609); (d) proposed NARM-SRM-NL (PSNR=31.16dB, SSIM=0.8693, FSIM=0.9699).  

 

D. Discussions on parameter selection 

In the proposed Algorithm 1 for image interpolation, there are several parameters to be preset. In our 

implementation, the main parameters are set as: the patch size is set to 5×5, the number of clusters is set to 

K=60, γ=42000, μ(0)=1.4, τ=1.2, β(0)=0.1, and ρ=2. We found that our algorithm is insensitive to these 

parameters in a reasonable range. Comparatively, the regularization parameters (i.e., λ and η) that balance 

the NARM based data fidelity term and the sparsity regularization terms are more critical to the performance 

of the proposed algorithm. In general, the larger the approximation error, the larger λ and η should be. In 

Algorithm 1, we initialize the iterative interpolation algorithm with λ=0.1 and η=1.5. After obtaining an 

initial estimate of the original image x, denoted by x̂ , we use x̂  to compute the adaptive regularization 

parameters λi and ηi using Eq. (13), where parameters c1 and c2 need to be preset. We found that the final 

interpolation result is insensitive to the initial regularization parameters λ and η, while setting c1 and c2 

bigger will make the final results smoother and setting c1 and c2 smaller will make the convergence slow. 
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Figs. 17~18 show examples of the reconstructed HR images with different values of c1 and c2. By experience, 

we set c1=0.25 and c2=3.6 to achieve a good balance between speed and good visual quality.  

 

   
(a)                                                      (b)                                                       (c) 

   
(d)                                                      (e)                                                       (f) 

Figure 17: Effects of the regularization parameters. (a) Original image; the interpolated HR image (zooming factor 3) 

with the parameters: (b) c1=0.03, c2=0.6 (PSNR=24.93 dB); (c) c1=0.06, c2=1.2 (PSNR=25.16 dB); (d) c1=0.25, c2=3.6 

(PSNR=25.45 dB); (e) c1=0.6, c2=7.6 (PSNR=25.56 dB); (d) c1=1.4, c2=15.4 (PSNR=25.57 dB).  

 

 

6. Conclusion  

In this paper we developed an effective image interpolation method by nonlocal autoregressive modeling 

(NARM) and embedding it in the sparse representation model (SRM). For the problem of image 

interpolation, the conventional SRM methods will become less effective because the data fidelity term will 

fail to impose structural constraint on the missing pixels. We addressed this issue by exploiting the image 

nonlocal self-similarity with NARM. By connecting a missing pixel with its nonlocal neighbors, the NARM 

can act as a new structural data fidelity term in SRM. We showed that NARM can reduce much the 

coherence between the sampling matrix and the sparse representation dictionary, making SRM more 

effective for image interpolation. Furthermore, we exploited the nonlocal redundancy to regularize the SRM 
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minimization, and used the local PCA dictionary to span adaptively the sparse domain for signal 

representation. Our extensive experimental results demonstrated that the proposed NARM method 

significantly outperforms state-of-the-art image interpolation methods in terms of both quantitative metrics 

and subjective visual quality.  

 

   
(a)                                                      (b)                                                       (c) 

   
(d)                                                      (e)                                                       (f) 

Figure 18: Effects of the regularization parameters. (a) Original image; the interpolated HR image (zooming factor 3) 

with the parameters: (b) c1=0.03, c2=0.6 (PSNR=31.93 dB); (c) c1=0.06, c2=1.2 (PSNR=31.87 dB); (d) c1=0.25, c2=3.6 

(PSNR=31.64 dB); (e) c1=0.6, c2=7.6 (PSNR=31.05 dB); (d) c1=1.4, c2=15.4 (PSNR=29.98 dB).  
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