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ABSTRACT OF THE THESIS

Sparse Representation-based Open Set Recognition

by He Zhang

Thesis Director: Prof. Vishal M Patel

In this thesis, we study an open set recognition algorithm that is based on the Sparse

Representation-based Classification (SRC) method. By modeling the tail distributions

of the matched and non-matched reconstruction errors using the statistical Extreme

Value Theory (EVT), we simplify the open set recognition problem into a set of hy-

pothesis testing problems. The confidence scores corresponding to the tail distributions

of a novel test sample are then fused to determine its identity. The effectiveness of

the proposed method is demonstrated using three publicly available image and object

classification datasets and it is shown that this method can perform significantly better

than many competitive open set recognition algorithms.
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Chapter 1

Introduction

1.1 Background

In recent years, sparse representation-based techniques have drawn much interest in

computer vision and image processing fields [28], [21]. A number of image classification

and restoration algorithms have been proposed based on sparse representations. In

particular, sparse representation-based classification (SRC) algorithm [29] has gained

a lot of traction. The basic idea of SRC is to identify the correct class by seeking the

sparest representation of the test sample in terms of the training. The SRC algorithm

was originally proposed for face recognition and later extended for iris recognition and

automatic target recognition in [17] and [14], respectively. A simultaneous dimension

reduction and classification framework based on SRC was proposed in [30]. Further-

more, non-linear kernel extensions of the SRC method have also been proposed in [31],

[13], [6], [24].

The SRC algorithm and its variants are essentially based on the closed world as-

sumption. In other words, it is assumed that the testing data pertains to one of K

classes that are used during training. But in practice, testing data may come from

a class that is not necessarily seen in training. This problem where the testing data

corresponds to a class that is not seen during training is known as open set recognition

[22]. Consider the problem of animal classification. If the training samples correspond

to K different animals, then given a test image corresponding to an animal from one of

the K classes, the algorithm should be able to determine its identity. However, if the

test image corresponds to an animal which does not match one of the K animals seen

during training, then the algorithm should have the capability to ignore or reject the

test sample [26].
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The goal of an open set recognition algorithm is to learn a predictive model that

classifies the known data into correct class and rejects the data from open class. As

a results, one can view open set recognition as tackling both classification and novelty

detection problem at the same time. Novelty detection refers to the problem of find-

ing anomalous behaviors that are inconsistent with the expected pattern. A novelty

detection problem can be formulated as a hypothesis testing problem where the null

hypothesis, H0, implies the test sample coming from normal class and the alternative

hypothesis, H1, indicates the presence of anomalies and the objective is to find the best

threshold that separates H0 from H1.

A number of approaches have been proposed in the literature for open set recog-

nition. For instance, [22] introduced a concept of open space risk and developed a

1-vs-Set Machine formulation using linear SVMs for open set recognition. In [23] the

concept of Compact Abating Probability (CAP) was introduced for open set recogni-

tion. In particular, Weibull-calibrated SVM (W-SVM) algorithm was developed which

essentially combines the statistical Extreme Value Theory (EVT) with binary SVMs

for open set recognition. Also, the W-SVM framework was recently used in [19] for fin-

gerprint spoof detection. In [3], an open set recognition-based method was developed

to identify whether or not an image was captured by a specific digital camera.

In order to reject invalid samples, the notion of Sparsity Concentration Index (SCI)

was proposed in [29]. Similarly, a rejection rule based on the ratio of the first two highest

projection scores was developed for rejecting non-face images in [15]. The rejection rules

defined using sparse representations in [29] and [15] were specifically designed to reject

non-face images. As will be shown later, these rules do not work well on general open

set recognition problems.

In this thesis, we extend the SRC formulation for open set recognition. Our method

relies on the statistical EVT [16] and consists of two main stages. In the first stage,

the tail distributions of the matched reconstruction errors and the sum of non-matched

reconstruction errors are modeled using the EVT to simplify the open set recognition

problem into two hypothesis testing problems. In the second stage, the reconstruction

errors corresponding to a test sample from each class are calculated and the confidence
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scores based on the two tail distributions are fused to determine the identity of the

test sample. Figure 1.1 gives an overview of the proposed Sparse Representation-based

Open Set Recognition (SROSR) algorithm.

Class 

 

H0    H1

H0    H1

H0   H1

H1   H0 

Inverse

Open

No Prior?

Training Samples

Test Sample

Test Sample

SRC

SRC

Figure 1.1: Overview of the proposed SROSR algorithm. Given training samples, we
model the matched reconstruction error distribution and the sum of non-reconstruction
error distribution using the statistical EVT. Given a novel test sample, the modeled
distributions and the matched and the sum of non-matched reconstruction errors are
used to calculate the confidence scores. Then, these zscores are fused to obtain the final
score for recognition.

1.2 Outline

This thesis is organized as follows. In Chapter 2, we give a brief background on the

EVT and the SRC algorithm. Details of the proposed SROSR algorithm are given in

Chapter 3. Experimental results are presented in Chapter 4 and Section 5 concludes

the paper with a brief summary and discussion.
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Chapter 2

Background

In this chapter, we review some related work in SRC and EVT.

2.1 Sparse Representation-based Classification

Stack the training samples from the i-th class as columns of a large matrix Yi ∈ R
M×Ni ,

and write

Y = [Y1,Y2, . . . ,YK ] ∈ R
M×N ,

as the dictionary of training samples from K classes, where N =
∑

iNi is the total

number of training samples and M is the dimension of each training sample. Let LY

denote the corresponding label set. If the Yi are sufficiently expressive [32], a new input

sample from the i-th class, stacked as a vector yt ∈ R
M will have a sparse representation

yt = Yx

in terms of the training data Y: x will be nonzero only for those samples from class

i. The sparse coefficient vector x ∈ R
N can be estimated by solving the following

optimization problem

x̂ = argmin
x

‖x‖1 s.t. ‖yt −Yx‖2 < ǫ, (2.1)

where we have assumed that the observations are noisy with noise energy ǫ and ‖x‖1 =
∑

i |xi|. The sparse code x̂ can then be used to determine the class of yt based on the

class residuals

rk = ‖yt −Ykx̂k‖2, k = 1, · · · ,K, (2.2)

where x̂k is the part of x̂ that corresponds to class k. Finally, the class k∗ that is

associated to the test sample yt, can be declared as the one that produces the smallest
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approximation error

k∗ = class of yt = argmin
k

rk.

Figure 2.1 gives an overview of the SRC algorithm. This method provides excellent

performance on several image classification datasets [29], [17], and is provably robust

to errors and occlusion [27]. The basic SRC algorithm is summarized in Algorithm 1.

Algorithm 1 Sparse Representation-based Classification

Input: Y, LY , ǫ, yt

x̂ = argminx ‖x‖1 s.t. ‖yt −Yx‖2 < ǫ
rk = ‖yt −Ykx̂k‖2 for k = 1, · · · ,K
k∗ = argmink rk

Output: k∗, r = [r1, r2, · · · , rK ]

Figure 2.1: An overview of the SRC algorithm.

In order to reject outliers, the following SCI rule was defined in [29]

SCI(x) =

K×maxk ‖xk‖1
‖x‖1

− 1

K − 1
∈ [0, 1]. (2.3)

Sparsity coefficient index takes values between 0 and 1. The SCI values close to 1
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correspond to the case where the test image can be approximately represented by using

only images from a single class. If the SCI value of the recovered coefficient is close to

zero, then the coefficients are spread across all classes. Hence, the test vector is not

similar to any of the classes and can be rejected. A threshold can be chosen to reject

invalid test samples if SCI(x̂) < α and otherwise accepted as valid, where α is some

chosen threshold between 0 and 1.

2.2 Extreme Value Theory

Extreme value theory is a branch of statistics analyzing the distribution of data of

abnormally high or low values. It has been applied in Finance[11], Hydrology[25] and

novelty detection problems [20], [2], [8]. In this section, we give a brief overview of the

statistical EVT.

Assume that we are given n i.i.d samples {Z1, Z2, ..., Zn} drawn from an unknown

distribution F (z). Denote

Zm = max
i

Zi i ∈ [1, n].

The Fisher-Tippett-Gnedenko theorem[5] states that if there exists a pair of parameters

(an, bn), subject to the condition an > 0 and bn ∈ R, then

lim
n→∞

P

(

Zm − bn
an

)

= E(z), (2.4)

where E(z) is a non-degenerate distribution that belongs to either Fréchet, Weibull or

Gumbel distribution. These distributions can be represented as a Generalized Extreme

Value distribution (GEV) as follows

E(z;µ, σ, ξ) = exp−p(z), (2.5)

where

p(z) =

(

1 + ξ

(

z − µ

σ

))−1/ξ

and µ, σ and ξ are the location, scaling and shape parameters, respectively.

There are two challenges that one has to be overcame before using the GEV distribu-

tion to model the tail distribution of data. Firstly, we have to choose which distribution
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to use among the three based on prior knowledge. Secondly, we need to segment the data

into several parts and model the maximum in each part as a distribution using GEV.

However, in practice we have no prior knowledge on what is the best way to separate

the data and what is the best distribution to choose. To overcome these challenges, an

alternative method based on Generalized Pareto distribution (GPD), denoted as G(z),

to estimate the tail distribution of data samples was proposed in [16]. It was shown

that given a sufficiently large threshold u, the probability of an observation exceeding

u by z conditioned on u can be approximated by

lim
n→∞

P (Z > z + u|Z > u) = 1−G(z), (2.6)

with

G(z) = 1−
(

1 + ξ
z

σ

)
−1

ξ

+
, z > 0,

where σ > 0, ξ ∈ R and x+ = max(x, 0). Figure 2.2, shows some GPDs with different

parameters.

To estimate the parameters of GPD, one can use the maximum likelihood estimation

(MLE) method introduced in [9]. Even though there is the possibility that the param-

eters of GPD don’t exist and that maximum likelihood estimation may not converge

when ξ > 1/2, it has been shown that these are extremely rare cases in practice [9] [1] .



8

0 5 10
0

0.5

1

1.5

2

  ξ=-0.4, σ =0.5,

  ξ=0.2, σ =1,

  ξ=1, σ =1,

(a)

0 5 10
0

0.2

0.4

0.6

0.8

1

  ξ=-0.4, σ =0.5,

  ξ=0.2, σ =1,

  ξ=1, σ =1,

(b)

Figure 2.2: Sample PDFs and CDFs of GPD based on different parameters are shown
in (a) and (b), respectively.



9

Chapter 3

SROSR: Sparse Representation-based Open-set

Recognition

In [22] the notion of ”Open set Risk” was defined as the cost of labeling the open set

sample as known sample. Based on this, one can minimize the following cost to develop

an open set recognition algorithm

argmin
f

Co(f) + λrCǫ(f), (3.1)

where f is a measurable function, Co(f) denotes open-set risk, Cǫ(f) denotes empirical

risk for classification and λr is a parameter that balances open-set risk and empirical

risk.

The SRC algorithm uses residuals (2.2) for classification which can be used to model

f in (3.1) for open set recognition. This is due to the following reason. If the test sample

corresponds to class k, then the reconstruction error corresponding to class k should

be much lower than that of corresponding to the other classes. As a result, there may

be a distinction between matched and non-matched reconstruction errors. To illustrate

this, we plot the distributions of matched and non-matched reconstruction errors using

the samples from the MNIST handwritten digits dataset [12] in Figure 3.1. Training

samples consists of digits 0 to 9 and test samples correspond to digit 9. Matched

reconstruction errors here mean that the errors correspond to the sparse coefficients of

digit 9 and non-matched reconstruction errors mean that the errors are generated by the

sparse coefficients of all other digits. One can see from this figure that matched classes’

reconstruction errors follow some underlying distribution. If one can fit a probability

model P (rk) to describe the distribution of the reconstruction errors of the matched

class, then one can reformulate the open-set recognition problem as a hypothesis testing
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for novelty detection problem as

H0 : P (rk) ≤ δ

H1 : P (rk) > δ, (3.2)

where the null hypothesis H0 implies that the test data are generated from the distri-

bution P (rk), and the alternative hypothesis H1 implies that test data correspond to

the classes other than the ones considered in training and δ ∈ [0, 1] is the threshold for

rejection.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

r
k

P
(r

k
)

 

 

Matched Non−Matched

Figure 3.1: Histogram of the matched and non-matched reconstruction errors. Matched
reconstruction errors are the errors corresponding to the sparse coefficients of digit 9
and non-matched reconstruction errors are the errors that are generated by the sparse
coefficients of all other digits when training samples consists of digits 0 to 9 and the
test samples correspond to digit 9. All samples are from the MNIST dataset.

However, as we have no prior knowledge on the underlying distribution of the

matched reconstruction errors, we cannot fit a proper distribution on them. Instead,

we can apply the EVT on the tail of the matched distribution as we are only concerned

about the right tail of this distribution for hypothesis testing. As the implementation of

GEV on real data is difficult, we instead use the GPD to model the tail of the matched

distribution. Once we learn the distribution of the tail, we can modify the hypothesis
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testing problem (3.2) to the following

H0 : G(rk) ≤ δg

H1 : G(rk) > δg, (3.3)

where G(rk) is the learned GPD distribution for fitting the right tail of rk and δg is the

rejection threshold.

When SRC is used for classification, we cannot only get the information of the

matched reconstruction errors but we can also have access to the non-matched recon-

struction errors. Suppose that the training data only contains digits 0 to 5 and the test

samples consist of closed set digits 0 to 5 and open set digits 6 to 9. As one can see

from Figure 3.2, the sum of the non-matched reconstruction errors from the closed set

digits 0 to 5 also follow a certain distribution that is very different from the distribution

that one obtains from the errors corresponding to the open set digits.

As a result, we can formulate another hypothesis testing problem similar to (3.2)

for the sum of non-matched reconstruction errors. We can combine the two hypothesis

testing problems together to make the open set recognition algorithm more accurate.

As we are only interested in the right tail of the matched distribution and the left tail

of the sum of non-matched distribution, we apply an inverse procedure on the random

variable Z as

ZI = −Z.

So the right tail of ZI is the left tail of Z.

3.0.1 Training

In the training phase, we have to estimate the parameters for fitting the tail distribution

based on the GPD. Estimating the parameters based on MLE requires the availability

of multiple reconstruction errors. To deal with this issue, we propose the following

iterative procedure. For each iteration, we first randomly order the training samples

from each class Yi and then partition them into cross-test Yte
i and cross-train Ytr

i sets.

The cross-test and cross-train sets contain 20 and 80 percent of the training samples in

Yi, respectively. Let L
tr
i and Ltei denote the associated label sets corresponding to Ytr

i
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Figure 3.2: Histogram of the sum non-matched reconstruction errors corresponding
to the closed set classes 0 to 5 and the sum of non-matched reconstruction errors
corresponding to the open set digits 6 to 9 . All samples are from MNIST dataset.

and Yte
i , respectively. Once the training samples from all classes are partitioned into

cross-train and cross-test sets, combine the cross-train samples from all K classes into a

cross-train matrix Ytr = [Ytr
1 ,Ytr

2 , · · · ,Ytr
K ] and their associated labels into a label set

Ltr = {Ltr1 ,L
tr
2 , · · · ,L

tr
K}. Similarly, combine the cross-test sets into a cross-test matrix

Yte = [Yte
1 ,Y

te
2 , · · · ,Y

te
K ] and their labels into a label set Lte = {Lte1 ,L

te
2 , · · · ,L

te
K}. Use

(Ytr,Yte,Ltr,Lte, ǫ) as the inputs to the SRC algorithm and obtain the reconstruction

error vector ri. We repeat this process for L times and gather the matched Rm
i and

the sum of non-matched reconstruction errors Rnm
i , respectively for i = 1, · · · ,K, for

fitting the tail distribution based on the GDP. The entire training phase of our method

is summarized in Algorithm 2, where ρ indicates the tail size. The choice of ρ depends

on the overlap between matched and non-matched reconstruction errors.

3.0.2 Testing

Given a novel test sample yt, we compute its sparse coefficient x̂ by solving the ℓ1-

minimization problem (2.1). We then obtain K reconstruction errors as required by
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Algorithm 2 Pseudocode for SROSR Training

Input: Y, ρ, ǫ, L, LY

Initialization
for i = 1 : K do

for j = 1 : L do

Ỹi = randomly ordered Yi ∈ R
M×Ni

Ntr = Ni × 0.8
Ytr

i = Ỹi(:, 1 : Ntr)
Ltri = Labels of Ytr

i

Yte
i = Ỹi(:, Ntr + 1 : end)
Ltei = Labels of Yte

i

ri(j, :) ← SRC (Ytr,Yte,Ltr,Lte, ǫ)
end for

Rm
i = [ri(1, i), · · · , ri(L, i)]

Rnm
i = [

∑

p:p 6=i ri(1, p), · · · ,
∑

p:p 6=i ri(L, p)]
σm(i), ξm(i) ← GPDfit(Rm, ρ)
σnm(i), ξnm(i) ← GPDfit(−Rnm, ρ)

end for

Output: σm, ξm,σnm, ξnm

the SRC algorithm. We choose the class with the minimum reconstruction error as

the candidate class. We then obtain two probability scores by fitting matched and

sum of non-matched reconstruction errors to their corresponding GPDs. As the two

raw reconstruction errors are all normalized into probabilities by their corresponding

GPDs, we can add the two probability scores together with appropriate normalization

to obtain the final score. Since the non-matched classes can be regarded as a very small

part in the open set world for the matched classes, we can specify a coefficient w as

the proportion that the number of non-matched classes occupy in the total number of

open set classes. In [22], the notion of openness was defined as

Openness = 1−

√

2×NTA

NTG +NTE
, (3.4)

where NTA is the number of training classes, NTG is the number of target classes to be

identified and NTE is the number of testing classes. We can set the weight as

w = 1−Openness.

If ‘Openness = 0’, then our setting reduce to the traditional classification problem

(i. e., a completely closed problem). With the growth of ‘Openness’, more and more
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unknown classes will appear during testing. As a result the weight on the non-matched

probability scores will decrease.

Our testing algorithm is summarized in Algorithm 3. The inputs required during

testing are the test sample yt, training samples Y, the estimated parameters for the

matched (σm, ξm) and the sum of non-matched distributions (σnm, ξnm), rejection

threshold δt and the weight w. The output of the testing phase is one of the following

classes {1, 2, · · · ,K,O}, where O represents the open class.

Algorithm 3 Pseudocode for SROSR Testing

Input: yt,Y,σm, ξm,σnm, ξnm, δt, w, ǫ
1: r ← SRC (Y,yt,L

Y , ǫ)
3: k∗ = argmini ri
4: rm = rk∗ , rnm =

∑K
i=1,i 6=k∗ ri

5: Sm = G(rm;σm(k∗), ξm(k∗)),
Snm = G(rnm;σnm(k∗), ξnm(k∗))

6: S = Sm + w · Snm

if S > δt then
Class of yt = O

else

Class of yt = k∗

end if

Output: k∗ or O



15

Chapter 4

Experimental Results

In this chapter, we present several experimental results demonstrating the effectiveness

of the proposed SROSR method on open set recognition. In particular, we present the

open set recognition results on the Caltech101 object dataset [4], the MNIST hand-

written digits dataset [12] and the Extended Yale B face dataset [7]. The comparison

with other existing open set recognition methods such as 1-vs-All Multi-class RBF

SVM with Platt Probability Estimation [18] and Pairwise Multi-class RBF SVM [10]

in [23] suggests that the W-SVM algorithm is among the best. Hence, we treat it as

state-of-the-art and use it as a benchmark for comparisons in this paper. Furthermore,

we compare the performance of our method with two other methods based on sparse

representation for rejecting invalid samples - SCI[29] and Ratio method [15].

Recognition accuracy and F-measure are used to measure the performance of differ-

ent algorithms on open set recognition. The F-meaure is defined as a harmonic mean

of Precision and Recall

F-measure = 2 ·
Precision · Recall

Precision + Recall
, (4.1)

where Recall is defined as

Recall =
TP

TP+FN

and Precision defined as

Precision =
TP

TP+FP
.

Here TP, FN, and FP denote true positive, false negative and false positive, respec-

tively. F-measure is always between 0 and 1. The higher the F-measure the better the

performance of an object recognition system. Accuracy is defined as

Accuracy =
TP + TN

TN+ TP + FP + FN
,
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where TN denotes true negative. The rejection threshold, δt was empirically deter-

mined. In our experiments, we have used δt = 0.5 · (1 +w), 0.15 · (1 +w), 0.05 · (1 +w)

for the simulations with the MNIST dataset, Extended YaleB dataset and Caltech101

dataset, respectively.

4.1 Results on the MNIST Dataset

The MNIST dataset contains gray scale images of handwritten digits of size 28 × 28.

There are about 60,000 training images and 10,000 testing images corresponding to 10

classes in this dataset. Sample images from the MNIST dataset are shown in Figure 4.1

Following the experimental setting described in [23], we randomly choose 6 classes for

training and alter the openness by the remaining 4 classes. We repeat this experiment

50 times and record the average F-measure and Accuracy. Finally, we plot the Openness

vs F-measure and Openness vs Accuracy curves to validate our approach.

Figure 4.1: Sample images from the MNIST handwritten digits dataset.

The Openness vs F-measure and Openness vs Accuracy curves corresponding to this

experiment are shown in Figure 4.2(a) and Figure 4.2(b), respectively. Furthermore,

the maximum and minimum F-measure values of different methods as we vary open-

ness are summarized in Table 4.1. It can be seen from these results that the proposed

SROSR method performs better than W-SVM and sparsity-based rejection methods.
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Figure 4.2: Results on the MNIST dataset: (a) Openness vs F-Measure results. (b)
Openness vs Accuracy results. The proposed SROSR method outperforms the other
three methods.
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Our method achieves the highest F-measure and accuracy among all the four methods

as we vary openness. The rejection methods such as SCI and Ratio are based on the

sparsity of the test vector with respect to the training samples. If an open set sample

has a sparsity pattern similar to that corresponding to one of the training samples,

then the SRC method based on SCI will not reject that sample. This demonstrates

that incorporating matched as well as non-matched reconstruction errors can signifi-

cantly enhance the performance of a sparsity-based classification method on open set

recognition.

Table 4.1: F-measure Results on the MNIST dataset.
Openness SROSR W-SVM [23] SCI [29] Ratio [15]

13% Max 95.35 95.32 85.69 93.44
Min 89.33 89.13 80.21 81.14

10% Max 95.63 95.35 87.52 93.85
Min 90.79 90.11 81.32 85.14

7% Max 95.92 96.12 89.40 94.47
Min 92.01 89.11 88.20 88.14

4% Max 96.35 96.32 92.84 95.14
Min 92.32 89.11 89.59 92.5

4.2 Results on the Extended YaleB Dataset

The Extended Yale B Dataset consists of 2,414 frontal images of 38 individuals. These

images were captured under various controlled indoor lighting conditions. Each class

contains about 64 images. They were cropped and normalized to the size of 32 × 32

pixels. Samples images from the Extended YaleB dataset are shown in Figure 4.3. We

randomly choose 10 classes for training and vary the openness by the remaining 28

classes. The following steps summarize our data partition procedure on the Extended

Yale B dataset

1. Randomly select 10 classes among the 38 classes.

2. Randomly choose 80% of the samples in each of the 10 selected classes as training

samples.

3. Select the remaining 20% of the samples from step 2 and all the samples from the
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other 28 classes as testing samples.

We repeat the above procedure 50 times and report the average F-measure and accuracy

of different methods.

Figure 4.3: Sample images from the Extended YaleB face dataset.

Figure 4.4(a) shows the average F-measure results on this dataset. The face images

in this dataset are cropped and well-aligned. Furthermore, the images contain almost

the same background. As a result, all compared methods achieve very high F-measures

on this dataset. Figure 4.4(b) shows the average accuracy of different methods as we

vary openness. As can be seen from both of these plots, the proposed SROSR method

outperforms the other compared methods.

By comparing Figure 4.2(b) with Figure 4.4(b), we see that the accuracy in Fig-

ure 4.4(b) increases while the accuracy in Figure 4.2(a) decreases. This is mainly due to

the fact that open class samples dominate the accuracy on the Extended YaleB dataset

while the closed class samples dominate the accuracy on the MNIST dataset.

4.3 Results on the Caltech101 Dataset

The Caltech101 dataset contains 102 categories including one background class. Each

category has about 40 to 80 images and most of the categories have about 50 images.

Sample images from the Caltech101 dataset are shown in Figure 4.5. We extracted

the spatial pyramid features from these images. We follow an evaluation protocol that

is very similar to the previous two experiments. We randomly select 10 categories as

training classes and vary the openness by randomly selecting 21 to 40 classes out of the

other 92 classes. For all the selected classes either from closed set or from open set,

we randomly choose 31 samples for evaluation. So the openness of our experiments on
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Figure 4.4: Results on the Extended YaleB dataset: (a) Openness vs F-Measure results.
(b) Openness vs Accuracy results. The proposed SROSR method outperforms the other
three methods.
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the Caltect101 dataset varies from 30.12% to 42.46%. We average the results over 50

random trails.

Figure 4.5: Sample images from the Caltech101 object dataset.

Figures 4.6(a) and 4.6(b) show the average F-measure and accuracy curves of dif-

ferent methods as we vary the openness, respectively. It can be seen that the proposed

SROSR method performs better than the other compared methods. This dataset is

more challenging and diverse as it contains objects like animals, natural scenes, build-

ings, and musical instruments. As a result, the average F-measures and accuracies on

this dataset are not as high as compared to the other two datasets for all methods.
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Figure 4.6: Results on the Caltech101 dataset: (a) Openness vs F-Measure results. (b)
Openness vs Accuracy results. The proposed SROSR method outperforms the other
three methods.
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Chapter 5

Conclusion and Future Work

The SRC algorithm classifies a test sample by seeking the sparsest representation in

terms of the training data and does not work well under the open world assumption.

In this thesis, we have introduced a training stage to the SRC algorithm so that it

can be extended to the open set recognition problems. The resulting algorithm makes

use of the reconstruction error distributions modeled by the EVT. Various experiments

on popular image and object classification datasets have shown that our method can

perform significantly better than many competitive open set recognition algorithms.

Even though, in this thesis, we extended the SRC algorithm for open set recognition,

it is also possible to extend many other dictionary learning-based classification algo-

rithms that use reconstruction errors for classification to open set recognition. Further-

more, it remains an interesting topic for future work to develop a sparse representation,

dictionary learning-based and deep learning based open set recognition algorithm by

directly minimizing the open risk criteria. Also, it will be interesting to explore how

could we automatically decide the tail size.
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