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Abstract

In dimensionality reduction most methods aim at preserving one or a few properties
of the original space in the resulting embedding. As our results show, preserving the
sparse representation of the signals from the original space in the (lower) dimensional
projected space is beneficial for several benchmarks (faces, traffic signs, and handwritten
digits). The intuition behind is that taking a sparse representation for the different sam-
ples as point of departure highlights the important correlations among the samples that
one then wants to exploit to arrive at the final, effective low-dimensional embedding. We
explicitly adapt the LPP and LLE techniques to work with the sparse representation cri-
terion and compare to the original methods on the referenced databases, and this for both
unsupervised and supervised cases. The improved results corroborate the usefulness of
the proposed sparse representation based linear and non-linear projections.

1 Introduction
A large effort has already been spent on techniques to find low-dimensional projections for
(very) high dimensional spaces. The latter become widespread nowadays in fields such as
computer vision or pattern recognition. Through such projections, additional properties can
be enhanced, especially when groundtruth labels are available for the training data.
Taxonomy. The dimensionality reduction techniques can be split into linear and non-linear
techniques, according to whether a projection matrix exists or not between the original and
the projected space. Each technique aims at preserving or enhancing one or a few prop-
erties of the original data in their projection. The best known and most often used linear
algorithms are Principal Component Analysis (PCA)[28] (enhances the variance) and Lin-
ear Discriminant Analysis (LDA)[12, 18] (enhances the ratio of the between-class scatter
and the within-class scatter). Among the non-linear algorithms, Multidimensional Scaling
(MDS)[3] preserves pair-wise distances, Locally Linear Embedding (LLE)[19] preserves the
neighborhood reconstruction property, Laplacian Eigenmaps (LE)[2] preserves the distances
to the nearest neighbors, and Isometric Mapping (ISOMap)[21] works on geodesic distances
(instead of pair-wise distances as MDS does) thereby embedding the intrinsic geometry.
Starting from these algorithms many variants have been proposed, each one intended to fix
some drawbacks. For example, Locality Preserving Projections (LPP)[15] is a linear version
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of LE, thereby fixing the out-of-sample problem. Another example is the kernelisation of the
above methods, widening the dataset that these methods can successfully handle.
Solution frameworks. A solid strand of work provided generic frameworks [9, 24, 26]
where many of the projection techniques find a common formulation, when combined with
their individual parameter sets. Graph Embedding (GE) [24] is such a framework where
the common part starts after providing the similarity matrix for the training data. The graph
properties are the ones to be preserved and as such, methods for which the preserved property
can be represented with a graph can be formulated in this framework.
Sparsity. Currently, sparse representation methods – also known as l0 or l1-norm mini-
mization formulations – gain interest along with the maturization of the compressed sensing
field [23]. One basic idea in compressed sensing is that most signals have a sparse represen-
tation as a linear combination of a reduced subset of signals from the same space. Naturally
the signals tend to have a representation biased towards their own class, i.e. the sparse rep-
resentation is mainly formed from samples from its own class. This is the starting point for
Sparse Representation based Classification (SRC)[23], which proved to be a state-of-the-
art method for face recognition.In the machine learning field the sparsity and compressed
sensing idea brought new formulations such as Sparse PCA [28] or Sparse Regression Dis-
criminant Analysis (SRDA)[5] which aim at having representations which are sparse over
the space directions in the embeddings.
Proposed approach. The sparse representation property of the data in the original space
is the one we propose to preserve in this paper. Such a sparse representation highlights the
important correlations among the samples that one then wants to exploit to arrive at the final,
effective low-dimensional embedding.
In particular, we use linear and non-linear projections with supervised and unsupervised
learning to preserve the sparse representations. We adapt the LPP and LLE methods ac-
cordingly. We coin these adapted methods Sparse Representation based Linear Projections
(SRLP) and Sparse Representation based Embedding (SRE). In the same vein, other meth-
ods than LPP and LLE could be adapted as well. Moreover, we compare the classification
performance of SRLP and SRE against that achieved with the original LPP and LLE. Several
benchmarks are used, incl. face, traffic sign, and handwritten digit recognition.
Recently, it came to our attention that the idea of preserving the sparse representation prop-
erty has been independently developed already by Huang et al. [16]. They propose a Sparse
Reconstruction Embedding method starting from LLE, which is basically identical to the
unsupervised SRE method in our work. According to the figures given by these authors,
their implementation is very slow even for small datasets, which is a major drawback in the
face of the large datasets of our experiments. We propose a solution scheme to mitigate that
problem. Moreover, we also present adapted LPP, as well as the supervised and unsupervised
versions in both SRE and SRLP.
Structure of the paper. Section 2 formulates the embedding problem, reviews the sparse
representation concepts and introduces our SRLP and SRE algorithms. Section 3 gives de-
tails on the datasets, classifiers and algorithms, as well as on the results for supervised and
unsupervised settings. Conclusions are drawn in Section 4.

2 Sparse Representation Based Projections
In this section we describe the ideas behind sparse representation based projections and the
way we modify the linear LPP and non-linear LLE for preserving this property. We use the
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formulation from [14], where the sparse representation based classifier is presented. First,
the sparse problem we solve in this paper is defined in subsection 2.1, second, the sparse rep-
resentation is introduced in subsection 2.2, third, we introduce Sparse Representation-based
Linear Projections (SRLP) and, fourth, Sparse Representation-based Embedding (SRE) in
subsections 2.3 and 2.4, respectively.

2.1 Problem Formulation
In an image-based recognition task we have a set of labeled training images {xi, li} from
C classes. We assume that the images are roughly aligned. {xi ∈ RM} is the vectorial
representation (either taking the raw pixel values in lexicographical order as in [14] or by
extracting other features from the image – M pixel values), while li ∈ {1 . . .C} gives the
class of the i-th image. We are searching a D-dimensional space such that the corresponding
points {yi ∈ RD} preserve the sparse representation property as defined next. Let XN×M =
[x1,x2, ...,xN ]T , YN×D = [y1,y2, ...,yN ]T , and N be the number of training samples.

2.2 Sparse Representation
In the training set, for each point xi we are searching for its sparse representation given by:

minimize ‖wi‖0 subject to xi = ∑
N
j=1, j 6=i wi jx j (1)

where wi ∈RN is the sparse vector of weights, wi j shows the contribution of the sample x j to
the sparse representation of xi. This is an l0-minimization problem, which has been proven
to be tractable by minimizing instead the l1-norm of wi if the solution is sparse enough[4].
Moreover, for practical purposes we incorporate the measurement noise ε ∈R and relax to:

minimize ‖wi‖1 subject to ‖xi−∑
N
j=1, j 6=i wi jx j‖2

≤ ε (2)

For Compressed Sensing, l1-minimization proved to be efficient in recovering the sparsest
solutions to underdetermined systems of linear equations [4]. Following our experiments
and the study from [25], we are using the homotopy [1, 10] method for solving (2). It proved
to yield the best trade-off between performance and running time. The reader is referred to
[1, 10, 25] for more details. The sparse support is used as stopping criterion with a tolerance
of 0.04, similar to the one reported by [23].

In a supervised sparse representation scenario based on labels, we restrict the problem
(2) to work within the same class:

minimize ‖wi‖1 subject to ‖xi−∑
N
j=1, j 6=i,li=l j

wi jx j‖2
≤ ε (3)

Also, for an unknown query sample b ∈ RN , we can obtain the sparse representation over
the training set:

minimize ‖v‖1 subject to ‖b−∑
N
j=1 vx j‖2

≤ ε (4)

where v ∈RN are the sparse representation weights and we assign the class label lb from the
set of labels L to be:

lb = argmaxc∈L ∑
i=1,li=c

‖vi‖1 (5)

This is the Sparse Representation Classifier[23] decision as used also in our experiments.
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2.3 Sparse Representation-based Linear Projections
Locality Preserving Projections (LPP) [15] is a linear approximation of the non-linear Lapla-
cian Eigenmap[2] method, aiming at preserving the local distances to the neighbors. The al-
gorithmic procedure has three steps: constructing the adjacency graph, choosing the weights,
and computing the eigenmaps. The result of the first two steps is a symmetric matrix of
weights, WN×N , representing the graph to be embedded in the projection.

Our proposed Sparse Representation-based Linear Projections (SRLP) replaces this graph
representation (matrix) with a matrix of weights coming from the sparse representations. The
sparse representations wi are computed for each training sample xi, using (2) for the unsu-
pervised case or using (3) for the supervised. The SRLP weighted adjacency matrix is

WN×N = max{[|w1|, |w2|, · · · , |wN |], [|w1|, |w2|, · · · , |wN |]T} (6)

We take absolute values to indicate the importance of the samples in the sparse representa-
tions. W is made symmetric by picking max{wi j,w ji} for any samples i and j.

The eigenmap step is common to the original LPP and SRLP and consists in computing
the eigenvectors and eigenvalues for the generalized eigenvector problem:

XLXT a = λXDXT a (7)

where D is a diagonal matrix whose entries are column (or row, since W is symmetric) sums
of W, Dii = ∑ j W ji. L = D−W is the Laplacian matrix. The ith column of matrix X is xi.

Let the column vectors a1, · · · ,aP be the solutions of equation (7), ordered according to
their eigenvalues, λ1 < · · ·< λP. Thus, the embedding is as follows:

xi→ yi = RT xi,R = [a1,a2, · · · ,aP],R ∈ RM×P (8)

2.4 Sparse Representation-based Embedding
Locally Linear Embedding (LLE)[19] is representative for non-linear embedding algorithms
which preserve the neighborhood reconstruction property. The algorithmic procedure has
three steps: finding the neighbors, solving for the reconstruction weights, and computing the
embedding. The result of the first two steps is a sparse matrix of weights, WN×N .

Our Sparse Representation-based Embedding (SRE) replaces this graph representation
(matrix) with a matrix of weights coming from the sparse representations. The sparse repre-
sentations wi are computed for each training sample xi, using (2) for the unsupervised case
or using (3) for the supervised. In LLE the row weights wT

i are normalized by dividing by
the sum of their elements, and so we do for SRE, w′i = wi/(∑N

j=1 wi j). The SRE weighted
adjacency matrix is

WN×N = [w′1,w
′
2, · · · ,w′N ] (9)

The embedding step is common to the original LLE and SRE and consists in minimizing
the following cost function in the D-dimensional embedding space:

Φ(Y) =
N

∑
i=1
‖y′i−

N

∑
j=1, j 6=i

w′i jy j‖2 (10)

The solution is obtained by solving the eigenvector problem of a sparse matrix M = (I−
W)T (I−W), where I is the identity matrix of rank N. The embedding coordinates found by
LLE and SRE are given by the smallest nonzero eigenvectors. The reader is referred to the
original LLE work [19] for more details.
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Table 1: Datasets
dataset total samples train samples test samples dimensionality # of classes
PIE 11554 8000 3554 784 68
BTSC 7125 4591 2534 784 62
GTSRB 39209 26640 12569 784 43
MNIST 70000 60000 10000 784 10
SwissRoll 2000 2000 2000 3 -

2.5 Relations to Unifying Frameworks
SRLP and SRE could also be formulated in terms of unifying frameworks like Graph Em-
bedding [24] or Patch Alignment (PA) [26]. For SRLP, the graph weights and neighborhood
of the LPP derivation should be replaced with the absolute values of the sparse representation
coefficients and the nonzero weighted neighbors, resp. In the case of SRE, the neighborhood
is given by the sparse representation over the training data instead of the K nearest neighbors
as used in LLE. The weights are the sparse representation coefficients. While not explored
here, the Manifold Elastic Net (MEN) framework [27] can be seen as an extension of the PA
framework with desirable properties such as classification error minimization or over-fitting
reduction through an elastic net penalty. SRLP and SRE can be further extended to MEN by
using the PA derivations and the extensions from the MEN objective functions.

3 Experimental Results
In this section, we evaluate the performance achieved by preserving the sparse representation
in comparison to the original formulations which preserve other properties.

3.1 Data Sets
We use as benchmarking data sets one for face, two for traffic sign and one for handwritten
digit recognition, as well as the basic swiss roll for visually assessing the manifold embed-
ding of the methods. Table 1 summarizes their characteristics.

The CMU PIE face database1 contains 41,368 images for 68 individuals. We use the
subset2 and the training/testing split from [6], containing near frontal poses (C05, C07, C09,
C27, C29) under different illuminations and expressions, totaling up to 170 images per sub-
ject. The Belgium Traffic Sign Dataset (BelgiumTS)3[22] contains multiple, calibrated im-
ages of streets in Belgium. We pick a subset for classification (BTSC) containing 62 classes
as in [22], and follow the training/testing split from the original dataset. The German Traffic
Sign Recognition Benchmark (GTSRB)4 Challenge is held at IJCNN 2011 [20]. This is a
multi-class classification challenge, with single images as input. The dataset has 43 traffic
sign classes and a total of about 50,000 images recorded on German streets. The MNIST
handwritten digit dataset5 contains 60,000 handwritten digits in the training set and 10,000
handwritten digits in the test set. The images are 28×28 pixel grayscale images where the

1http://www.ri.cmu.edu/projects/project_418.html
2http://www.zjucadcg.cn/dengcai/Data/FaceData.html
3http://homes.esat.kuleuven.be/~rtimofte/
4http://benchmark.ini.rub.de/
5http://yann.lecun.com/exdb/mnist/
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Figure 1: Performance vs. dimensionality (left) and regularization parameter (right) for
different linear projections on BTSC dataset.

center corresponds to the center of mass of the pixels. Also for the other datasets, the images
are cropped, resized to 28×28, and the feature vectors are the intensities l2 normalized. The
Swissroll dataset6 is traditionally used for visually inspecting the 2D embeddings derived for
a swissroll shaped 3D set of points.

3.2 Classifiers

We use six classifiers to evaluate the impact of different projection methods. Before using
any of those, the projected features are l2-normalized.
The Nearest Neighbor (NN) classifier assigns the the class to the one of the nearest training
sample in the Euclidean sense. The Sparse Representation based Classifier (SRC)[23] uses
the sparse representation for getting the weights for the training samples which contribute to
the recovery of the unknown sample. The class is the one which sums up the largest contri-
bution in the sparse representation of the sample (see subsection 2.2). The reader is referred
to [14] for more details. Support Vector Machines (SVM) classifiers[8] belong to maximum
margin linear classifiers and aim at simultaneously minimizing the empirical classification
error and maximizing the geometric margin between the classes. This leads to low general-
ization errors. We use SVM in combination with four standard kernels, as in [17]: klin(x,y) =
x ·y, kint(x,y) = min(x,y), kpoly(x,y) = (x ·y+1)5, krb f (x,y) = exp(−‖x−y‖2) and we re-
fer to these SVMs as Linear Kernel SVM (LSVM), Intersection Kernel SVM (IKSVM),
Polynomial Kernel SVM (POLYSVM), and Radial Basis Function SVM (RBFSVM), resp.
We train one-vs-all classifiers using LIBSVM [7] (with parameters C = 10) and LIBLIN-
EAR [11] (with parameters C = 10, B = 10). The test example is associated with the class
with the highest posterior probability estimated from the margin of the test example.

3.3 Algorithm Comparisons

We compare the proposed sparse representation based SRLP (subsection 2.3) and SRE (sub-
section 2.3), to the original methods, LPP [15] and LLE [19]. We also add PCA and
LDA for unsupervised and supervised experiments, resp., and ISOMap and LE for visual
inspection (see Fig.2). Moreover, we show the results on the regularized linear versions
(namely RLDA,RLPP, and RSRLP), since the regularization improves the performance for
the LDA [13] and LPP techniques for appropriate regularization parameters (see Fig. 1).

6http://www.cs.nyu.edu/~roweis/lle/code/swissroll.m
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ISOMap SRE SRE(L1LS) SRLP SRLP(L1LS)
Figure 2: Swiss Roll projections into 2D starting from N = 2000 original 3D points.

For all the regularized techniques the weighting parameter is fixed to 10−2. The number of
nearest neighbors for the LLE algorithm is set to 12, which was the best in the tests we ran.

We depict the results obtained for RLPP, RSRLP, LLE, SRE, PCA by running each one
for a range of subspace dimensions. Some experimental results are not available/computed.
RLPP and RSRLP are constrained to projections with dimensionality less than 200 for
BTSC, less than 100 for PIE, less than 80 for GTSRB, and less than 50 for MNIST, for rea-
sons of speed. LLE and SRE are constrained to embeddings in smaller than 200-dimensional
subspaces.

In LLE, for each new sample the nearest neighbors and the reconstruction weights are
found in the original space, and the projection is computed by summing up the projected
nearest neighbors multiplied by the reconstruction weights. Similarly, for SRE, the new
samples are sparsely represented over the training material and the weights are used in the
projection for reconstructing the embedded samples from the training samples’ embeddings.

For the supervised SRE we are learning the sparse representation of the training sample
from its own class (see subsection 2.4). Similarly, for LLE, the nearest neighbors for each
training sample are taken from its own class. Obviously, there is no valuable connection
between the classes for both the LLE and SRE methods in the supervised learning case. This
is also the case for LPP in the supervised case, where the local neighborhood is taken within
the class of each sample. In the supervised case we preserve the properties at the level of
each class and ignore the inter-class relations.

3.4 Unsupervised learning results

For unsupervised learning we consider RLPP, LLE, our proposed counterparts RSRLP and
SRE, and standard PCA. The number of nearest neighbors for RLPP is empirically fixed to
5 and the weights are given by the heat kernel with t = 5 [15].

The projections of the artificial swissroll dataset (see Fig. 2) show no big differences
between LPP and its SRLP counterpart. We are getting closer to PCA when SRLP uses the
L1LS method7 instead of a homotopy8 for solving the l1-norm minimizations. The L1LS
method usually yields solutions with more non-zero elements than the homotopy method,

7http://stanford.edu/~boyd/l1_ls/
8http://www.eecs.berkeley.edu/~yang/software/l1benchmark/
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Table 2: Classification accuracy - unsupervised case (best dimension in brackets)
B

T
SC

da
ta

se
t

classifier RLPP RSRLP LLE SRE PCA
NN 88.79[33] 89.90[64] 73.64[120] 80.86[140] 78.06[103]
SRC 91.99[61] 92.90[63] 75.30[200] 82.20[160] 85.64[181]
LSVM 91.04[191] 91.24[55] 79.44[200] 84.88[200] 90.41[187]
IKSVM 91.55[96] 92.38[75] 77.56[180] 84.57[160] 89.23[121]
POLYSVM 90.84[48] 91.16[91] 76.95[200] 82.08[200] 90.02[197]
RBFSVM 91.36[42] 91.87[98] 78.77[200] 83.35[200] 90.29[160]

PI
E

da
ta

se
t

NN 95.75[190] 96.51[101] 89.76[200] 93.53[190] 93.98[198]
SRC 96.37[99] 97.21[79] 90.57[180] 95.16[200] 96.34[196]
LSVM 91.39[99] 94.37[97] 87.09[190] 93.33[200] 95.53[194]
IKSVM 95.53[99] 96.46[99] 89.93[180] 94.63[200] 97.61[196]
POLYSVM 96.79[99] 97.13[99] 89.59[200] 94.12[200] 97.92[162]
RBFSVM 95.16[59] 97.19[99] 90.26[200] 94.43[200] 97.92[150]

G
T

SR
B

da
ta

se
t NN 80.37[70] 84.39[74] 60.95[200] 66.50[170] 64.82[180]

SRC 85.57[73] 88.89[78] 62.61[200] 68.92[180] 72.66[99]
LSVM 84.89[78] 85.61[99] 63.34[200] 70.28[190] 84.37[195]
IKSVM 86.33[63] 87.33[78] 63.48[200] 71.02[200] 82.55[100]
POLYSVM 90.46[58] 93.09[78] 62.39[200] 70.61[180] 86.85[115]
RBFSVM 89.42[73] 93.01[78] 63.86[200] 71.33[180] 86.77[100]

M
N

IS
T NN 96.62[42] 96.67[45] 94.39[190] 96.11[130] 97.61[50]

LSVM 91.26[50] 91.39[50] 95.13[200] 96.82[190] 92.37[186]
POLYSVM 98.06[50] 98.21[50] 96.01[200] 96.94[150] 98.78[85]

and thus yields more neighbors for the SRE and SRLP embeddings. For the non-linear
algorithms, we see adequate projections using ISOMap, LLE, and LE, while SRE has rather
unintuitive projections, as expected since it does not preserve local distances. SRE(L1LS)
has a more pronounced clustering effect on the projection, caused by the increased number
of nonzeros in the sparse representation.

Table 2 shows the best classification accuracies for the unsupervised learning settings,
and the corresponding dimensionalities. Unsupervised RSRLP gives a strong improvement
for the face and traffic sign datasets over RLPP, for all considered classifiers, while on hand-
written digits it is on par with RLPP. SRE gives an even stronger improvement over LLE.
Yet, the non-linear SRE and LLE are outperformed by the linear algorithms, even by PCA
with sufficient dimensions. Their poor performance needs to be investigated further. Tuning
the number of neighbors of LLE for each setting (dimensionality of the projection, dataset,
and classifier) could improve performance, but is inefficient and cumbersome. SRE (and
SRLP) on the other hand has no such tuning parameter. The running time of SRE is a few
seconds for N = 2000 on Swissroll, while taking hours for GTSRB.

3.5 Supervised learning results

For the supervised learning experiments we consider the supervised versions of RLPP and
LLE, and our RSRLP and SRE, as well as RLDA. Table 3 gives the best achieved classifica-
tion accuracies along with the dimensionality of the projections. As expected, the supervised
algorithms outperform their unsupervised counterparts (see Table 2). Supervised RSRLP im-
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Table 3: Classification accuracy[%] - supervised case (best dimension in brackets)
B

T
SC

da
ta

se
t

classifier RLPP RSRLP LLE SRE RLDA
NN 93.21[37] 94.20[37] 77.94[90] 83.19[100] 92.50[61]
SRC 95.19[43] 95.54[99] 78.26[120] 83.19[100] 93.17[61]
LSVM 92.11[29] 92.23[40] 80.82[140] 84.98[100] 90.41[42]
IKSVM 93.21[76] 93.13[62] 79.16[130] 84.33[100] 90.37[45]
POLYSVM 93.37[40] 93.25[40] 78.81[110] 83.58[100] 91.20[37]
RBFSVM 93.61[40] 93.96[40] 79.83[100] 83.74[80] 91.75[45]

PI
E

da
ta

se
t

NN 97.72[55] 97.86[37] 92.83[180] 95.98[170] 97.55[51]
SRC 98.06[53] 98.26[84] 92.74[180] 95.98[180] 97.97[61]
LSVM 96.03[99] 97.19[95] 91.84[180] 96.12[180] 97.36[61]
IKSVM 97.41[94] 97.69[63] 92.57[180] 94.54[160] 97.36[65]
POLYSVM 97.66[79] 98.06[94] 92.88[180] 96.00[160] 97.61[67]
RBFSVM 97.69[79] 98.01[55] 92.80[200] 95.98[160] 97.61[67]

G
T

SR
B

da
ta

se
t NN 87.07[48] 91.85[28] 67.13[170] 72.33[50] 92.73[40]

SRC 90.06[40] 93.64[53] 67.46[200] 71.13[100] 93.56[42]
LSVM 85.66[82] 87.87[57] 69.25[200] 72.81[170] 87.95[32]
IKSVM 87.72[78] 89.51[78] 67.99[200] 69.46[200] 87.37[42]
POLYSVM 92.08[34] 94.79[78] 67.44[200] 72.06[80] 92.63[32]
RBFSVM 93.51[79] 94.64[78] 68.39[200] 72.11[80] 92.90[42]

M
N

IS
T NN 96.72[48] 96.77[41] 95.48[50] 96.11[130] 90.23[9]

LSVM 91.25[50] 91.39[50] 96.48[170] 96.76[190] 88.72[9]
POLYSVM 98.06[50] 98.25[40] 96.76[200] 97.07[160] 92.07[9]

proves over RLPP. SRE improves over the original LLE. The improvements are smaller when
compared to the unsupervised case. Again, the non-linear SRE and LLE are outperformed
by the linear algorithms.

For the out-of-sample estimation we compute the sparse representation over the train-
ing samples. Thus, an SRC decision can be taken. For instance, in the BTSC case, we
achieve 85% with SRC in the original space, while after non-linear SRE embedding and out-
of-sample estimation, SRC barely reaches 83% with a 200-dimensional embedding, while
SRC+PCA at 200 achieves 85.60%. This shows that the non-linear projections (like LLE
and SRE) warrant additional research. Sometimes linear algorithms are better, even PCA.

It is easier to improve on GTSRB with sparse representations than on BTSC. This could
be due to the fact that BTSC has on average 3 annotations for each physically distinct traffic
sign and 62 classes, while GTSRB has 30 annotations and 43 classes. Again, the improve-
ment of sparse representation methods over the locality preserving methods is small for the
MNIST dataset that has a large number of training samples and just 10 classes. From these
experiments it seems that sparse representations are most effective when the original sam-
pling is neither very sparse nor very dense. With too few original samples, the correlations in
the data are difficult to pick up, whereas with many, other methods seem capable of capturing
the gist just as well.
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4 Conclusions

In this paper, we investigated the idea of preserving the sparse representation of the data in
linear and non-linear projections. We start from the graph embedding viewpoint for standard
projection techniques and change this graph based on the sparse representation of the signals.
The main drawback still is the computational time required for computing the sparse repre-
sentations for the training data. This can be a few orders of magnitude higher than for other
state-of-the-art techniques. Extensive experimental results show that the proposed methods
– SRLP and SRE, the modified versions of LPP and LLE, respectively – are on par with or
consistently outperform the original formulations in supervised and unsupervised learning
settings. The sparse representation property shows great potential and all approaches that
admit a graph embedding formulation are amenable to their adaptation.
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FP7-231888-EUROPA project.
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