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Personalized drug design requires the classification of cancer patients as accurate as possible. With advances in genome sequencing
and microarray technology, a large amount of gene expression data has been and will continuously be produced from various
cancerous patients. Such cancer-alerted gene expression data allows us to classify tumors at the genomewide level. However,
cancer-alerted gene expression datasets typically have much more number of genes (features) than that of samples (patients),
which imposes a challenge for classification of tumors. In this paper, a new method is proposed for cancer diagnosis using gene
expression data by casting the classification problem as finding sparse representations of test samples with respect to training
samples. The sparse representation is computed by the l1-regularized least square method. To investigate its performance, the
proposed method is applied to six tumor gene expression datasets and compared with various support vector machine (SVM)
methods. The experimental results have shown that the performance of the proposed method is comparable with or better than
those of SVMs. In addition, the proposed method is more efficient than SVMs as it has no need of model selection.

Copyright © 2009 X. Hang and F.-X. Wu. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

The treatment of cancer greatly depends on the accurate
classification of tumors. In spite of its effectiveness in
classifying tumors by microscopic tissue examination, tra-
ditional histopathological approach fails to classify many
cancer cases. The number of unclassified cancer cases can
reach up to 40 000 per year just in the United States [1].
DNA microarray technology, on the other hand, has the
potential to provide a more accurate and objective cancer
diagnosis due to its high throughput capability of measuring
expression levels of tens of thousands genes simultaneously.
Since Golub et al. [2] successfully classified between acute
myeloid leukemia (AML) and acute lymphocytic leukemia
(ALL), many other types of cancer have been classified using
gene expression data including breast cancer [3], lymphoma
[4], lung cancer [5], bladder cancer [6], colon cancer [7],
ovarian cancer [8], prostate cancer [9], melanoma [10], and
brain tumors [11].

The successful application of microarray technology in
cancer diagnosis greatly depends on the careful design of two
important components of a gene data classification system:
gene selection and sample classification, shown in Figure 1.
Gene selection mainly serves two purposes: (i) to reduce
dramatically the number of genes used in classification to
manage the “curse of dimensionality” and (ii) selected genes
might be biologically relevant, allowing further biological
exploration which may lead to better understanding of
underlying molecular mechanism associated with tumorige-
nesis and progression. Gene selection can be made by test
statistics [12]. An excellent review on gene selection methods
can be found in [13].

The second component, sample classification, is a chal-
lenging issue for a problem with a small number of learning
samples and yet a large number of features (genes). The
number of samples available for analysis ranges from tens to
hundreds. Many established methods have been proposed to
address the challenge. According to Lee et al. [14], they can
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Figure 1: The pipeline of cancer diagnosis using gene expression data.

be classified into four categories: (i) classical methods such
as Fisher’s linear discriminant analysis, logistic regression,
K-nearest neighbor, and generalized partial least square,
(ii) classification trees and aggregation methods such as
CART, random forest, bagging, and boosting, (iii) machine
learning methods such as neural network and support vector
machines (SVMs), and (iv) generalized methods such as
flexible discriminant analysis, mixture discriminant analysis,
and shrunken centroid method.

In this paper, we propose a novel approach for classifi-
cation, called sparse representation, inspired by the recent
progress in l1-norm minimization-based methods such as
basis pursuit denoising [15], compressive sensing for sparse
signal reconstruction [16–18], and Lasso algorithm for
feature selection [19]. Ideally, a testing sample can be
represented just in terms of the training samples of the same
category. Hence, when the testing sample is expressed as
linear combination of all the training samples, the coefficient
vector is sparse, that is, the vector has relatively few nonzero
coefficients. Testing samples of same category will have
similar sparse representation, while different categories will
result in different sparse representations. In order to recover
the sparse coefficient vector, l1-regularized least square [20]
is used.

Unlike general supervised learning methods, where a
training procedure is used to create a classification model for
testing, the sparse representation approach does not contain
separate training and testing stages. Instead, classification
is achieved directly out of the testing sample’s sparse
representation in terms of training samples. Another unique
feature of the new method is no model selection needed. It is
well known that the performance of a classifier, such as SVM,
relies upon careful choice of the model parameters via model
selection procedure.

2. Materials and Methods

2.1. Sparse Representation. Consider a training dataset {(xi,
li); i = 1, . . . ,n}, xi ∈ Rd, li ∈ {1, 2, . . . ,N}, where xi

represents the ith sample, a d-dimensional column vector
containing gene expression values with d as the number of
genes, and li is the label of the ith sample with N as the
number of categories. For a testing sample y ∈ Rd, the
problem of sparse representation is to find a column vector

c = [c1, c2, . . . , cn]T such that

y = c1x1 + c2x2 + · · · + cnxn, (1)

and ‖c‖0 is minimized, where ‖c‖0 is l0-norm, and it is
equivalent to the number of nonzero components in the
vector c.

Defining a matrix by putting xi as the ith column A =

[x1, x2, . . . , xn], the problem of sparse representation can be
converted into

c = min
c′∈Rn

∥∥c′
∥∥

0 subject to y = Ac. (2)

Finding the solution to sparse representation problem is
NP-hard due to its nature of combinational optimization.
Approximation solution can be obtained by replacing the
l0-norm in (2) by the lp-norm

c = min
c′∈Rn

∥∥c′
∥∥
p subject to y = Ac, (3)

where the lp-norm of a vector v defined as ‖v‖p =

(
∑

i|vi|
p)

1/p
. A generalized version of (3), which allows for

certain degree of noise, is to find a vector c such that the
following objective function is minimized:

J(c, λ) = min
c

{
‖Ac− y‖2 + λ‖c‖p

}
, (4)

where the positive parameter λ is a scalar regularization
that balances the tradeoff between reconstruction error and
sparsity.

Since l1-norm minimization can efficiently recover sparse
signal [20] and are robust against outliers, this study takes
p = 1 in (4). Therefore, the problem is reduced to solve (3)
an l1-regularized least square problem:

J(c, λ) = min
c
‖Ac− y‖2 + λ‖c‖1. (5)

A truncated Newton interior-point method (TNIPM) pro-
posed in [20] can be used to solve the above optimization
problem in (5). For the convergence of the algorithm,
the regularization parameter must satisfy the following
condition:

λ ≤
∥∥2AT y

∥∥
∞
. (6)

Please refer to [20] for more information about l1-
regularized least square and the specialized interior-point
method.

Another approach to determine the sparse solution to
(2) is to use the framework of compressive sensing, which
requires the system to be underdetermined. Including the
construction errors e in (1) yields

y = Ac + e. (7)

In compressive sensing approach, we need to rewrite (7) as

y =
[
A I

][c
e

]
= Bd, (8)
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Input: {(xi, yi); i = 1, . . . ,n}, and y
1. Normalize xi, i = 1, 2, . . . ,n, and y
2. Create matrix A
3. Solve the optimization problem defined in (5)
4. Compute gk(y), k = 1, 2, . . . ,N

Output: arg mink gk(y)

Algorithm 1: Classification by sparse representation.

where B = [A I] ∈ Rd×(n+d) and d = [cT eT]T ∈ Rn+d. With
these notations, the sparse representation can be obtained by
the following constrained l1-norm minimization problem:

min
d
‖d‖1 subject to Bd = y. (9)

The above linear programming problem can be solved by a
specialized interior-point method called l1-magic [21]. The
approach in (9) is used in [22] for face recognition by sparse
representation.

Both approaches do generate nearly the same classifica-
tion performance in our experiments. Our approach, based
on l1-regularized least square, however, is much faster. First,
the optimization problem scale in our approach is much
smaller. For example, when the training dataset contains 300
samples and the gene number is 10 000, the matrix in our
approach is A ∈ R10000×300 while B ∈ R10000×10300. Secondly,
TNIPM is O(n1.2) while l1-magic is O(n1.3) [20]. In addition,
it is noticed that basis pursuit, compressive sensing, and
Lasso algorithm can also be converted into l1-regularized
least square problems [20].

Let ĉ denote the sparse representation obtained by l1-
regularized least square. Ideally, the nonzero entries in ĉ are
associated with the columns in A corresponding to those
training samples of the same category as the testing sample
y. However, noises may cause the nonzero entries to be
linked with multiple categories [22]. Simple heuristics, such
as assigning y to the category with the largest entry in ĉ, are
not dependable. Instead, we define N discriminate functions

gk(y) =
∥∥y − Aĉk

∥∥
2, k = 1, 2, . . . ,N , (10)

where ĉk is obtained by keeping only those entries in ĉ
associated with category k and assigning zeros to other
entries. Thus gk represents the approximation error when y
is assigned to category k, and we can assign y to the category
with the smallest approximation error. The classification
algorithm is summarized (see Algorithm 1).

2.2. Numerical Experiments. Numerical experiments are
designed to quantitatively verify the performance of sparse
representation method for cancer classification using gene
expression data. The performance metric used in this study
is accurate, obtained by stratified 10-fold cross-validation.
We compare our approach with a few variants of multi-
category SVMs. SVMs, as state-of-the-art machine learning
algorithms, have been successfully applied in gene profile
classification [23, 24]. The comprehensive study in [25]

also shows that SVMs outperform K-nearest neighbors and
neural network in gene expression cancer diagnosis.

All experiments are done on a PC with duo Intel 2.33 G
CPU and 4 G memory under Windows XP (SP2). MATLAB
R14 is used to implement sparse representation method.
The optimization is done by l1 ls MATLAB package, which
is available online (http://www.stanford.edu/∼boyd/l1 ls/).
The results of SVMs are obtained by gene expression model
selector (GEMS), a software with graphic user interface
for classification of gene expression data, which is freely
available at http://www.gems-system.org/ and used in [25]
for the comprehensive study of the performance of multiple
classifiers on gene expression cancer diagnosis. Besides
standard binary SVM, GEMS has implemented the following
multiclass SVMs: one-versus-rest (OVR) [26], one-versus-
one (OVO) [26], directed acyclic graph (DAG) [27], all-at-
once method by Weston and Watkins (WW) [28], and all-
at-once method by Crammer and Singer (CS) [29], which
are used in comparison with sparse representation approach.
Polynomial and RBF kernels are used for SVMs.

For fair comparison, the partition file of cross-validation
generated by GEMS is used in sparse representation
approach. As for model selection, 9-fold cross validation is
used for SVMs.

The comparison is done with and without gene selection.
Two popular gene selection methods are used in this study:
Kruskal-Wallis nonparametric one-way ANOVA (KW) [30]
and the ratio of between-groups to within-groups sum of
squares (BW) [31].

2.3. Datasets. In the experiment, we use six datasets, which
are among 11 datasets used in the comprehensive study [25].
For easy comparison, we adopt the name used in [25]. The
information about the six datasets is summarized below.

(i) 9 Tumors [32]: the dataset comes from a study of
9 human tumor types: NSCLC, colon, breast, ovary,
leukemia, renal, melanoma, prostate, and CNS. There
are 60 samples, each of which contains 5726 genes.

(ii) 11 Tumors [23]: the dataset includes 174 samples
of gene expression data of 11 various human
tumor types: ovary, bladder/ureter, breast, colorectal,
gastro-esophagus, kidney, liver, prostate, pancreas,
adeno lung, and squamous lung. The number of
genes is 12 533.

(iii) 14 Tumors [24]: the dataset contains 308 sam-
ples of 14 various human tumor types including
leukemia, prostate, lung, colorectal, lymphoma, blad-
der, melanoma, uterus, breast, renal, pancreas, ovary,
mesothelioma, and CNS, and 12 normal tissues
including breast, prostate, lung, colon, germinal
center, bladder, uterus, peripheral blood, kidney,
pancreas, ovary, and brain. Each sample has 15 009
genes.

(iv) Brain Tumor1 [11]: the dataset comes from a study
of 5 human brain tumor types: medulloblastoma,
malignant glioma, AT/RT, normal cerebellum, and
PNET, including 90 samples. Each sample has 5920
genes.
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Table 1: Results without gene selection.

Methods Prostate Tumor 9 Tumors 11 Tumors 14 Tumors Brain Tumor1 Brain Tumor2

SVM

OVR 93.27% 67.06% 94.99% 75.29% 90% 75.5%

OVO 93.27% 54.63% 90.22% 46.39% 90% 73.83%

DAG 93.27% 54.63% 90.22% 45.10% 90% 73.83%

WW 93.27% 68.17% 94.31% 65.84% 90% 77.17%

CS 93.27% 68.17% 94.31% 75.38% 90% 75.5%

SR 92.27% 68.79% 95.02% 74.04% 90% 80.83%

Table 2: Results with gene selection.

Method Prostate Tumor 9 Tumors 11 Tumors 14 Tumors Brain Tumor1 Brain Tumor2

SVM

94.36% 72.89% 96.66% 75.38% 90% 82.83%

OVR CS OVR CS WW OVR

BW50 BW3000 KW1000 NG∗ NG∗ KW500

SR
94.18% 72.40% 96.10% 76.69% 90% 80.83%

BW800 BW3000 KW2000 BW5000 NG∗ NG∗

∗
NG: no gene selection.

(v) Brain Tumor2 [33]: there are 4 types of malig-
nant glioma in this dataset: classic glioblastomas,
classic anaplastic oligodendrogliomas, nonclassic
glioblastomas, and nonclassic anaplastic oligoden-
drogliomas. The dataset has 50 samples, and the
number of genes is 10 367.

(vi) Prostate Tumor [9]: the binary dataset contains gene
expression data of prostate tumor and normal tissues.
There are 10 509 genes in each sample and 102
samples.

According to [25], 9 Tumors, 14 tumors, and Brain Tumor2
are the most difficult datasets which make all the classifiers,
including SVMs, generate low classification performance.

All the gene expression data are normalized by being
rescaled between 0 and 1. It is also for the purpose of
speeding up the training of SVMs.

3. Results and Discussion

Table 1 shows the classification results of the experiment
without gene selection for both sparse representation (SR)
and SVMs. The results of SVMs are slightly differently
from [25]. A possible explanation is that the distribution
file of cross validation is different in our study from
[25]. From Table 1, the proposed SR approach performs
better than all SVM variants on 9 Tumors, 11 Tumors, and
Brian Tumor2, and most SVM variants on 14 Tumors, while
the SR approach performs comparably with SVM variants
on Prostate Tumor and Brain Tumor1. In addition, similar
to SVMs, the SR approach also finds it difficult to classify
three multicategory datasets: 9 Tumors, 14 Tumors, and
Brain Tumor2. However, the SR approach performs better
than all SVM variants on these datasets except CS and OVR
on 14 Tumors. The difficulty may mainly be caused by the
small number of total samples and even the smaller number
of samples for each category. For example, the 9 Tumors

dataset only has 60 samples, and category 7 (prostate tumor)
just has two samples.

Table 2 shows the results of sparse representation when
KW and BW methods are used for gene selection, along with
the best results achieved by SVMs with the corresponding
gene selection methods. From Table 2, the performance of
the proposed SR is comparable with the best SVM variant
on all six datasets. In addition, since gene selection generate
limited improvement for both methods, sparse representa-
tion approach, similar to SVMs, seems less sensitive to curse
of dimensionality than non-SVM methods such as neural
network and k-nearest neighbors.

It is worth mentioning that the results of SVMs for
both with and without gene selection are obtained by
careful model selection using 9-fold cross validation. Spare
representation approach, on the other hand, has no need of
adjusting model parameters for different datasets.

As for the computing efficiency, sparse representation
approach is very fast when sample number is less than
100. For example, without gene selection, it needs less than
10 seconds for Brain Tumor2 dataset, which has only 50
samples. The efficiency, however, is dramatically reduced
for relatively large sample cases. The dataset 14 Tumors,
which has 308 samples, needs more than 3000 seconds! The
main reason lies in the fact that the current implementation
needs solving one optimization problem defined in (5)
for classification of each testing sample. As a result, the
number of optimization problems to be solved equals to
the number of samples in the dataset. When compared with
SVMs, however, the proposed SR is still faster, at least, than
GEMS implementations when model selection is counted for
SVMs.

4. Conclusion

In this paper, we have described a new approach for cancer
diagnosis using gene expression data. The new method



Journal of Biomedicine and Biotechnology 5

expresses each testing sample as a linear combination of
all the training samples. The coefficient vector is obtained
by l1-regularized least square. Classification is achieved by
defining discriminating functions from the coefficient vector
for each category. Since l1-norm minimization leads to sparse
solution, we call the new approach sparse representation.

Numerical experiments show that sparse representation
approach can match the best performance achieved by SVMs.
Furthermore, the new approach has no need of model
selection. One direction of our future work is to investigate
how to classify multiple testing samples by solving only one
optimization problem to improve the efficiency.
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