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Sparse Representation For Computer Vision and

Pattern Recognition
John Wright∗, Member, Yi Ma∗, Senior Member, Julien Mairal†, Member, Guillermo Sapiro‡, Senior Member,

Thomas Huang§, Life Fellow, Shuicheng Yan¶, Member

Abstract—Techniques from sparse signal representation are
beginning to see significant impact in computer vision, often
on non-traditional applications where the goal is not just to
obtain a compact high-fidelity representation of the observed
signal, but also to extract semantic information. The choice of
dictionary plays a key role in bridging this gap: unconven-
tional dictionaries consisting of, or learned from, the training
samples themselves provide the key to obtaining state-of-the-
art results and to attaching semantic meaning to sparse signal
representations. Understanding the good performance of such
unconventional dictionaries in turn demands new algorithmic
and analytical techniques. This review paper highlights a few
representative examples of how the interaction between sparse
signal representation and computer vision can enrich both fields,
and raises a number of open questions for further study.

I. INTRODUCTION

Sparse signal representation has proven to be an extremely

powerful tool for acquiring, representing, and compressing

high-dimensional signals. This success is mainly due to the

fact that important classes of signals such as audio and images

have naturally sparse representations with respect to fixed

bases (i.e., Fourier, Wavelet), or concatenations of such bases.

Moreover, efficient and provably effective algorithms based

on convex optimization or greedy pursuit are available for

computing such representations with high fidelity [10].

While these successes in classical signal processing appli-

cations are inspiring, in computer vision we are often more

interested in the content or semantics of an image rather than

a compact, high-fidelity representation. One might justifiably

wonder, then, whether sparse representation can be useful at

all for vision tasks. The answer has been largely positive:

in the past few years, variations and extensions of ℓ1 mini-

mization have been applied to many vision tasks, including
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face recognition [71], image super-resolution [75], motion

and data segmentation [33], [56], supervised denoising and

inpainting [51] and background modeling [16], [21] and image

classification [47], [48]. In almost all of these applications,

using sparsity as a prior leads to state-of-the-art results.

The ability of sparse representations to uncover semantic in-

formation derives in part from a simple but important property

of the data: although the images (or their features) are naturally

very high dimensional, in many applications images belonging

to the same class exhibit degenerate structure. That is, they

lie on or near low-dimensional subspaces, submanifolds, or

stratifications. If a collection of representative samples are

found for the distribution, we should expect that a typical

sample have a very sparse representation with respect to

such a (possibly learned) basis.1 Such a sparse representation,

if computed correctly, could naturally encode the semantic

information of the image.

However, to successfully apply sparse representation to

computer vision tasks, we typically have to address the addi-

tional problem of how to correctly choose the basis for repre-

senting the data. This is different from the conventional setting

in signal processing where a given basis with good property

(such as being sufficiently incoherent) can be assumed. In

computer vision, we often have to learn from given sample

images a task-specific (often overcomplete) dictionary; or we

have to work with one that is not necessarily incoherent. As

a result, we need to extend the existing theory and algorithms

for sparse representation to new scenarios.

This paper will feature a few representative examples of

sparse representation in computer vision. These examples

not only confirm that sparsity is a powerful prior for visual

inference, but also suggest how vision problems could enrich

the theory of sparse representation. Understanding why these

new algorithms work and how well they work can greatly

improve our insights to some of the most challenging problems

in computer vision.

II. ROBUST FACE RECOGNITION: CONFLUENCE OF

PRACTICE AND THEORY

Automatic face recognition remains one of the most visible

and challenging application domains of computer vision [77].

Foundational results in the theory of sparse representation have

recently inspired significant progress on this difficult problem.

1We use the term “basis” loosely here, since the dictionary can be
overcomplete and, even in the case of just complete, there is no guarantee of
independence between the atoms.
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The key idea is a judicious choice of dictionary: representing

the test signal as a sparse linear combination of the training

signals themselves. We will first see how this approach leads to

simple and surprisingly effective solutions to face recognition.

In turn, the face recognition example reveals new theoretical

phenomena in sparse representation that may seem surprising

in light of prior results.

A. From Theory to Practice: Face Recognition as Sparse

Representation

Our approach to face recognition assumes access to well-

aligned training images of each subject, taken under varying il-

lumination.2 We stack the given Ni training images from the i-

th class as columns of a matrix Di
.
= [di,1,di,2, . . . ,di,Ni

] ∈
R

m×Ni , each normalized to have unit ℓ2 norm. One classi-

cal observation from computer vision is that images of the

same face under varying illumination lie near a special low-

dimensional subspace [6], [38], often called a face subspace.

So, given a sufficiently expressive training set Di, a new image

of subject i taken under different illumination and also stacked

as a vector x ∈ R
m, can be represented as a linear combination

of the given training: x ≈ Diαi for some coefficient vector

αi ∈ R
Ni .

The problem becomes more interesting and more challeng-

ing if the identity of the test sample is initially unknown.

We define a new matrix D for the entire training set as the

concatenation of the N =
∑

i Ni training samples of all c

object classes:

D
.
= [D1,D2, . . . ,Dc] = [d1,1,d1,2, . . . ,dk,Nk

]. (1)

Then the linear representation of x can be rewritten in terms

of all training samples as

x = Dα0 ∈ R
m, (2)

where α0 = [0, · · · , 0,αT
i , 0, . . . , 0]T ∈ R

N is a coefficient

vector whose entries are all zero except for those associated

with the i-th class. The special support pattern of this coef-

ficient vector is highly informative for recognition: ideally, it

precisely identifies the subject pictured. However, in practical

face recognition scenarios, the search for such an informative

coefficient vector α0 is often complicated by the presence

of partial corruption or occlusion: gross errors affect some

fraction of the image pixels. In this case, the above linear

model (2) should be modified as

x = x0 + e0 = D α0 + e0, (3)

where e0 ∈ R
m is a vector of errors – a fraction, ρ, of its

entries are nonzero.

Thus, face recognition in the presence of varying illumina-

tion and occlusion can be treated as the search for a certain

sparse coefficient vector α0, in the presence of a certain sparse

error e0. The number of unknowns in (3) exceeds the number

of observations, and we cannot directly solve for α0. However,

under mild conditions [28], the desired solution (α0, e0) is

2For a detailed explanation of how such images can be obtained, see [68].
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Fig. 1. Overview of the face recognition approach. The method represents
a test image (left), which is potentially occluded (top) or corrupted (bottom),
as a sparse linear combination of all the training images (middle) plus sparse
errors (right) due to occlusion or corruption [71]. Red (darker) coefficients
correspond to training images of the correct individual. The algorithm de-
termines the true identity (indicated with a red box at second row and third
column) from 700 training images of 100 individuals (7 each) in the standard
AR face database.

not only sparse, it is the sparsest solution to the system of

equations (3):

(α0, e0) = arg min ‖α‖0 + ‖e‖0 subj x = Dα + e. (4)

Here, the ℓ0 “norm” ‖ · ‖0 counts the number of nonzeros in a

vector. Originally inspired by theoretical results on equivalence

between ℓ1 and ℓ0-minimizations [13], [24], in [71] the authors

proposed to seek this informative vector α0 by solving the

convex relaxation

min ‖α‖1 + ‖e‖1 subj x = Dα + e, (5)

where ‖α‖1
.
=

∑

i |αi|. That work reported striking empirical

results: the ℓ1-minimizer, visualized in Figure 1, has a strong

tendency to separate the identity of the face (red coefficients)

from the error due to corruption or occlusion.

Once the ℓ1-minimization problem has been solved (see,

e.g., [9], [26], [30]), classification (identifying the subject

pictured) or validation (determining if the subject is present in

the training database) can proceed by considering how strongly

the recovered coefficients concentrate on any one subject (see

[71] for details). Here, we present only a few representative

results; a more thorough empirical evaluation can be found

in [71]. Figure 2 (left) compares the recognition rate of this

approach (labeled SRC) with several popular methods on

the Extended Yale B Database [38] under varying levels of

synthetic block occlusion.

Figure 2 compares the sparsity-based approach outlined here

with several popular methods from the literature3: the Principal

Component Analysis (PCA) approach of [67], Independent

Component Analysis (ICA) [43], and Local Nonnegative Ma-

trix Factorization (LNMF) [46]. The first provides a standard

baseline of comparison, while the latter two methods are

more directly suited for occlusion, as they produce lower-

dimensional feature sets that are spatially localized. Figure

2 left also compares to the Nearest Subspace method [45],

which makes similar use of linear illumination models, but is

not based on sparsity and does not correct sparse errors.

The ℓ1-based approach achieves the highest overall recogni-

tion rate of the methods tested, with almost perfect recognition

3See [77] for a more thorough review of the vast literature on face
recognition.
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Fig. 2. Face recognition and validation. Left: Recognition rate of the ℓ1-
based method (labeled SRC), as well as Principal Component Analysis (PCA)
[67], Independent Component Analysis [43], Localized Nonnegative Matrix
Factorization (LNMF) [46] and Nearest Subspace (NS) [45] on the Extended
Yale B Face Database under varying levels of contiguous occlusion. Right:
Receiver Operating Characteristic (ROC) for validation with 30% occlusion.
In both scenarios, the sparse representation-based approach significantly
outperforms the competitors [71].

µ

Cross Polytope ±I

di ∼ N (µ, σ2
I)

0

Bouquet D
+1

−1

Coherent Gaussian Vectors

Fig. 3. The “cross-and-bouquet” model. Left: the bouquet D and the
crosspolytope spanned by the matrix ±I. Right: tip of the bouquet magnified;
it is modeled as a collection of iid Gaussian vectors with small variance σ2

and common mean vector µ. The cross-and-bouquet polytope is spanned by
vertices from both the bouquet D and the cross ±I [70].

up to 30% occlusion and a recognition rate above 90% with

40% occlusion. Figure 2 (right) shows the validation perfor-

mance of the various methods, under 30% contiguous occlu-

sion, plotted as a Reciever Operating Characteristic (ROC)

curve. At this level of occlusion, the sparsity-based method

is the only one that performs significantly better than chance.

The performance under random pixel corruption is even more

striking (see Figure 1, bottom), with recognition rates above

90% even at 70% corruption.

B. From Practice to Theory: Dense Error Correction by ℓ1-

Minimization

The strong empirical results alluded to in the previous

section seem to demand a correspondingly strong theoretical

justification. However, a more thoughtful consideration reveals

that the underdetermined system of linear equations (3) does

not satisfy popular sufficient conditions for guaranteeing cor-

rect sparse recovery by ℓ1-minimization.

In face recognition, the columns of A are highly correlated:

they are all images of some face. As m becomes large (i.e.

the resolution of the image becomes high), the convex hull

spanned by all face images of all subjects is only an extremely

tiny portion of the unit sphere S
m−1. For example, the images

in Figure 1 lie on S
8,063. The smallest inner product with

their normalized mean is 0.723; they are contained within

a spherical cap of volume ≤ 1.47 × 10−229. These vectors

are tightly bundled together as a “bouquet,” whereas the

standard pixel basis ±I with respect to which we represent

the errors e forms a “cross” in R
m , as illustrated in Figure 3.

The incoherence [25] and restricted isometry [13] properties

that are so useful in providing performance guarantees for

ℓ1-minimization therefore do not hold for the “cross-and-

bouquet” matrix [D I] (similarly, conditions that guarantee

sparse recovery via greedy techniques such as orthogonal

matching pursuit are also often violated by these type of

dictionaries). Also, the density of the desired solution is not

uniform either: α is usually a very sparse non-negative vector4,

but e could be dense (with a fraction nonzeros close to one)

and have arbitrary signs. Existing results for recovering sparse

signals suggest that ℓ1-minimization may have difficulty in

dealing with such signals, contrary to its empirical success in

face recognition.

In an attempt to better understand the face recognition ex-

ample outlined above, we consider the more abstract problem

of recovering such a non-negative sparse signal α0 ∈ R
N

from highly corrupted observations x ∈ R
m:

x = Dα0 + e0,

where e0 ∈ R
m is a vector of errors of arbitrary magnitude.

The model for D ∈ R
m×N should capture the idea that it

consists of small deviations about a mean, hence a “bouquet.”

We can model this by assuming the columns of D are iid

samples from a Gaussian distribution:

D = [d1 . . .dN ] ∈ R
m×N , di ∼iid N

(

µ, ν2

m Im

)

,

‖µ‖2 = 1, ‖µ‖∞ ≤ Cµm−1/2.

(6)

Together, the two assumptions on the mean force µ to remain

incoherent with the standard basis (or “cross”) as m → ∞.

We study the behavior of the solution to the ℓ1-minimization

(5) for this model, in the following asymptotic scenario:

Assumption 1 (Weak Proportional Growth): A sequence of

signal-error problems exhibits weak proportional growth with

parameters δ > 0, ρ ∈ (0, 1), C0 > 0, η0 > 0, denoted

WPGδ,ρ,C0,η0
, if as m → ∞,

N

m
→ δ,

‖e0‖0

m
→ ρ, ‖α0‖0 ≤ C0 m1−η0 . (7)

This should be contrasted with the “total proportional growth”

(TPG) setting of, e.g., [24], in which the number of nonzero

entries in the signal α0 also grows as a fixed fraction of the

dimension. In that setting, one might expect a sharp phase

transition in the combined sparsity of (α0, e0) that can be

recovered by ℓ1-minimization. In WPG, on the other hand,

we observe a striking phenomenon not seen in TPG: the

correction of arbitrary fractions of errors. This comes at the

expense of the stronger assumption that ‖α0‖0 is sublinear,

an assumption that is valid in some real applications such as

the face recognition example above.

In the following, we say the cross-and-bouquet model is ℓ1-

recoverable at (I, J,σ) if for all α0 ≥ 0 with support I and

4The nonnegativity of α can be viewed as a consequence of convex
cone models for illumination [38]; the existence of such a solution can be
guaranteed by choosing training samples that span the cone of observable test
illuminations [68].
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e0 with support J and signs σ,

(α0, e0) = arg min ‖α‖1 + ‖e‖1

subject to Dα + e = Dα0 + e0, (8)

and the minimizer is uniquely defined. From the geometry of

ℓ1-minimization, if (8) does not hold for some pair (α0, e0),
then it does not hold for any (α, e) with the same signs

and support as (α0, e0) [23]. Understanding ℓ1-recoverability

at each (I, J,σ) completely characterizes which solutions to

x = Dα+e can be correctly recovered. In this language, the

following characterization of the error correction capability of

ℓ1-minimization can be given [70]:

Theorem 1 (Error Correction with the Cross-and-Bouquet):

For any δ > 0, ∃ ν0(δ) > 0 such that if ν < ν0 and ρ < 1,

in WPGδ,ρ,C0,η0
with D distributed according to (6), if the

error support J and signs σ are chosen uniformly at random,

then as m → ∞,

PD,J,σ

[

ℓ1-recoverability at (I, J, σ) ∀ I ∈

(

[N ]

k1

)]

→ 1.

In other words, as long as the bouquet is sufficiently tight,

asymptotically ℓ1-minimization recovers any non-negative

sparse signal from almost any error with support size less

than 100% [70]. This provides some theoretical corroboration

to the strong practical and empirical results observed in the

face recognition example, especially in the presence of random

corruption.

C. Remarks on Sparsity-Based Recognition

The theoretical justifications of this approach discussed here

have inspired further practical work in this direction. The work

reported in [68] addresses issues such as pose and alignment as

well as obtaining sufficient training data of each subject, and

integrates these results into a practical system for face recog-

nition that achieves state-of-the-art results. Moreover, while in

this section we have focused on the interplay between theory

and practice in one particular application, face recognition,

similar ideas have seen application on a number of problems

in and even beyond vision, e.g., in sensor networks and human

activity classification [74] as well as speech recognition [36],

[37].

Although the cross-and-bouquet model has successfully

explained the error correction ability of ℓ1 minimization in

this application, the striking discriminative power of the sparse

representation (see also sections III and IV) still lacks rigorous

mathematical justification. Better understanding this behavior

seems to require a better characterization of the internal

structure of the bouquet and its effect on the ℓ1-minimizer.

To the best of our knowledge, this remains a wide open topic

for future investigation.

III. ℓ1-GRAPHS

The previous section showed how for face recognition, a

representation of the test sample in terms of the training

samples themselves yielded useful information for recogni-

tion. Whereas before, this representation was motivated via

linear illumination models, we now consider a more general

setting in which an explicit linear model is absent. Here, the

sparse coefficients computed by ℓ1-minimization are used to

characterize relationships between the data samples, in order to

accomplish various machine learning tasks. The key idea is to

accomplish this by interpreting the coefficients as weights in a

directed graph, which we term the ℓ1-graph (see also [48] for

a graphical model interpretation of the sparse representation

approach for image classification described in Section IV).

A. Motivations

An informative graph, directed or undirected, is critical

for graph-based machine learning tasks such as data cluster-

ing, subspace learning, and semi-supervised learning. Popular

spectral approaches to clustering start with a graph repre-

senting pairwise relationships between the data samples [61].

Manifold learning algorithms such as ISOMAP [63], Locally

Linear Embedding (LLE) [58], and Laplacian Eigenmaps (LE)

[8], all rely on graphs constructed with different motivations

[73]. Moreover, most popular subspace learning algorithms,

e.g., Principal Component Analysis (PCA) [42] and Linear

Discriminant Analysis (LDA) [7], can all be explained within

the graph embedding framework [73]. Also, a number of semi-

supervised learning algorithms are driven by the regularizing

graphs constructed over both labeled and unlabeled data [78].

Most of the works described above rely on one of two pop-

ular approaches to graph construction: the k-nearest-neighbor

method and the ε-ball method. The first assigns edges between

each data point and its k-nearest neighbors, whereas the second

assigns edges between each data point and all samples within

its surrounding ε-ball. From a machine learning perspective,

the following graph characteristics are desirable:

1) High discriminating power. For data clustering and label

propagation in semi-supervised learning, the data from

the same cluster/class are expected to be assigned large

connecting weights. The graphs constructed in those

popular ways however, often fail to capture piecewise

linear relationships between data samples in the same

class.

2) Sparsity. Recent research on manifold learning [8] shows

that a sparse graph characterizing locality relations can

convey the valuable information for classification. Also

for large-scale applications, a sparse graph is the in-

evitable choice due to storage limitations.

3) Adaptive neighborhood. It often happens that the avail-

able data are inadequate and do not evenly distribute,

resulting in different neighborhood structure for differ-

ent data points. Both the k-nearest-neighbor and ε-ball

methods (in general) use a fixed global parameter to

determine the neighborhoods for all the data, and thus

do not handle situations where an adaptive neighborhood

is required.

Enlightened by recent advances in our understanding of

sparse coding by ℓ1 optimization [24] and in applications such

as the face recognition example described in the previous

section, we propose to construct the so-called ℓ1-graph via

sparse data coding, and then harness it for popular graph-based

machine learning tasks. An ℓ1 graph over a dataset is derived
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by encoding each datum as the sparse representation of the

remaining samples, and automatically selects the most infor-

mative neighbors for each datum. The sparse representation

computed by ℓ1-minimization naturally satisfies the properties

of sparsity and adaptivity. Moreover, we will see empirically

that characterizing linear relationships between data samples

via ℓ1-minimization can significantly enhance the performance

of existing graph-based learning algorithms.

B. ℓ1-Graph Construction

We represent the sample set as a matrix X =
[x1,x2, . . . ,xN ] ∈ R

m×N , where N is the sample num-

ber and m is the feature dimension. We denote the ℓ1-

graph as G = {X, W}, where X is the vertex set and

W = [wij ] ∈ R
N×N the edge weight matrix. The graph

is constructed in an unsupervised manner, with a goal of

automatically determining the neighborhood structure as well

as the corresponding connection weights for each datum.

Unlike the k-nearest-neighbor and ε-ball based graphs in

which the edge weights characterize pairwise relations, the

edge weights of ℓ1-graph are determined in a group manner,

and the weights related to a certain vertex characterize how

the rest samples contribute to the sparse representation of this

vertex. The procedure to construct the ℓ1-graph is:

1) Inputs: The sample set X .

2) Sparse coding: For each sample xi, solve the ℓ1 norm

minimization problem

min
αi

‖αi‖1, s.t. xi = Diαi, (9)

where matrix Di = [x1, ...,xi−1,xi+1, ...,xN , I] ∈
R

m×(m+N−1) and αi ∈ R
m+N−1.

3) Graph weights setting: Wij = αi
j (nonnegativity con-

straints may be imposed if for similarity measurement)

if i > j, and Wij = αi
j−1 if i < j.

For data with linear or piecewise-linear class structure the

sparse representation conveys important discriminative infor-

mation, which is automatically encoded in the ℓ1-graph. The

derived graph is naturally sparse – the sparse representation

computed by ℓ1-minimization never involves more than m

nonzero coefficients, and may be especially sparse when

the data have degenerate or low-dimensional structure. The

number of neighbors selected by ℓ1-graph is adaptive to each

data point, and these numbers are automatically determined by

the ℓ1 optimization process. Thus, the ℓ1-graph possesses all

the three characteristics of a desired graph for data clustering,

subspace learning, and semi-supervised learning [18], [72].

C. ℓ1-Graph for Machine Learning Tasks

An informative graph is critical for achieving high per-

formance with graph-based learning algorithms. Similar to

conventional graphs constructed by k-nearest-neighbor or ε-

ball method, ℓ1-graph can also be integrated with graph-based

algorithms for tasks such as data clustering, subspace learning,

and semi-supervised learning. In the following sections, we

show how ℓ1-graphs can be used for each of these purposes.

1) Spectral clustering with ℓ1-graph: Data clustering is the

partitioning of samples into subsets, such that the data within

each subset are similar to each other. Some of the most popular

algorithms for this task are based on spectral clustering [61].

Using the ℓ1-graph, the algorithm can automatically derive

the similarity matrix from the calculation of these sparse

codings (namely wij = αi
j). Inheriting the property of greater

discriminating power from ℓ1-graph, the spectral clustering

based on ℓ1-graph has greater potential to correctly separate

the data into different clusters. Based on the derived ℓ1-graph,

the spectral clustering [61] process can be performed in the

same way as for conventional graphs.

2) Subspace learning with ℓ1-graph: Subspace learning

algorithms search for a projection matrix P ∈ R
m×d (usually

d ≪ m) such that distances in the projected space are as

informative as possible for classification. If the dimension of

the projected space is large enough, then linear relationships

between the training samples may be preserved, or approx-

imately preserved. The pursuit of a projection matrix that

simultaneously respects the sparse representations of all of the

data samples can be formulated as an optimization problem

(closely related to the problem of metric learning)

min

N
∑

i=1

∥

∥

∥
PT xi −

N
∑

j=1

wijP
T xj

∥

∥

∥

2

2
subj PT XXT P = I

(10)

and solved via generalized eigenvalue decomposition.

3) Semi-supervised Learning with ℓ1-graph: Semi-

supervised learning has attracted a great deal of recent

attention. The main idea is to improve classifier performance

by using additional unlabeled training samples to characterize

the intrinsic geometry of the observation space (see for

example [54] for the application of sparse models for semi-

supervised learning problems). For classification algorithms

that rely on optimal projections or embeddings of the data,

this can be achieved by adding a regularization term to the

objective function that forces the embedding to respect the

relationships between the unlabeled data.

In the context of ℓ1-graphs, we can modify the classical

LDA criterion to also demand that the computed projection

respects the sparse coefficients computed by ℓ1-minimization:

min
P

γSw(P ) + (1 − γ)
∑N

i=1 ‖P
T xi −

∑N
j=1 wijP

T xj‖
2
2

Sb(P )
,

where Sw(P ) and Sb(P ) measure the within-class scatter and

inter-class scatter of the labeled data respectively, and γ ∈
(0, 1) is a coefficient that balances the supervised term and

ℓ1-graph regularization term (see also [57]).

D. Experimental Results

In this section, we systematically evaluate the effectiveness

of the ℓ1-graph in the machine learning scenarios outlined

above. The USPS handwritten digit database [41] (200 samples

are selected for each class), forest covertype database [1]

(120 samples are selected for each class), and ETH-80 object

recognition database [2] are used for the experiments. Note

that all the results reported here are from the best tuning of
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all possible algorithmic parameters, and the results on the first

two databases are the averages of ten runs while the results

on ETH-80 are from one run.

Table I compares the accuracy of spectral clustering based

on the ℓ1-graph with spectral algorithms based on a number

of alternative graph constructions, as well as the simple base-

line of K-means. The clustering results from ℓ1-graph based

spectral clustering algorithm are consistently much better than

the other algorithms tested.

TABLE I
CLUSTERING ACCURACIES (NORMALIZED MUTUAL INFORMATION) FOR

SPECTRAL CLUSTERING ALGORITHMS BASED ON ℓ1-GRAPH,
GAUSSIAN-KERNEL GRAPH (G-G), LE-GRAPH (LE-G), AND LLE-GRAPH

(LLE-G), AS WELL AS PCA+K-MEANS (PCA+KM).

Cluster # ℓ1-graph G-g LE-g LLE-g PCA+Km

USPS : 7 0.962 0.381 0.724 0.565 0.505

FOR. : 7 0.763 0.621 0.619 0.603 0.602

ETH. : 7 0.605 0.371 0.522 0.478 0.428

Our next experiment concerns data classification based on

low-dimensional projections. Table II compares the classi-

fication accuracy of the ℓ1-graph based subspace learning

algorithm with several more conventional subspace learning

algorithms. The following observations emerge: 1) the ℓ1-

graph based subspace learning algorithm is superior to all

the other evaluated unsupervised subspace learning algorithms,

and 2) ℓ1-graph based subspace learning algorithm generally

performs a little worse than the supervised algorithm Fish-

erfaces, but on the forest covertype database, ℓ1-graph based

subspace learning algorithm is better than Fisherfaces. Note

that all the algorithms are trained on all the data available,

and the results are based on nearest neighbor classifier; for all

experiments, 10 samples for each class are randomly selected

as gallery set and the remaining ones are used for testing.

TABLE II
COMPARISON CLASSIFICATION ERROR RATES (%) FOR DIFFERENT

SUBSPACE LEARNING ALGORITHMS. LPP AND NPE ARE THE LINEAR

EXTENSIONS OF LE AND LLE RESPECTIVELY.

Gallery # PCA NPE LPP ℓ1-graph-SL Fisherfaces [7]

USPS : 10 37.21 33.21 30.54 21.91 15.82

FOR. : 10 27.29 25.56 27.32 19.76 21.17

ETH. : 10 47.45 45.42 44.74 38.48 13.39

Finally, we evaluate the effectiveness of the ℓ1 graph in

semi-supervised learning scenarios. Table III compares results

with the ℓ1-graph to several alternative graph constructions.

We make two observations: 1) the ℓ1-graph based semi-

supervised learning algorithm generally achieves the lowest

error rates compared to semi-supervised learning based on

more conventional graphs, and 2) semi-supervised learning

based on the ℓ1-graph and the graph used in LE algorithm

can generally bring accuracy improvements compared to the

counterpart without harnessing extra information from unla-

beled data. Note that all the semi-supervised algorithms are

based on the supervised algorithm Marginal Fisher Analysis

(MFA) [73].

E. Remarks on ℓ1-Graphs

Although in this section we have illustrated with a few

generic examples the potential of ℓ1-graphs for some gen-

TABLE III
COMPARISON CLASSIFICATION ERROR RATES (%) FOR SEMI-SUPERVISED

ALGORITHMS ℓ1-GRAPH (ℓ1-G), LE-GRAPH (LE-G), AND LLE-GRAPH

(LLE-G), SUPERVISED (MFA) AND UNSUPERVISED LEARNING (PCA)
ALGORITHMS.

Labeled # ℓ1-g LLE-g LE-g MFA PCA

USPS : 10 25.11 34.63 30.74 34.63 37.21

FOR. : 10 17.45 24.93 22.74 24.93 27.29

ETH. : 10 30.79 38.83 34.54 38.83 47.45

eral problems in machine learning, the idea of using sparse

coefficients computed by ℓ1-minimization for clustering has

already found good success in the classical vision problem

of segmenting multiple motions in a video, where low-

dimensional self-expressive representations can be motivated

by linear camera models. In that domain, algorithms combin-

ing sparse representation and spectral clustering also achieve

state-of-the-art results on extensive public data sets [33], [56].

Despite apparent empirical successes, precisely characterizing

the conditions under which ℓ1-graphs can better capture certain

geometric or statistic relationships among data remains an

open problem. We expect many interesting and important

mathematical problems may arise from this rich research

field. The next section further investigates the use of sparse

representations for image classification, including exploiting

the sparse coefficients with respect to learned dictionaries.

IV. DICTIONARY LEARNING FOR IMAGE ANALYSIS

The previous sections examined applications in vision and

machine learning in which a sparse representation in an over-

complete dictionary consisting of the samples themselves

yielded semantic information. For many applications, however,

rather than simply using the data themselves, it is desirable

to use a compact dictionary that is obtained from the data

by optimizing some task-specific objective function. This

section provides an overview of approaches to learning such

dictionaries, as well as their applications in computer vision

and image processing.

A. Motivations

As detailed in the previous sections, sparse modeling calls

for constructing efficient representations of data as a (often

linear) combination of a few typical patterns (atoms) learned

from the data itself. Significant contributions to the theory

and practice of learning such collections of atoms (usually

called dictionaries or codebooks), e.g., [4], [34], [52], and of

representing the actual data in terms of them, e.g., [17], [20],

[30], have been developed in recent years, leading to state-of-

the-art results in many signal and image processing tasks [11],

[32], [44], [48], [51], [54]. We refer the reader to [10] for a

recent review on the subject.

The actual dictionary plays a critical role, and it has

been shown again and again that learned and data adaptive

dictionaries significantly outperform off-the-shelf ones such as

wavelets. Current techniques for obtaining such dictionaries

mostly involve their optimization in terms of the task to be

performed, e.g., representation [34], denoising [4], [51], and

classification [48]. Theoretical results addressing the stability
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and consistency of the sparse solutions (active set of selected

atoms), as well as the efficiency of the coding algorithms,

are related to intrinsic properties of the dictionary such as

the mutual coherence, the cumulative coherence, and the

Gram matrix norm of the dictionary [28], [31], [40], [59],

[66]. Dictionaries can be learned by locally optimizing these

and related objectives [29], [55]. In this section, we present

basic concepts associated with dictionary learning, and provide

illustrative examples of algorithm performance.

B. Sparse Modeling for Image Reconstruction

Let X ∈ R
m×N be a set of N column data vectors xj ∈

R
m (e.g., image patches), D ∈ R

m×K be a dictionary of K

atoms represented as columns dk ∈ R
m. Each data vector xj

will have a corresponding vector of reconstruction coefficients

αj ∈ R
K (in contrast with the cases described in previous

sections, K will now be orders of magnitude smaller than

N ), which we will treat as columns of a matrix

A = [α1, . . . ,αN ] ∈ R
K×N .

The goal of sparse modeling is to design a dictionary D such

that X ≃ DA with ‖αj‖0 sufficiently small (usually below

some threshold) for all or most data samples xj . For a fixed

D, the computation of A is called sparse coding.

We begin our discussion with the standard ℓ0 or ℓ1 penalty

modeling problem,

(A∗,D∗) = arg min
A,D

‖X − DA‖2
F + λ ‖A‖p , (11)

where ‖·‖F denotes Frobenius norm and p = 0, 1. The cost

function to be minimized in (11) consists of a quadratic

fitting term and an ℓ0 or ℓ1 regularization term for each

column of A, the balance of the two being defined by the

penalty parameter λ (this parameter has been studied in [35],

[39], [55], [65], [79]). As mentioned above, the ℓ1 norm

can be used as an approximation to ℓ0, making the problem

convex in A while still encouraging sparse solutions [64].

While for reconstruction we found that the ℓ0 penalty often

produces better results, ℓ1 leads to more stable active sets

and is preferred for the classification tasks introduced in the

next section. In addition, these costs can be replaced by a

(non-convex) Lorentzian penalty function, motivated either by

further approximating the ℓ0 by ℓ1 [15], or by considering

a mixture of Laplacians prior for the coefficients in A and

exploiting MDL concepts [55], instead of the more classical

Laplacian prior.5

Since (11) is not simultaneously convex in {A,D}, coordi-

nate descent type optimization techniques have been proposed

[4], [34]. These approaches have been extended for multiscale

dictionaries and color images in [51], leading to state-of-the-art

results. See Figure 4 for an example of color image denosing

with this approach, and [49], [51] for numerous additional

examples, comparisons, and applications in image demosaic-

ing, image inpainting, and image denoising. An example of a

5The expression (11) can be derived from a MAP estimation with a
Laplacian prior for the coefficients in A and a Gaussian prior for the sparse
representation error.

Fig. 4. Image denoising via sparse modeling and dictionary learned from
a standard set of color images [49].

learned dictionary is shown in Figure 4 as well (K = 256).

It is important to note that for image denoising, overcomplete

dictionaries are used, K > m, and the patch sizes vary from

7× 7, m = 49, to 20× 20, m = 400 (in the multiscale case),

with a sparsity of about 1/10th of the signal dimension m.

State-of-the-art results obtained in [51] are “shared” with

those in [19], which extends the non-local means approach

developed in [5], [12]. Interestingly, the two frameworks are

quite related, since they both use patches as building blocks

(in [51], the sparse coding is applied to all overlapping

image patches), and while a dictionary is learned in [51]

from a large dataset, the patches of the processed image

itself are the “dictionary” in non-local means. The sparsity

constraint in [51] is replaced by a proximity constraint and

other processing steps in [12], [19]. The exact relationship and

the combination of non-local-means with sparsity modeling

has been recently exploited by the authors of [47] to further

improve on these results. The authors also developed a very

fast on-line dictionary learning approach.

C. Sparse Modeling for Image Classification

While image representation and reconstruction has been the

most popular goal of sparse modeling and dictionary learning,

other important image science applications are starting to

be addressed by this framework, in particular, classification

and detection. In [53], [54] the authors use the reconstruc-

tion/generative formulation (11), exploiting the quality of the

representation and/or the coefficients A for the classification

tasks. This generative only formulation can be augmented

by discriminative terms [47], [48], [50], [57], [62] where an

additional term is added in (11) to encourage the learning of
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Fig. 5. Image classification via sparse modeling. Two classes have been
considered, “bikes” and “background,” and the dictionaries where trained in
a semi-supervised fashion [47].

dictionaries that are most relevant to the task at hand. The

dictionary learning then becomes task-dependent and

(semi-) supervised. In the case of [57] for example, a Fisher-

discriminant type term is added in order to encourage signals

(images) from different classes to pick different atoms from the

learned dictionary. In [47], multiple dictionaries are learned,

one per class, so that each class’s dictionary provides a

good reconstruction for its corresponding class and a poor

one for the other classes (simultaneous positive and negative

learning). This idea was then applied in [50] for learning to

detect edges as part of an image classification system. These

frameworks have been extended in [48], where a graphical

model interpretation and connections with kernel methods

are presented as well for the novel sparse model introduced

there. Of course, adding such new terms makes the actual

optimization even more challenging, and the reader is referred

to those papers for details.

This framework of adapting the dictionary to the task,

combining generative with discriminative terms for the case of

classification, has been shown to outperform the generic dictio-

nary learning algorithms, achieving state-of-the-art results for

a number of standard datasets. An example from [47] of the

detection of patches corresponding to bikes from the popular

Gratz dataset is shown in Figure 5. The reader is referred to

[47], [48], [50], [57] for additional examples and comparisons

with the literature.

D. Learning to Sense

As we have seen, learning overcomplete dictionaries that

facilitate a sparse representation of the data as a liner combi-

nation of a few atoms from such dictionary leads to state-of-

the-art results in image and video restoration and classification.

The emerging area of compressed sensing (CS), see [3], [14],

[27] and references therein, has shown that sparse signals

can be recovered from far fewer samples than required by

the classical Shannon-Nyquist Theorem. The samples used

in CS correspond to linear projections obtained by a sensing

projection matrix. It has been shown that, for example, a non-

adaptive random sampling matrix satisfies the fundamental

theoretical requirements of CS, enjoying the additional benefit

of universality. A projection sensing matrix that is optimally

Fig. 6. Simultaneously learning the dictionary and sensing matrices (right
figure) significantly outperforms classical CS, where for example a random
sensing matrix is used in conjunction with an independently learned dictionary
(left figure) [29].

designed for a certain class of signals can further improve

the reconstruction accuracy or further reduce the necessary

number of samples. In [29], the authors extended the for-

mulation in (11) to design a framework for the joint design

and optimization, from a set of training images, of the non-

parametric dictionary and the sensing matrix Φ,

(A∗,D∗,Φ∗) = arg min
A,D,Φ

‖X − DA‖2
F + λ1 ‖Y − ΦDA‖2

F

+ λ2

∥

∥(ΦD)T (ΦD) − I
∥

∥

2

F
+ λ3 ‖A‖p .

In this formulation we include the sensing matrix Φ in

the optimization, the sensed signal Y obtained from the data

X via Y = ΦX , and the critical term that encourages

orthogonality of the components of the effective dictionary

ΦD, as suggested by the critical restricted isometry property in

CS (see [29] for details on the optimization of this functional).

This joint optimization outperforms both the use of random

sensing matrices and those matrices that are optimized inde-

pendently of the learning of the dictionary, Figure 6. Particular

cases of the proposed framework include the optimization

of the sensing matrix for a given dictionary as well as

the optimization of the dictionary for a pre-defined sensing

environment (see also [31], [60], [69]).

E. Remarks on Dictionary Learning

In this section we briefly discussed the topic of dictionary

learning. We illustrated with a number of examples the im-

portance of learning the dictionary for the task as well as

the processing and acquisition pipeline. Sparse modeling, and

in particular the (semi-) supervised case, can be considered

as a non-linear extension of metric learning (see [76] for

bibliography on the subject and [62] for details on the con-

nections between sparse modeling and metric learning). Such

interesting connection brings yet another exciting aspect into

the ongoing sparse modeling developments. The connection

with (regression) approaches based on Dirichlet priors, e.g.,

[22] and references therein, is yet another interesting area for

future research.
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V. FINAL REMARKS

The examples considered in this paper illustrate several

important aspects in the application of sparse representation

to problems in computer vision. First, sparsity provides a

powerful prior for inference with high-dimensional visual

data that have intricate low-dimensional structures. Methods

like ℓ1-minimization offer computational tools to extract such

structures and hence help harness the semantics of the data.

As we have seen in the few highlighted examples, if properly

applied, algorithms based on sparse representation can often

achieve state-of-the-art performance. Second, the key to real-

izing this power is choosing the dictionary in such a way that

sparse representations with respect to the dictionary correctly

reveal the semantics of the data. This can be done implicitly, by

building the dictionary from data with linear or locally linear

structure, or explicitly, by optimizing various measures of how

informative the dictionary is. Finally, rich data and problems in

computer vision provide new examples for the theory of sparse

representation, in some cases demanding new mathematical

analysis and justification. Understanding the performance of

the resulting algorithms can greatly enrich our understanding

of both sparse representation and computer vision.
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